Classification of tracheal stenosis with asymmetric misclassification errors from EMG signals using an adaptive cost-sensitive learning method

Upper airway obstruction is characterized by loss of normal airway architecture resulting from various disorders such as infections and asthma. Early detection of airway obstruction is essential to prevent medical deterioration. The objective of this study was to non-invasively identify early-stage...

Full description

Saved in:
Bibliographic Details
Published inBiomedical signal processing and control Vol. 85; p. 104962
Main Authors Volk, Ohad, Ratnovsky, Anat, Naftali, Sara, Singer, Gonen
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.08.2023
Subjects
Online AccessGet full text
ISSN1746-8094
DOI10.1016/j.bspc.2023.104962

Cover

Loading…
Abstract Upper airway obstruction is characterized by loss of normal airway architecture resulting from various disorders such as infections and asthma. Early detection of airway obstruction is essential to prevent medical deterioration. The objective of this study was to non-invasively identify early-stage tracheal stenosis, using electromyography (EMG) signals of inspiratory muscles. The identification of tracheal stenosis has been defined as an asymmetric misclassification cost problem. Specifically, the EMG signals are used as input to a ResNet-like architecture for tabular data with an Adaptive Cost-Sensitive Learning (AdaCSL) algorithm. The electrical activity of the external intercostal muscle of four healthy individuals was recorded while they breathed through two different tubes, one simulating a narrowed airway and the other simulating a normal airway. Two experiment settings were designed. The first setting aimed to classify tracheal stenosis in a specific subject by training the model on data from other subjects, reflecting the case of diagnosing a new subject. To overcome multi-subject variations, the second setting aimed to classify tracheal stenosis by mixing all subjects’ training and test data. The ResNet-like architecture with an AdaCSL algorithm was significantly better in the first experiment setting with costs that were 43%, 48%, and 59% lower than the cost of the second-best alternative for three different misclassification cost values. It also achieved a lower cost in the second experiment setting over other classifiers. The experiments emphasize the capability of using inspiratory muscle EMG signals to diagnose respiratory disease and demonstrate the usefulness of the AdaCSL algorithm for personalized monitoring. [Display omitted] •EMG signals were used for the early identification of tracheal stenosis existence.•The adaptive cost-sensitive learning (AdaCSL) algorithm was applied.•Two machine learning experiments settings were designed.•Identification was made based on data of other subjects and mixed data.•EMG signals and AdaCSL are useful for tracheal stenosis identification.
AbstractList Upper airway obstruction is characterized by loss of normal airway architecture resulting from various disorders such as infections and asthma. Early detection of airway obstruction is essential to prevent medical deterioration. The objective of this study was to non-invasively identify early-stage tracheal stenosis, using electromyography (EMG) signals of inspiratory muscles. The identification of tracheal stenosis has been defined as an asymmetric misclassification cost problem. Specifically, the EMG signals are used as input to a ResNet-like architecture for tabular data with an Adaptive Cost-Sensitive Learning (AdaCSL) algorithm. The electrical activity of the external intercostal muscle of four healthy individuals was recorded while they breathed through two different tubes, one simulating a narrowed airway and the other simulating a normal airway. Two experiment settings were designed. The first setting aimed to classify tracheal stenosis in a specific subject by training the model on data from other subjects, reflecting the case of diagnosing a new subject. To overcome multi-subject variations, the second setting aimed to classify tracheal stenosis by mixing all subjects’ training and test data. The ResNet-like architecture with an AdaCSL algorithm was significantly better in the first experiment setting with costs that were 43%, 48%, and 59% lower than the cost of the second-best alternative for three different misclassification cost values. It also achieved a lower cost in the second experiment setting over other classifiers. The experiments emphasize the capability of using inspiratory muscle EMG signals to diagnose respiratory disease and demonstrate the usefulness of the AdaCSL algorithm for personalized monitoring. [Display omitted] •EMG signals were used for the early identification of tracheal stenosis existence.•The adaptive cost-sensitive learning (AdaCSL) algorithm was applied.•Two machine learning experiments settings were designed.•Identification was made based on data of other subjects and mixed data.•EMG signals and AdaCSL are useful for tracheal stenosis identification.
