Rapid Automated Mapping of Clouds on Titan With Instance Segmentation

Despite widespread adoption of deep learning models to address a variety of computer vision tasks, planetary science has yet to see extensive utilization of such tools to address its unique problems. On Titan, the largest moon of Saturn, tracking seasonal trends and weather patterns of clouds provid...

Full description

Saved in:
Bibliographic Details
Published inJournal of geophysical research. Machine learning and computation Vol. 2; no. 1
Main Authors Yahn, Zachary, Trent, Douglas M., Duncan, Ethan, Seignovert, Benoît, Santerre, John, Nixon, Conor A.
Format Journal Article
LanguageEnglish
Published American Geophysical Union/Wiley 01.03.2025
Wiley
Subjects
Online AccessGet full text
ISSN2993-5210
2993-5210
DOI10.1029/2024JH000366

Cover

Loading…
Abstract Despite widespread adoption of deep learning models to address a variety of computer vision tasks, planetary science has yet to see extensive utilization of such tools to address its unique problems. On Titan, the largest moon of Saturn, tracking seasonal trends and weather patterns of clouds provides crucial insights into one of the most complex climates in the Solar System, yet much of the available image data are still analyzed in a conventional way. In this work, we apply a Mask R‐CNN trained via transfer learning to perform instance segmentation of clouds in Titan images acquired by the Cassini spacecraft—a previously unexplored approach to a “big data” problem in planetary science. We demonstrate that an automated technique can provide quantitative measures for clouds, such as areas and centroids, that may otherwise be prohibitively time‐intensive to produce by human mapping. Furthermore, despite Titan‐specific challenges, our approach yields accuracy comparable to contemporary cloud identification studies on Earth and other worlds. We compare the efficiencies of human‐driven versus algorithmic approaches, showing that transfer learning provides speed‐ups that may open new horizons for data investigation for Titan. Moreover, we suggest that such approaches have broad potential for application to similar problems in planetary science where they are currently under‐utilized. Future planned missions to the planets and remote sensing initiatives for the Earth promise to provide a deluge of image data in the coming years that will benefit strongly from leveraging machine learning approaches to perform the analysis. Plain Language Summary Although deep learning models continue to be popular tools for addressing a variety of computer vision tasks, planetary science has yet to see their extensive utilization. One such application is cloud tracking in Titan's atmosphere, which has dynamic and complex weather phenomena. In this work, we train a deep computer vision model to identify these clouds from images of Titan's surface. We assess the accuracy of this model, and we also show that our approach is more efficient than human labelers. In addition to cloud detection, we also develop codes for automatically extracting data such as cloud areas and latitudes from our model's predictions. We also propose that similar methods have broad applicability to other planetary science problems, especially given several upcoming missions that promise an influx of high‐quality image data. Key Points We curate a subset of Cassini ISS Titan images and apply a Mask R‐CNN model, achieving high scores on cloud instance segmentation We develop codes for processing the predicted cloud instances to extract a final data set of cloud areas, centroids, and aspect ratios We demonstrate a transfer learning approach that indicates the feasibility of a study of the full Cassini ISS data and even other missions
AbstractList Despite widespread adoption of deep learning models to address a variety of computer vision tasks, planetary science has yet to see extensive utilization of such tools to address its unique problems. On Titan, the largest moon of Saturn, tracking seasonal trends and weather patterns of clouds provides crucial insights into one of the most complex climates in the Solar System, yet much of the available image data are still analyzed in a conventional way. In this work, we apply a Mask R‐CNN trained via transfer learning to perform instance segmentation of clouds in Titan images acquired by the Cassini spacecraft—a previously unexplored approach to a “big data” problem in planetary science. We demonstrate that an automated technique can provide quantitative measures for clouds, such as areas and centroids, that may otherwise be prohibitively time‐intensive to produce by human mapping. Furthermore, despite Titan‐specific challenges, our approach yields accuracy comparable to contemporary cloud identification studies on Earth and other worlds. We compare the efficiencies of human‐driven versus algorithmic approaches, showing that transfer learning provides speed‐ups that may open new horizons for data investigation for Titan. Moreover, we suggest that such approaches have broad potential for application to similar problems in planetary science where they are currently under‐utilized. Future planned missions to the planets and remote sensing initiatives for the Earth promise to provide a deluge of image data in the coming years that will benefit strongly from leveraging machine learning approaches to perform the analysis.
Despite widespread adoption of deep learning models to address a variety of computer vision tasks, planetary science has yet to see extensive utilization of such tools to address its unique problems. On Titan, the largest moon of Saturn, tracking seasonal trends and weather patterns of clouds provides crucial insights into one of the most complex climates in the Solar System, yet much of the available image data are still analyzed in a conventional way. In this work, we apply a Mask R‐CNN trained via transfer learning to perform instance segmentation of clouds in Titan images acquired by the Cassini spacecraft—a previously unexplored approach to a “big data” problem in planetary science. We demonstrate that an automated technique can provide quantitative measures for clouds, such as areas and centroids, that may otherwise be prohibitively time‐intensive to produce by human mapping. Furthermore, despite Titan‐specific challenges, our approach yields accuracy comparable to contemporary cloud identification studies on Earth and other worlds. We compare the efficiencies of human‐driven versus algorithmic approaches, showing that transfer learning provides speed‐ups that may open new horizons for data investigation for Titan. Moreover, we suggest that such approaches have broad potential for application to similar problems in planetary science where they are currently under‐utilized. Future planned missions to the planets and remote sensing initiatives for the Earth promise to provide a deluge of image data in the coming years that will benefit strongly from leveraging machine learning approaches to perform the analysis. Although deep learning models continue to be popular tools for addressing a variety of computer vision tasks, planetary science has yet to see their extensive utilization. One such application is cloud tracking in Titan's atmosphere, which has dynamic and complex weather phenomena. In this work, we train a deep computer vision model to identify these clouds from images of Titan's surface. We assess the accuracy of this model, and we also show that our approach is more efficient than human labelers. In addition to cloud detection, we also develop codes for automatically extracting data such as cloud areas and latitudes from our model's predictions. We also propose that similar methods have broad applicability to other planetary science problems, especially given several upcoming missions that promise an influx of high‐quality image data. We curate a subset of Cassini ISS Titan images and apply a Mask R‐CNN model, achieving high scores on cloud instance segmentation We develop codes for processing the predicted cloud instances to extract a final data set of cloud areas, centroids, and aspect ratios We demonstrate a transfer learning approach that indicates the feasibility of a study of the full Cassini ISS data and even other missions
Abstract Despite widespread adoption of deep learning models to address a variety of computer vision tasks, planetary science has yet to see extensive utilization of such tools to address its unique problems. On Titan, the largest moon of Saturn, tracking seasonal trends and weather patterns of clouds provides crucial insights into one of the most complex climates in the Solar System, yet much of the available image data are still analyzed in a conventional way. In this work, we apply a Mask R‐CNN trained via transfer learning to perform instance segmentation of clouds in Titan images acquired by the Cassini spacecraft—a previously unexplored approach to a “big data” problem in planetary science. We demonstrate that an automated technique can provide quantitative measures for clouds, such as areas and centroids, that may otherwise be prohibitively time‐intensive to produce by human mapping. Furthermore, despite Titan‐specific challenges, our approach yields accuracy comparable to contemporary cloud identification studies on Earth and other worlds. We compare the efficiencies of human‐driven versus algorithmic approaches, showing that transfer learning provides speed‐ups that may open new horizons for data investigation for Titan. Moreover, we suggest that such approaches have broad potential for application to similar problems in planetary science where they are currently under‐utilized. Future planned missions to the planets and remote sensing initiatives for the Earth promise to provide a deluge of image data in the coming years that will benefit strongly from leveraging machine learning approaches to perform the analysis.
Despite widespread adoption of deep learning models to address a variety of computer vision tasks, planetary science has yet to see extensive utilization of such tools to address its unique problems. On Titan, the largest moon of Saturn, tracking seasonal trends and weather patterns of clouds provides crucial insights into one of the most complex climates in the Solar System, yet much of the available image data are still analyzed in a conventional way. In this work, we apply a Mask R‐CNN trained via transfer learning to perform instance segmentation of clouds in Titan images acquired by the Cassini spacecraft—a previously unexplored approach to a “big data” problem in planetary science. We demonstrate that an automated technique can provide quantitative measures for clouds, such as areas and centroids, that may otherwise be prohibitively time‐intensive to produce by human mapping. Furthermore, despite Titan‐specific challenges, our approach yields accuracy comparable to contemporary cloud identification studies on Earth and other worlds. We compare the efficiencies of human‐driven versus algorithmic approaches, showing that transfer learning provides speed‐ups that may open new horizons for data investigation for Titan. Moreover, we suggest that such approaches have broad potential for application to similar problems in planetary science where they are currently under‐utilized. Future planned missions to the planets and remote sensing initiatives for the Earth promise to provide a deluge of image data in the coming years that will benefit strongly from leveraging machine learning approaches to perform the analysis. Plain Language Summary Although deep learning models continue to be popular tools for addressing a variety of computer vision tasks, planetary science has yet to see their extensive utilization. One such application is cloud tracking in Titan's atmosphere, which has dynamic and complex weather phenomena. In this work, we train a deep computer vision model to identify these clouds from images of Titan's surface. We assess the accuracy of this model, and we also show that our approach is more efficient than human labelers. In addition to cloud detection, we also develop codes for automatically extracting data such as cloud areas and latitudes from our model's predictions. We also propose that similar methods have broad applicability to other planetary science problems, especially given several upcoming missions that promise an influx of high‐quality image data. Key Points We curate a subset of Cassini ISS Titan images and apply a Mask R‐CNN model, achieving high scores on cloud instance segmentation We develop codes for processing the predicted cloud instances to extract a final data set of cloud areas, centroids, and aspect ratios We demonstrate a transfer learning approach that indicates the feasibility of a study of the full Cassini ISS data and even other missions
Author Seignovert, Benoît
Trent, Douglas M.
Nixon, Conor A.
Yahn, Zachary
Duncan, Ethan
Santerre, John
Author_xml – sequence: 1
  givenname: Zachary
  orcidid: 0000-0003-2408-2576
  surname: Yahn
  fullname: Yahn, Zachary
  email: zyahn3@gatech.edu
  organization: NASA Goddard Space Flight Center
– sequence: 2
  givenname: Douglas M.
  surname: Trent
  fullname: Trent, Douglas M.
  organization: NASA Langley Research Center
– sequence: 3
  givenname: Ethan
  surname: Duncan
  fullname: Duncan, Ethan
  organization: University of California, Berkeley
– sequence: 4
  givenname: Benoît
  orcidid: 0000-0001-6533-275X
  surname: Seignovert
  fullname: Seignovert, Benoît
  organization: UAR‐3281
– sequence: 5
  givenname: John
  surname: Santerre
  fullname: Santerre, John
  organization: NASA Goddard Space Flight Center
– sequence: 6
  givenname: Conor A.
  orcidid: 0000-0001-9540-9121
  surname: Nixon
  fullname: Nixon, Conor A.