ArticleNumber 104962
Author Naftali, Sara
Ratnovsky, Anat
Volk, Ohad
Singer, Gonen
Author_xml – sequence: 1
  givenname: Ohad
  orcidid: 0000-0003-1080-2333
  surname: Volk
  fullname: Volk, Ohad
  email: volkoha@biu.ac.il
  organization: Faculty of Engineering, Bar-Ilan University, Ramat Gan, Israel
– sequence: 2
  givenname: Anat
  orcidid: 0000-0002-4930-3630
  surname: Ratnovsky
  fullname: Ratnovsky, Anat
  email: ratnovskya@afeka.ac.il
  organization: School of Medical Engineering, Afeka Tel Aviv Academic College of Engineering, Tel Aviv, Israel
– sequence: 3
  givenname: Sara
  orcidid: 0000-0001-9025-3041
  surname: Naftali
  fullname: Naftali, Sara
  email: saran@afeka.ac.il
  organization: School of Medical Engineering, Afeka Tel Aviv Academic College of Engineering, Tel Aviv, Israel
– sequence: 4
  givenname: Gonen
  surname: Singer
  fullname: Singer, Gonen
  email: gonen.singer@biu.ac.il
  organization: Faculty of Engineering, Bar-Ilan University, Ramat Gan, Israel
BookMark eNp9kLlOAzEQhl2ARDhegMovsMHemD0kGhRxSUE0UFvO7DiZaNeOPAbES_DMbAgNFFSjOb6R_u9YHIQYUIhzraZa6epiM13yFqalKmfjwLRVeSAmujZV0ajWHIlj5o1Spqm1mYjPee-YyRO4TDHI6GVODtboeskZQ2Ri-U55LR1_DAPmRCAHYviNYUoxsfQpDvLm8U4yrYLrWb4yhZV0QbrObTO9oYTIuWAMTN9tjy6F3c34eh27U3HoRw7PfuqJeLm9eZ7fF4unu4f59aKAUl_movOtU85VS61NY6D2uq7aFpauxnLcebNUeoam8ZWrFDRN61vwzSWUvvQKunp2Isr9X0iROaG320SDSx9WK7uzaDd2Z9HuLNq9xRFq_kBA-Tv_qIz6_9GrPYpjqDfCZBkIA2BHCSHbLtJ_-Bfz0Zcp
CitedBy_id crossref_primary_10_1016_j_engappai_2024_107914
crossref_primary_10_1088_1361_6501_acf0df
crossref_primary_10_1007_s10115_024_02070_1
crossref_primary_10_3390_app132413197
crossref_primary_10_1016_j_iswa_2023_200316
crossref_primary_10_1038_s41598_023_49080_7
Cites_doi 10.1109/TNNLS.2017.2732482
10.1016/j.neunet.2018.07.011
10.3390/app9102007
10.1016/j.eswa.2020.113281
10.1016/j.ins.2019.11.004
10.1016/j.engappai.2022.105741
10.1186/s12864-018-4928-y
10.1145/2939672.2939785
10.1109/TMM.2011.2129498
10.1111/j.1365-2842.2007.01769.x
10.1016/j.eswa.2023.119799
10.1016/j.eswa.2021.114707
10.1016/j.artmed.2010.12.001
10.1152/japplphysiol.01063.2006
10.1007/s00259-020-04756-4
10.1016/j.neucom.2012.08.010
10.1016/j.engappai.2020.103550
10.1016/0002-9343(76)90048-6
10.1016/j.ifacol.2019.12.108
10.1513/AnnalsATS.201605-418OC
10.1007/s11063-018-09977-1
10.1016/j.eswa.2020.113375
10.1023/A:1010933404324
10.1142/S0218001407005703
10.1016/j.eswa.2020.113653
10.1109/CVPR.2016.90
10.1016/j.resp.2008.04.019
10.1016/j.jelekin.2019.01.002
10.1016/j.knosys.2019.104973
10.1109/86.867872
10.1586/ers.12.29
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.bspc.2023.104962
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_bspc_2023_104962
S1746809423003956
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACRPL
ACZNC
ADBBV
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEFWE
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSH
SST
SSV
SSZ
T5K
UNMZH
~G-
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
ID FETCH-LOGICAL-c215t-df9a0aa6b11484c7f17699cba7e2df9f4b013e48f6a60c889f9cf85c2f2f0cd73
IEDL.DBID AIKHN
ISSN 1746-8094
IngestDate Tue Jul 01 01:34:17 EDT 2025
Thu Apr 24 23:13:01 EDT 2025
Sun Apr 06 06:53:39 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Electromyogram
Adaptive learning
Cost-sensitive learning
Airway obstruction
Misclassification costs
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c215t-df9a0aa6b11484c7f17699cba7e2df9f4b013e48f6a60c889f9cf85c2f2f0cd73
ORCID 0000-0002-4930-3630
0000-0001-9025-3041
0000-0003-1080-2333
ParticipantIDs crossref_primary_10_1016_j_bspc_2023_104962
crossref_citationtrail_10_1016_j_bspc_2023_104962
elsevier_sciencedirect_doi_10_1016_j_bspc_2023_104962
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2023
2023-08-00
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: August 2023
PublicationDecade 2020
PublicationTitle Biomedical signal processing and control
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Qin, Wang, Zhang (b37) 2010; Vol. 1
Dorogush, Ershov, Gulin (b44) 2018
Terzi, Susto, Chaudhari (b30) 2020; 91
Bhattacharya, Maddikunta, Hakak, Khan, Bashir, Jolfaei, Tariq (b26) 2020
Breiman (b42) 2001; 45
Frumosu, Khan, Schiøler, Kulahci, Zaki, Westermann-Rasmussen (b47) 2020; 161
Fernández, García, Galar, Prati, Krawczyk, Herrera (b25) 2018
Rabin, Kahlon, Malayev, Ratnovsky (b17) 2020; 149
Khan, Hayat, Bennamoun, Sohel, Togneri (b28) 2017; 29
Kanwade, Bairagi (b11) 2019; 31
Buda, Maki, Mazurowski (b34) 2018; 106
Ratnovsky, Malayev, Ratnovsky, Naftali, Rabin (b21) 2021
Volk, Singer (b22) 2021
Davis, Cockcroft (b16) 2012; 6
Singer, Ratnovsky, Naftali (b18) 2021; 173
Ionescu (b23) 2013
Paszke, Gross, Massa, Lerer, Bradbury, Chanan, Killeen, Lin, Gimelshein, Antiga (b41) 2019; 32
Zong, Huang, Chen (b32) 2013; 101
Park, Chun, Kim (b14) 2011; 51
Singer, Anuar, Ben-Gal (b24) 2020; 152
Yang, Song, Wang (b33) 2007; 21
Hegewald, Gallo, Wilson (b3) 2016; 13
Dos Reis, Ohara, Januário, Basso-Vanelli, Oliveira, Jamami (b8) 2019; 44
Freitas, Costa-Pereira, Brazdil (b13) 2007
Thabtah, Hammoud, Kamalov, Gonsalves (b36) 2020; 513
Zhang, Ling, Li (b51) 2019; 52
Ratnovsky, Elad, Halpern (b2) 2008; 163
Loshchilov, Hutter (b40) 2017
Brouns, Jayaraju, Lacor, De Mey, Noppen, Vincken, Verbanck (b7) 2007; 102
Xie, Du, Ho, Pang, Chiu, Lee, Vardhanabhuti (b27) 2020; 47
Zhao, Peng, Lan, Zheng, Fang, Li (b46) 2018; 19
T. Chen, C. Guestrin, Xgboost: A scalable tree boosting system, in: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, 2016, pp. 785–794.
Sprigings, Chambers (b4) 2017
Gorishniy, Rubachev, Khrulkov, Babenko (b39) 2021; 34
Frise (b1) 2017
Norali, Abdullah, Zakaria, Rahim, Vijean, Nataraj (b9) 2017
Ojala, Garriga (b50) 2010; 11
K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770–778.