  organization: NASA Goddard Space Flight Center
BackLink https://hal.science/hal-04869703$$DView record in HAL
BookMark eNp9kF1LwzAUhoNMcM7d-QNyKzg9SbqkuRxj7oOJMCdehiRNt4yuKW2n7N_bOpF549V5OTzn4fBeo04ecofQLYEHAlQ-UqDRYgYAjPML1KVSssGQEuic5SvUr6pdyzAKMYgumqx04RM8OtRhr2uX4GddFD7f4JDicRYOSYVDjte-1jl-9_UWz_OqydbhV7fZu7zWtQ_5DbpMdVa5_s_sobenyXo8GyxfpvPxaDmwlPBoIFzChZQGuLCSG5YSGqWRZc5JB9yaoWQcjImt4anQIBpCivZRKqzV0rEemp-8SdA7VZR-r8ujCtqr70UoN0qXtbeZUzTSkg6dJSCSiBliSAJJymLNjLDDlDeuu5Nrq7M_qtloqdodRDGXAtgHadj7E2vLUFWlS38PCKi2fXXefoPDCf_0mTv-y6rFdEVkxL4AQOeEsQ
Cites_doi 10.1016/j.conbuildmat.2017.09.110
10.1002/2014je004749
10.1126/scirobotics.adi3099
10.1109/JPROC.2020.3004555
10.3847/psj/abfdcf
10.1016/j.isprsjprs.2019.02.017
10.1016/j.icarus.2017.12.040
10.1016/j.newast.2007.09.001
10.1109/AERO.1998.687920
10.3390/atmos13020337
10.1109/MC.2008.479
10.1016/0032‐0633(95)00107‐7
10.1016/j.icarus.2018.04.028
10.1364/AO.53.007523
10.1016/j.icarus.2011.07.031
10.1029/2010JE003659
10.1088/1538‐3873/128/959/018007
10.5281/zenodo.11657501
10.3390/rs14236112
10.3847/25c2cfeb.aa328727
10.1002/2016je005240
10.1109/WHISPERS.2010.5594893
10.3390/rs13050992
10.1016/j.compag.2022.106864
10.1038/nature14539
10.3847/PSJ/ac63c2
10.1145/3065386
10.1016/j.icarus.2009.08.024
10.1002/2014EO200002
10.1007/978‐3‐319‐10602‐1_48
10.3390/rs11192312
10.1038/ngeo1219
10.1007/s11214‐004‐1456‐7
10.1029/2010GL046266
10.1016/j.asr.2014.08.018
10.3847/1538‐4357/abcd3b
10.1016/j.icarus.2009.01.032
10.1109/ICCV.2013.398
10.1109/ROBOT.2007.364236
10.1016/j.icarus.2020.113903
10.1109/LGRS.2021.3102970
10.1016/j.icarus.2021.114755
10.1109/TNNLS.2022.3185795
10.1109/TNNLS.2021.3109872
10.1029/2018GL078170
10.1016/j.icarus.2014.12.030
10.1038/nature13789
10.1016/j.pss.2017.02.013
10.1002/2016gl067795
10.1007/s40747‐019‐00128‐0
10.1007/s11760‐021‐01885‐7
10.1016/j.pss.2012.12.002
10.1029/2006gl028652
10.48550/arXiv.1909.02387
10.5194/amt‐15‐797‐2022
10.1016/j.imavis.2019.103853
10.1109/AERO53065.2022.9843428
10.1109/TGRS.2020.3046756
10.1109/CVPR.2016.90
10.1029/2022JE007384
10.3390/rs12081287
10.1038/442362a
10.1146/annurev‐earth‐060115‐012428
10.1038/nature08014
ContentType Journal Article
Copyright 2025 The Author(s). Journal of Geophysical Research: Machine Learning and Computation published by Wiley Periodicals LLC on behalf of American Geophysical Union.
Attribution - NonCommercial - ShareAlike
Copyright_xml – notice: 2025 The Author(s). Journal of Geophysical Research: Machine Learning and Computation published by Wiley Periodicals LLC on behalf of American Geophysical Union.
– notice: Attribution - NonCommercial - ShareAlike
DBID 24P
AAYXX
CITATION
1XC
VOOES
DOA
DOI 10.1029/2024JH000366
DatabaseName Wiley Online Library Open Access
CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISSN 2993-5210
EndPage n/a
ExternalDocumentID oai_doaj_org_article_24a925ec107d43b1b1d0df38a3b7c5f6
oai_HAL_hal_04869703v1
10_1029_2024JH000366
JGR194
Genre researchArticle
GroupedDBID 24P
ACCMX
ALMA_UNASSIGNED_HOLDINGS
GROUPED_DOAJ
0R~
AAYXX
CITATION
M~E
1XC
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
VOOES
WIN
ID FETCH-LOGICAL-c2164-7ed6799b067c96b3f124f4c3ee9e06cb59360bb8cb6f7a07b3f97208027cca9e3
IEDL.DBID DOA
ISSN 2993-5210
IngestDate Wed Aug 27 01:25:33 EDT 2025
Sat Aug 30 06:24:08 EDT 2025
Tue Jul 01 05:02:28 EDT 2025
Thu Mar 27 11:06:11 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Attribution
Attribution - NonCommercial - ShareAlike: http://creativecommons.org/licenses/by-nc-sa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2164-7ed6799b067c96b3f124f4c3ee9e06cb59360bb8cb6f7a07b3f97208027cca9e3
ORCID 0000-0001-6533-275X
0000-0003-2408-2576
0000-0001-9540-9121
OpenAccessLink https://doaj.org/article/24a925ec107d43b1b1d0df38a3b7c5f6
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_24a925ec107d43b1b1d0df38a3b7c5f6
hal_primary_oai_HAL_hal_04869703v1
crossref_primary_10_1029_2024JH000366
wiley_primary_10_1029_2024JH000366_JGR194
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2025
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: March 2025
PublicationDecade 2020
PublicationTitle Journal of geophysical research. Machine learning and computation
PublicationYear 2025
Publisher American Geophysical Union/Wiley
Wiley
Publisher_xml – name: American Geophysical Union/Wiley
– name: Wiley
References 2022; 373
2017; 8
2019; 11
2023; 8
2017; 150
2020; 12
2024
2018; 45
2017; 157
2007; 34
2020; 19
2015; 250
2020; 6
2020; 3
2021; 34
2020; 93
2010; 115
2016; 43
2022; 35
2024c
2024b
2024a
2017; 122
2012; 25
2014; 95
2010; 2
2022; 128
2019; 150
2006; 442
2014; 54
2016; 44
2014; 514
2022; 196
2021; 2
2011; 216
2021; 907
2010; 206
2015; 521
2010; 205
2015; 120
2007
2008; 13
2016; 128
2011; 4
2009; 459
2011; 38
2020; 109
2021; 13
2021; 15
2004; 115
2022; 3
2022
2020
2013; 78
2020; 351
2018; 311
2018; 310
2021; 19
2022; 13
2019
2022; 15
2017
2015
2022; 53
1998; 2
2008; 41
2014
2013
1996; 44
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_68_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_41_1
e_1_2_8_60_1
Tzanetos T. (e_1_2_8_66_1) 2022
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
Mommer M. (e_1_2_8_49_1) 2020
e_1_2_8_70_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_11_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
Gonzales C. (e_1_2_8_22_1) 2019
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
Kingma D. P. (e_1_2_8_31_1) 2014
e_1_2_8_48_1
e_1_2_8_69_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_14_1
He K. (e_1_2_8_26_1) 2017
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
Wilkins A. (e_1_2_8_71_1) 2020; 3
LeGoff M. (e_1_2_8_34_1) 2017
Liles C. (e_1_2_8_39_1) 2020
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_77_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_75_1
e_1_2_8_52_1
e_1_2_8_73_1
e_1_2_8_50_1
References_xml – volume: 44
  start-page: 353
  issue: 1
  year: 2016
  end-page: 380
  article-title: The climate of titan
  publication-title: Annual Review of Earth and Planetary Sciences
– year: 2024b
– volume: 95
  start-page: 165
  issue: 20
  year: 2014
  end-page: 167
  article-title: Europa clipper mission concept: Exploring Jupiter’s ocean moon
  publication-title: Eos, Transactions American Geophysical Union
– volume: 25
  start-page: 84
  issue: 2
  year: 2012
  end-page: 90
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Advances in Neural Information Processing Systems
– volume: 907
  start-page: 17
  issue: 1
  year: 2021
  end-page: 27
  article-title: Haze seasonal variations of Titan’s upper atmosphere during the Cassini Mission
  publication-title: The Astrophysical Journal
– volume: 3
  issue: 1
  year: 2020
  article-title: Automated spectroscopic detection and mapping using ALMA and machine learning techniques
  publication-title: SMU Data Science Review
– volume: 78
  start-page: 1
  year: 2013
  end-page: 21
  article-title: JUpiter ICy moons Explorer (JUICE): An ESA mission to orbit Ganymede and to characterise the Jupiter system
  publication-title: Planetary and Space Science
– start-page: 1
  year: 2022
  end-page: 16
– volume: 45
  start-page: 5320
  issue: 11
  year: 2018
  end-page: 5328
  article-title: Titan’s meteorology over the Cassini mission: Evidence for extensive subsurface methane reservoirs
  publication-title: Geophysical Research Letters
– volume: 2
  start-page: 1
  issue: 1
  year: 2010
  end-page: 4
  article-title: Systematic detection of Titan’s clouds in VIMS/Cassini hyperspectral images using a new automated algorithm
  publication-title: IEEE Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing
– year: 2024
– year: 2019
  article-title: Machine‐learning‐driven new geologic discoveries at Mars rover landing sites: Jezero and NE Syrtis
  publication-title: Earth and Planetary Astrophysics
– volume: 34
  start-page: 2817
  issue: 6
  year: 2021
  end-page: 2830
  article-title: Topological structure and semantic information transfer network for cross‐scene hyperspectral image classification
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 115
  start-page: 363
  issue: 1–4
  year: 2004
  end-page: 497
  article-title: Cassini imaging science: Instrument characteristics and anticipated scientific investigations on Saturn
  publication-title: Space Science Reviews
– volume: 13
  issue: 23
  year: 2022
  article-title: Giant planet observations in NASA’s planetary data system
  publication-title: Remote Sensing
– volume: 128
  issue: 959
  year: 2016
  article-title: Titan science with the James Webb Space Telescope
  publication-title: Publications of the Astronomical Society of the Pacific
– volume: 459
  start-page: 678
  issue: 7247
  year: 2009
  end-page: 682
  article-title: Global circulation as the main source of cloud activity on titan
  publication-title: Nature
– volume: 3
  issue: 5
  year: 2022
  article-title: Revealing the mysteries of Venus: The DAVINCI mission
  publication-title: The Planetary Science Journal
– volume: 8
  issue: 80
  year: 2023
  article-title: Autonomous robotics is driving perseverance rover’s progress on Mars
  publication-title: Science Robotics
– year: 2014
– volume: 196
  year: 2022