Daraei, Hamidi (b15) 2017; 46
Chiu, Shen, Wang, Ho, Leung, Ng, Choi, Teoh (b48) 2021
Cimr, Studnička (b5) 2020; 188
Haba, Singer, Naftali, Kramer, Ratnovsky (b19) 2023; 223
Muñoz, Hernández, Mañanas (b12) 2019; 9
Chen, Liaw, Breiman (b45) 2004
Kryger, Bode, Antic, Anthonisen (b6) 1976; 61
Lo, Wang, Wang, Lin (b49) 2011; 13
Shifman, Cohen, Huang, Xian, Singer (b31) 2023; 119
Aurelio, de Almeida, de Castro, Braga (b29) 2019; 50
Suvinen, Kemppainen (b20) 2007; 34
Chan, Yang, Lam, Zhang, Parker (b52) 2000; 8
Norali (b10) 2017; 9
Yang, Wang, Mi, Lin, Cai (b35) 2009; 10
Fernández (10.1016/j.bspc.2023.104962_b25) 2018
Chen (10.1016/j.bspc.2023.104962_b45) 2004
Cimr (10.1016/j.bspc.2023.104962_b5) 2020; 188
Hegewald (10.1016/j.bspc.2023.104962_b3) 2016; 13
Bhattacharya (10.1016/j.bspc.2023.104962_b26) 2020
Frumosu (10.1016/j.bspc.2023.104962_b47) 2020; 161
Ionescu (10.1016/j.bspc.2023.104962_b23) 2013
Chan (10.1016/j.bspc.2023.104962_b52) 2000; 8
Muñoz (10.1016/j.bspc.2023.104962_b12) 2019; 9
Sprigings (10.1016/j.bspc.2023.104962_b4) 2017
Chiu (10.1016/j.bspc.2023.104962_b48) 2021
Ratnovsky (10.1016/j.bspc.2023.104962_b21) 2021
Buda (10.1016/j.bspc.2023.104962_b34) 2018; 106
Rabin (10.1016/j.bspc.2023.104962_b17) 2020; 149
Khan (10.1016/j.bspc.2023.104962_b28) 2017; 29
Paszke (10.1016/j.bspc.2023.104962_b41) 2019; 32
Norali (10.1016/j.bspc.2023.104962_b10) 2017; 9
Norali (10.1016/j.bspc.2023.104962_b9) 2017
Xie (10.1016/j.bspc.2023.104962_b27) 2020; 47
Volk (10.1016/j.bspc.2023.104962_b22) 2021
Breiman (10.1016/j.bspc.2023.104962_b42) 2001; 45
Dos Reis (10.1016/j.bspc.2023.104962_b8) 2019; 44
Qin (10.1016/j.bspc.2023.104962_b37) 2010; Vol. 1
Singer (10.1016/j.bspc.2023.104962_b24) 2020; 152
Davis (10.1016/j.bspc.2023.104962_b16) 2012; 6
Thabtah (10.1016/j.bspc.2023.104962_b36) 2020; 513
10.1016/j.bspc.2023.104962_b38
Haba (10.1016/j.bspc.2023.104962_b19) 2023; 223
Kanwade (10.1016/j.bspc.2023.104962_b11) 2019; 31
Yang (10.1016/j.bspc.2023.104962_b33) 2007; 21
Park (10.1016/j.bspc.2023.104962_b14) 2011; 51
Ojala (10.1016/j.bspc.2023.104962_b50) 2010; 11
Zhang (10.1016/j.bspc.2023.104962_b51) 2019; 52
Frise (10.1016/j.bspc.2023.104962_b1) 2017
Gorishniy (10.1016/j.bspc.2023.104962_b39) 2021; 34
Zhao (10.1016/j.bspc.2023.104962_b46) 2018; 19
Yang (10.1016/j.bspc.2023.104962_b35) 2009; 10
Aurelio (10.1016/j.bspc.2023.104962_b29) 2019; 50
10.1016/j.bspc.2023.104962_b43
Zong (10.1016/j.bspc.2023.104962_b32) 2013; 101
Singer (10.1016/j.bspc.2023.104962_b18) 2021; 173
Lo (10.1016/j.bspc.2023.104962_b49) 2011; 13
Loshchilov (10.1016/j.bspc.2023.104962_b40) 2017
Kryger (10.1016/j.bspc.2023.104962_b6) 1976; 61
Ratnovsky (10.1016/j.bspc.2023.104962_b2) 2008; 163
Suvinen (10.1016/j.bspc.2023.104962_b20) 2007; 34
Brouns (10.1016/j.bspc.2023.104962_b7) 2007; 102
Freitas (10.1016/j.bspc.2023.104962_b13) 2007
Daraei (10.1016/j.bspc.2023.104962_b15) 2017; 46
Terzi (10.1016/j.bspc.2023.104962_b30) 2020; 91
Shifman (10.1016/j.bspc.2023.104962_b31) 2023; 119
Dorogush (10.1016/j.bspc.2023.104962_b44) 2018
References_xml – volume: 106
  start-page: 249
  year: 2018
  end-page: 259
  ident: b34
  article-title: A systematic study of the class imbalance problem in convolutional neural networks
  publication-title: Neural Netw.