  article-title: Fusion of mask RCNN and attention mechanism for instance segmentation of apples under complex background
  publication-title: Computers and Electronics in Agriculture
– volume: 442
  start-page: 362
  issue: 7101
  year: 2006
  end-page: 363
  article-title: Planetary science: Titan’s exotic weather
  publication-title: Nature
– volume: 351
  year: 2020
  article-title: Air‐sea interactions on Titan: Lake evaporation, atmospheric circulation, and cloud formation
  publication-title: Icarus
– volume: 38
  start-page: 571
  issue: 3
  year: 2011
  end-page: 580
  article-title: Seasonal changes in Titan’s meteorology
  publication-title: Geophysical Research Letters
– year: 2024c
– volume: 12
  issue: 18
  year: 2020
  article-title: Computer vision and deep learning techniques for the analysis of drone‐acquired forest images, a transfer learning study
  publication-title: Remote Sensing
– volume: 44
  start-page: 65
  issue: 1
  year: 1996
  end-page: 70
  article-title: Ancillary data services of NASA’s navigation and ancillary information facility
  publication-title: Planetary and Space Science
– volume: 2
  issue: 4
  year: 2021
  article-title: Science goals and objectives for the Dragonfly Titan rotorcraft relocatable lander
  publication-title: The Planetary Science Journal
– volume: 19
  start-page: 9646
  issue: 11
  year: 2021
  end-page: 9660
  article-title: Cross‐scene hyperspectral image classification with discriminative cooperative alignment
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– volume: 205
  start-page: 571
  issue: 5
  year: 2010
  end-page: 580
  article-title: Clouds on titan during the Cassini prime mission: A complete analysis of the vims data
  publication-title: Icarus
– volume: 13
  start-page: 224
  issue: 4
  year: 2008
  end-page: 232
  article-title: An automated method for tracking clouds in planetary atmospheres
  publication-title: New Astronomy
– volume: 206
  start-page: 467
  issue: 2
  year: 2010
  end-page: 484
  article-title: Convective cloud heights as a diagnostic for methane environment on titan
  publication-title: Icarus
– start-page: 01
  year: 2022
  end-page: 19
– volume: 11
  issue: 19
  year: 2019
  article-title: CloudFCN: Accurate and robust cloud detection for satellite imagery with deep learning
  publication-title: Remote Sensing
– year: 2017
  article-title: Mask R‐CNN
  publication-title: CoRR
– volume: 8
  start-page: 197
  year: 2017
  end-page: 212
– volume: 4
  start-page: 589
  issue: 9
  year: 2011
  end-page: 592
  article-title: Locally enhanced precipitation organized by planetary‐scale waves on Titan
  publication-title: Nature Geoscience
– volume: 35
  start-page: 1912
  issue: 2
  year: 2022
  end-page: 1925
  article-title: Graph information aggregation cross‐domain few‐shot learning for hyperspectral image classification
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 128
  start-page: 123
  issue: 1
  year: 2022
  end-page: 129
  article-title: Revisiting atmospheric features of Mars Orbiter Laser Altimeter data using machine learning algorithms
  publication-title: Journal of Geophysical Research: Planets
– volume: 157
  start-page: 322
  issue: 30
  year: 2017
  end-page: 330
  article-title: Deep convolutional neural networks with transfer learning for computer vision‐based data‐driven pavement distress detection
  publication-title: Construction and Building Materials
– year: 2019
– volume: 514
  start-page: 65
  issue: 7520
  year: 2014
  end-page: 67
  article-title: HCN ice in Titan’s high‐altitude southern polar cloud
  publication-title: Nature
– year: 2015
– volume: 6
  start-page: 251
  issue: 2
  year: 2020
  end-page: 261
  article-title: Cloud detection methodologies: Variants and development—A review
  publication-title: Complex & Intelligent Systems
– volume: 373
  year: 2022
  article-title: The interaction of deep convection with the general circulation in Titan’s atmosphere. Part 1: Cloud resolving simulations
  publication-title: Icarus
– volume: 54
  start-page: 2419
  issue: 11
  year: 2014
  end-page: 2429
  article-title: A machine learning approach to crater detection from topographic data
  publication-title: Advances in Space Research
– volume: 122
  start-page: 432
  issue: 3
  year: 2017
  end-page: 482
  article-title: Titan’s atmosphere and climate
  publication-title: Journal of Geophysical Research: Planets
– volume: 19
  start-page: 1
  year: 2021
  end-page: 5
  article-title: An automatic cloud detection neural network for high‐resolution remote sensing imagery with cloud–snow coexistence
  publication-title: IEEE Geoscience and Remote Sensing Letters
– start-page: 4911
  year: 2007
  end-page: 4918
– volume: 19
  year: 2020
– volume: 41
  start-page: 44
  issue: 12
  year: 2008
  end-page: 50
  article-title: Autonomy for mars rovers: Past, present, and future
  publication-title: Computer
– year: 2024a
– volume: 13
  issue: 5
  year: 2021
  article-title: Benchmarking deep learning models for cloud detection in Landsat‐8 and Sentinel‐2 images
  publication-title: Remote Sensing
– volume: 15
  start-page: 797
  issue: 3
  year: 2022
  end-page: 809
  article-title: Applying self‐supervised learning for semantic cloud segmentation of all‐sky images
  publication-title: Atmospheric Measurement Techniques
– volume: 43
  start-page: 3088
  issue: 7
  year: 2016
  end-page: 3094
  article-title: Solid‐state photochemistry as a formation mechanism for titan’s stratospheric C N ice clouds
  publication-title: Geophysical Research Letters
– volume: 115
  issue: E12
  year: 2010
  article-title: Composition of Titan’s lower atmosphere and simple surface volatiles as measured by the Cassini‐Huygens probe gas chromatograph mass spectrometer experiment
  publication-title: Journal of Geophysical Research
– volume: 250
  start-page: 516
  year: 2015
  end-page: 528
  article-title: GCM simulations of Titan’s middle and lower atmosphere and comparison to observations
  publication-title: Icarus
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  end-page: 445
  article-title: Deep learning
  publication-title: Nature
– volume: 53
  start-page: 7523
  issue: 31
  year: 2022
  end-page: 7530
  article-title: Method for validating cloud mask obtained from satellite measurements using ground‐based sky camera
  publication-title: Applied Optics
– volume: 93
  issue: 1
  year: 2020
  article-title: Transfer learning in computer vision tasks: Remember where you come from
  publication-title: Image and Computing Vision
– volume: 150
  start-page: 9
  year: 2017
  end-page: 12
  article-title: A look toward the future in the handling of space science mission geometry
  publication-title: Planetary and Space Science
– volume: 150
  start-page: 197
  year: 2019
  end-page: 212
  article-title: Deep learning based cloud detection for medium and high resolution remote sensing images of different sensors
  publication-title: ISPRS Journal of Photogrammetry and Remote Sensing
– year: 2020
– start-page: 3208
  year: 2013
  end-page: 3215
– volume: 15
  start-page: 1527
  issue: 7
  year: 2021
  end-page: 1535
  article-title: A review on deep learning techniques for cloud detection methodologies and challenges
  publication-title: Signal, Video, and Image Processing
– volume: 13
  issue: 2
  year: 2022
  article-title: Venus cloud‐tracking winds using ground‐ and space‐based observations with TNG/NICS and VEx/VIRTIS
  publication-title: Atmosphere
– volume: 120
  start-page: 739
  issue: 4
  year: 2015
  end-page: 759
  article-title: Environmental control of deep convective clouds on Titan: The combined effect of CAPE and wind shear on storm dynamics, morphology, and lifetime
  publication-title: Journal of Geophysical Research: Planets
– volume: 109
  start-page: 43
  issue: 1
  year: 2020
  end-page: 76
  article-title: A comprehensive survey on transfer learning
  publication-title: Proceedings of the IEEE
– year: 2017
– volume: 216
  start-page: 89
  issue: 1
  year: 2011
  end-page: 110
  article-title: Titan’s cloud seasonal activity from winter to spring with Cassini/VIMS
  publication-title: Icarus
– volume: 34
  issue: 3
  year: 2007
  article-title: TRAMS: A new dynamic cloud model for Titan’s methane clouds
  publication-title: Geophysical Research Letters
– start-page: 740
  year: 2014
  end-page: 755
  article-title: Microsoft COCO: Common objects in context
  publication-title: CoRR
– volume: 310
  start-page: 89
  year: 2018
  end-page: 104
  article-title: Study of Titan’s fall southern stratospheric polar cloud composition with Cassini/CIRS: Detection of benzene ice
  publication-title: Icarus
– volume: 311
  start-page: 371
  year: 2018
  end-page: 383
  article-title: Mapping polar atmospheric features on Titan with VIMS: From the dissipation of the northern cloud to the onset of a southern polar vortex
  publication-title: Icarus
– volume: 2
  start-page: 337
  year: 1998
  end-page: 351
– ident: e_1_2_8_23_1
  doi: 10.1016/j.conbuildmat.2017.09.110
– ident: e_1_2_8_56_1
  doi: 10.1002/2014je004749
– ident: e_1_2_8_67_1
  doi: 10.1126/scirobotics.adi3099
– ident: e_1_2_8_78_1
  doi: 10.1109/JPROC.2020.3004555
– volume-title: IEEE applied imagery pattern recognition workshop
  year: 2019