– volume: 149
  year: 2020
  ident: b17
  article-title: Classification of human hand movements based on EMG signals using nonlinear dimensionality reduction and data fusion techniques
  publication-title: Expert Syst. Appl.
– volume: 34
  year: 2021
  ident: b39
  article-title: Revisiting deep learning models for tabular data
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 24
  year: 2004
  ident: b45
  article-title: Using Random Forest to Learn Imbalanced Data, Vol. 110, No. 1–12
– volume: 34
  start-page: 631
  year: 2007
  end-page: 644
  ident: b20
  article-title: Review of clinical EMG studies related to muscle and occlusal factors in healthy and TMD subjects
  publication-title: J. Oral Rehabil.
– year: 2021
  ident: b22
  article-title: Adaptive cost-sensitive learning in neural networks for misclassification cost problems
– start-page: 13
  year: 2013
  end-page: 22
  ident: b23
  article-title: The Human Respiratory System
– volume: 32
  year: 2019
  ident: b41
  article-title: Pytorch: An imperative style, high-performance deep learning library
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 10
  start-page: 1
  year: 2009
  end-page: 14
  ident: b35
  article-title: Using random forest for reliable classification and cost-sensitive learning for medical diagnosis
  publication-title: BMC Bioinformatics
– volume: 61
  start-page: 85
  year: 1976
  end-page: 93
  ident: b6
  article-title: Diagnosis of obstruction of the upper and central airways
  publication-title: Amer. J. Med.
– volume: 31
  start-page: 506
  year: 2019
  end-page: 513
  ident: b11
  article-title: Classification of COPD and normal lung airways using feature extraction of electromyographic signals
  publication-title: J. King Saud Univ.-Comput. Inf. Sci.
– volume: 46
  start-page: 682
  year: 2017
  ident: b15
  article-title: An efficient predictive model for myocardial infarction using cost-sensitive J48 model
  publication-title: Iran. J. Public Health
– volume: 173
  year: 2021
  ident: b18
  article-title: Classification of severity of trachea stenosis from EEG signals using ordinal decision-tree based algorithms and ensemble-based ordinal and non-ordinal algorithms
  publication-title: Expert Syst. Appl.
– volume: 44
  start-page: 139
  year: 2019
  end-page: 155
  ident: b8
  article-title: Surface electromyography in inspiratory muscles in adults and elderly individuals: A systematic review
  publication-title: J. Electromyogr. Kinesiol.
– volume: 91
  year: 2020
  ident: b30
  article-title: Directional adversarial training for cost sensitive deep learning classification applications
  publication-title: Eng. Appl. Artif. Intell.
– start-page: 303
  year: 2007
  end-page: 312
  ident: b13
  article-title: Cost-sensitive decision trees applied to medical data
  publication-title: International Conference on Data Warehousing and Knowledge Discovery
– start-page: 1
  year: 2021
  end-page: 5
  ident: b48
  article-title: Enhancement of prostate cancer diagnosis by machine learning techniques: an algorithm development and validation study
  publication-title: Prostate Cancer Prostatic Dis.
– volume: 163
  start-page: 82
  year: 2008
  end-page: 89
  ident: b2
  article-title: Mechanics of respiratory muscles
  publication-title: Respir. Physiol. Neurobiol.
– start-page: 63
  year: 2018
  end-page: 78
  ident: b25
  article-title: Cost-sensitive learning
  publication-title: Learning from Imbalanced Data Sets
– start-page: 371
  year: 2017
  end-page: 377
  ident: b1
  article-title: Upper airway obstruction
  publication-title: Acute Medicine: A Practical Guide to the Management of Medical Emergencies
– volume: 119
  year: 2023
  ident: b31
  article-title: An adaptive machine learning algorithm for the resource-constrained classification problem
  publication-title: Eng. Appl. Artif. Intell.