  ident: e_1_2_8_22_1
– ident: e_1_2_8_7_1
  doi: 10.3847/psj/abfdcf
– ident: e_1_2_8_38_1
  doi: 10.1016/j.isprsjprs.2019.02.017
– ident: e_1_2_8_68_1
  doi: 10.1016/j.icarus.2017.12.040
– start-page: 197
  volume-title: ICPRS (8th international conference of pattern recognition systems)
  year: 2017
  ident: e_1_2_8_34_1
– ident: e_1_2_8_43_1
  doi: 10.1016/j.newast.2007.09.001
– ident: e_1_2_8_46_1
  doi: 10.1109/AERO.1998.687920
– ident: e_1_2_8_44_1
  doi: 10.3390/atmos13020337
– ident: e_1_2_8_6_1
  doi: 10.1109/MC.2008.479
– volume-title: 3rd international conference on learning representations
  year: 2014
  ident: e_1_2_8_31_1
– ident: e_1_2_8_2_1
  doi: 10.1016/0032‐0633(95)00107‐7
– ident: e_1_2_8_50_1
  doi: 10.1016/j.icarus.2018.04.028
– ident: e_1_2_8_35_1
  doi: 10.1364/AO.53.007523
– ident: e_1_2_8_60_1
  doi: 10.1016/j.icarus.2011.07.031
– ident: e_1_2_8_51_1
  doi: 10.1029/2010JE003659
– ident: e_1_2_8_52_1
  doi: 10.1088/1538‐3873/128/959/018007
– ident: e_1_2_8_74_1
  doi: 10.5281/zenodo.11657501
– ident: e_1_2_8_13_1
  doi: 10.3390/rs14236112
– ident: e_1_2_8_5_1
  doi: 10.3847/25c2cfeb.aa328727
– ident: e_1_2_8_69_1
– year: 2017
  ident: e_1_2_8_26_1
  article-title: Mask R‐CNN
  publication-title: CoRR
– ident: e_1_2_8_28_1
  doi: 10.1002/2016je005240
– ident: e_1_2_8_61_1
  doi: 10.1109/WHISPERS.2010.5594893
– ident: e_1_2_8_41_1
  doi: 10.3390/rs13050992
– ident: e_1_2_8_70_1
  doi: 10.1016/j.compag.2022.106864
– ident: e_1_2_8_33_1
  doi: 10.1038/nature14539
– ident: e_1_2_8_21_1
  doi: 10.3847/PSJ/ac63c2
– ident: e_1_2_8_32_1
  doi: 10.1145/3065386
– ident: e_1_2_8_10_1
  doi: 10.1016/j.icarus.2009.08.024
– ident: e_1_2_8_53_1
  doi: 10.1002/2014EO200002
– ident: e_1_2_8_40_1
  doi: 10.1007/978‐3‐319‐10602‐1_48
– ident: e_1_2_8_20_1
  doi: 10.3390/rs11192312
– ident: e_1_2_8_47_1
  doi: 10.1038/ngeo1219
– ident: e_1_2_8_54_1
  doi: 10.1007/s11214‐004‐1456‐7
– ident: e_1_2_8_63_1
  doi: 10.1029/2010GL046266
– ident: e_1_2_8_72_1
– ident: e_1_2_8_16_1
  doi: 10.1016/j.asr.2014.08.018
– ident: e_1_2_8_62_1
  doi: 10.3847/1538‐4357/abcd3b
– volume-title: Conference on artificial and computational intelligence and its applications to the environmental sciences
  year: 2020
  ident: e_1_2_8_39_1
– ident: e_1_2_8_9_1
  doi: 10.1016/j.icarus.2009.01.032
– ident: e_1_2_8_29_1
– ident: e_1_2_8_12_1
  doi: 10.1109/ICCV.2013.398
– ident: e_1_2_8_18_1
  doi: 10.1109/ROBOT.2007.364236
– ident: e_1_2_8_58_1
  doi: 10.1016/j.icarus.2020.113903
– ident: e_1_2_8_14_1
  doi: 10.1109/LGRS.2021.3102970
– ident: e_1_2_8_57_1
  doi: 10.1016/j.icarus.2021.114755
– ident: e_1_2_8_77_1
  doi: 10.1109/TNNLS.2022.3185795
– ident: e_1_2_8_76_1
  doi: 10.1109/TNNLS.2021.3109872
– ident: e_1_2_8_64_1
  doi: 10.1029/2018GL078170
– ident: e_1_2_8_73_1
– ident: e_1_2_8_42_1
  doi: 10.1016/j.icarus.2014.12.030
– ident: e_1_2_8_15_1
  doi: 10.1038/nature13789
– ident: e_1_2_8_3_1
  doi: 10.1016/j.pss.2017.02.013
– ident: e_1_2_8_4_1
  doi: 10.1002/2016gl067795
– ident: e_1_2_8_45_1
  doi: 10.1007/s40747‐019‐00128‐0
– ident: e_1_2_8_36_1
  doi: 10.1007/s11760‐021‐01885‐7
– ident: e_1_2_8_24_1
  doi: 10.1016/j.pss.2012.12.002
– ident: e_1_2_8_55_1
– volume: 3
  issue: 1
  year: 2020
  ident: e_1_2_8_71_1
  article-title: Automated spectroscopic detection and mapping using ALMA and machine learning techniques
  publication-title: SMU Data Science Review
– ident: e_1_2_8_8_1
  doi: 10.1029/2006gl028652
– start-page: 1
  volume-title: 2022 IEEE aerospace conference (AERO)
  year: 2022
  ident: e_1_2_8_66_1
– ident: e_1_2_8_17_1
  doi: 10.48550/arXiv.1909.02387
– ident: e_1_2_8_19_1
  doi: 10.5194/amt‐15‐797‐2022
– ident: e_1_2_8_37_1
  doi: 10.1016/j.imavis.2019.103853
– ident: e_1_2_8_65_1
  doi: 10.1109/AERO53065.2022.9843428
– ident: e_1_2_8_75_1
  doi: 10.1109/TGRS.2020.3046756
– ident: e_1_2_8_27_1
  doi: 10.1109/CVPR.2016.90
– ident: e_1_2_8_11_1
  doi: 10.1029/2022JE007384
– ident: e_1_2_8_30_1
  doi: 10.3390/rs12081287
– ident: e_1_2_8_25_1
  doi: 10.1038/442362a
– ident: e_1_2_8_48_1
  doi: 10.1146/annurev‐earth‐060115‐012428
– volume-title: Cloud identification from all‐sky camera data with machine learning
  year: 2020
  ident: e_1_2_8_49_1
– ident: e_1_2_8_59_1
  doi: 10.1038/nature08014
SSID ssj0003320807
Score 2.284193
Snippet Despite widespread adoption of deep learning models to address a variety of computer vision tasks, planetary science has yet to see extensive utilization of...
Abstract Despite widespread adoption of deep learning models to address a variety of computer vision tasks, planetary science has yet to see extensive...
SourceID doaj
hal
crossref
wiley
SourceType Open Website
Open Access Repository
Index Database
Publisher
SubjectTerms Astrophysics
clouds
deep learning
Earth and Planetary Astrophysics
instance segmentation
Sciences of the Universe
Titan
SummonAdditionalLinks – databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxELYKvXBBVBQR2iILtQcOK3ZtZ70-BgRNo1IhSERuK9s7TpBgF-XB7--Ms42SC1Kv1mi0O37MN_bMN4x9t0Y7U2CkCtrqRCntEydCSGQXEO0DItTYveH2T94fqcG4O24v3KgWZsUPsb5wo50Rz2va4NbNW7IB4sjEqF0N-pFQJd9hH6m6lrjzhbpb37FIKdJVxbSgNDX0VGmb-44qLjYVbHmlSN6PvmZKqZGbkDX6nJsDtt-CRd5bze4n9gHqQ3Z9b1-fKt5bLhpEm1DxW0scCxPeBH713CyrOW9qPsSYv-aPT4sp_xURoAf-AJOXttSo_sxGN9fDq37SNkNIvMCQJtFQ5doYh97Fm9zJgI45KC8BDKS5d9SZL3Wu8C4P2qYaJYym3xcaJ8mAPGK7dVPDMePeiUr5LGRe0Ltraj24IssBlaFJoOiwH_-MUb6uOC_K-FYtTLlptA67JEutZYipOg40s0nZLvxSKGtEFzyGmZWSLnNZlVZBFlY67bsBlZyhnbd09Hu_SxojNkCDJ9Jb1mHncRre_Zxy8PM-M-rkP2S_sD1B_XxjTtlXtruYLeEbgoyFO40r6S_w48Wp
  priority: 102
  providerName: Wiley-Blackwell
Title Rapid Automated Mapping of Clouds on Titan With Instance Segmentation
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2024JH000366
https://hal.science/hal-04869703
https://doaj.org/article/24a925ec107d43b1b1d0df38a3b7c5f6
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELWgEwsCASJ8yUIwMEQkthvHY0EtoaIIQSvYotg5AxIkCFJGfjtnN6CywMKSwbIs5y7ye0--vCPkoFBSqxSVKshChkJIE2pmbci7gGwfkKH67g2jyySbiOFd926u1ZerCZvZA88Cd8xEoVgXDMqUUnAd67iMSsvTgmtputabbSPmzYkpdwZzzpAKybbSPWLKiXwxzLz_SvIDg7xVPyLLgyuEnCeoHmEGK2S5pYa0N9vSKlmAao30r4uXx5L2pk2N3BJKOiqco8I9rS09faqn5RutKzpGhV_R28fmgZ57vmeA3sD9c_tjUbVOJoP--DQL29YHoWEoYEIJZSKV0oglRiWaW4RhKwwHUBAlRrs-fJHWqdGJlUUkcYaS7pWZxJQo4BukU9UVbBJqNCuFiW1smLtljQoDOo0TwMUwJJAG5PArGPnLzOEi9zfTTOXzQQvIiYvU9xznS-0HMFt5m638r2wFZB_j_GONrHeRuzHn_afw_HmPA3Lk0_DrdvLh2XWsxNZ_7GqbLDHX1teXlu2QTvM6hV3kGo3eI4tMXO35jwufo4_-J7Iazus
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwELYWOMAFgVhEeVqr3cMeIhLbjeNjQUDotmjFFsEtip1xQYIEQcvvZ8YNVbkg7dUajZLxY74Zj79h7GdptDUZRqqgSx0ppV1khfeR7AKifUCEGro3DK_S_Eb177p3bZ9Tegsz44eYJ9xoZ4TzmjY4JaRbtgEiycSwXfXzwKiSLrEVlQpNO1Oov_Mki5Qinj2ZFlSnhq4qbovfUcXxooJPbimw96OzuafayEXMGpzO-QZbb9Ei782md5N9g3qLnV2Xzw8V700nDcJNqPiwJJKFMW88P31sptUrb2o-wqC_5rcPk3t-GSCgA_4Pxk_tW6P6O7s5Pxud5lHbDSFyAmOaSEOVamMsuhdnUis9emavnAQwEKfOUmu-2NrM2dTrMtYoYTT9vtA4SwbkNluumxp2GHdWVMolPnGCLl7j0oHNkhRQGZoEsg779WGM4nlGelGEy2phikWjddgJWWouQ1TVYaB5GRftyi-EKo3ogsM4s1LSJjap4srLrJRWu65HJT_Qzp905L1BQWNEB2jwSHpLOux3mIYvP6foX1wnRu3-h-wRW81Hw0ExuLz6s8fWBDX3DQVm-2x58jKFA0QcE3sYVtU7tmXJFQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JSwMxFA4uIF5EUbGuQfTgYXAmSSeTY11qrQvigt6GSfLSCjpTtPX3-5KOpV4EryE8Zl6W970l3yPkoFBSqww9VZCFjISQJtLMuYg3AdE-IEIN3RtubtPOk-i-NF_qgJt_CzPmh5gE3PzJCPe1P-AD62qyAc-RiV676HYCoUo6S-ZDvs8zO4u7SYyFcxaPX0wzX6aGliqua99RxPG0gF9WKZD3o63p-9LIacgabE57mSzVYJG2xqu7QmagXCXn98Xg1dLWaFgh2gRLbwrPsdCjlaOnb9XIftKqpI_o85f0-XXYp5cBARqgD9B7r58alWvkqX3-eNqJ6mYIkWHo0kQSbCqV0mhdjEo1d2iYnTAcQEGcGu0788VaZ0anThaxxBlK-t9nEhdJAV8nc2VVwgahRjMrTOISw3zeNS4M6CxJAYWhSiBrkMMfZeSDMedFHnLVTOXTSmuQE6-pyRzPVB0Gqo9eXm_8nIlCsSYYdDOt4DrRiY2t41nBtTRNh0L2Uc-_ZHRa17kf82yACm-kr6RBjsIy_Pk5effiPlFi8x9z98jC3Vk7v768vdoii8y39g3lZdtkbvgxgh3EG0O9GzbVN7BXyEc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rapid+Automated+Mapping+of+Clouds+on+Titan+With+Instance+Segmentation&rft.jtitle=Journal+of+geophysical+research.+Machine+learning+and+computation&rft.au=Zachary+Yahn&rft.au=Douglas+M.+Trent&rft.au=Ethan+Duncan&rft.au=Beno%C3%AEt+Seignovert&rft.date=2025-03-01&rft.pub=Wiley&rft.eissn=2993-5210&rft.volume=2&rft.issue=1&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2024JH000366&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_24a925ec107d43b1b1d0df38a3b7c5f6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2993-5210&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2993-5210&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2993-5210&client=summon