– year: 2018
  ident: b44
  article-title: CatBoost: gradient boosting with categorical features support
– volume: 152
  year: 2020
  ident: b24
  article-title: A weighted information-gain measure for ordinal classification trees
  publication-title: Expert Syst. Appl.
– volume: 29
  start-page: 3573
  year: 2017
  end-page: 3587
  ident: b28
  article-title: Cost-sensitive learning of deep feature representations from imbalanced data
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– reference: K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770–778.
– volume: 188
  year: 2020
  ident: b5
  article-title: Automatic detection of breathing disorder from ballistocardiography signals
  publication-title: Knowl.-Based Syst.
– volume: 13
  start-page: 2119
  year: 2016
  end-page: 2124
  ident: b3
  article-title: Accuracy and quality of spirometry in primary care offices
  publication-title: Ann. Amer. Thoracic Soc.
– volume: 50
  start-page: 1937
  year: 2019
  end-page: 1949
  ident: b29
  article-title: Learning from imbalanced data sets with weighted cross-entropy function
  publication-title: Neural Process. Lett.
– volume: 19
  start-page: 1
  year: 2018
  end-page: 10
  ident: b46
  article-title: Imbalance learning for the prediction of N6-Methylation sites in mRNAs
  publication-title: BMC Genom.
– volume: 21
  start-page: 961
  year: 2007
  end-page: 976
  ident: b33
  article-title: A weighted support vector machine for data classification
  publication-title: Int. J. Pattern Recognit. Artif. Intell.
– volume: 6
  start-page: 321
  year: 2012
  end-page: 329
  ident: b16
  article-title: Past, present and future uses of methacholine testing
  publication-title: Expert Rev. Respir. Med.
– volume: 13
  start-page: 518
  year: 2011
  end-page: 529
  ident: b49
  article-title: Cost-sensitive multi-label learning for audio tag annotation and retrieval
  publication-title: IEEE Trans. Multimed.
– volume: 9
  year: 2017
  ident: b10
  article-title: Human breathing classification using electromyography signal with features based on mel-frequency cepstral coefficients
  publication-title: Int. J. Integr. Eng.
– start-page: 1
  year: 2021
  end-page: 11
  ident: b21
  article-title: EMG-based speech recognition using dimensionality reduction methods
  publication-title: J. Ambient Intell. Humaniz. Comput.
– volume: 47
  start-page: 2826
  year: 2020
  end-page: 2835
  ident: b27
  article-title: Effect of machine learning re-sampling techniques for imbalanced datasets in 18F-FDG PET-based radiomics model on prognostication performance in cohorts of head and neck cancer patients
  publication-title: Eur. J. Nucl. Med. Mol. Imaging
– volume: 52
  start-page: 271
  year: 2019
  end-page: 276
  ident: b51
  article-title: EMG signals based human action recognition via deep belief networks
  publication-title: IFAC-PapersOnLine
– start-page: 1
  year: 2020
  end-page: 25
  ident: b26
  article-title: Antlion re-sampling based deep neural network model for classification of imbalanced multimodal stroke dataset
  publication-title: Multimedia Tools Appl.
– start-page: 196
  year: 2017
  end-page: 201
  ident: b9
  article-title: Classification of human breathing task based on electromyography signal of respiratory muscles
  publication-title: 2017 IEEE 13th International Colloquium on Signal Processing & its Applications
– volume: 51
  start-page: 133
  year: 2011
  end-page: 145
  ident: b14
  article-title: Cost-sensitive case-based reasoning using a genetic algorithm: Application to medical diagnosis
  publication-title: Artif. Intell. Med.
– year: 2017
  ident: b4
  article-title: Acute Medicine: A Practical Guide to the Management of Medical Emergencies
– volume: 9
  start-page: 2007
  year: 2019
  ident: b12
  article-title: Estimation of work of breathing from respiratory muscle activity in spontaneous ventilation: A pilot study
  publication-title: Appl. Sci.
– volume: 513
  start-page: 429
  year: 2020
  end-page: 441
  ident: b36
  article-title: Data imbalance in classification: Experimental evaluation
  publication-title: Inform. Sci.
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: b42
  article-title: Random forests
  publication-title: Mach. Learn.
– reference: T. Chen, C. Guestrin, Xgboost: A scalable tree boosting system, in: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, 2016, pp. 785–794.
– volume: 161
  year: 2020
  ident: b47
  article-title: Cost-sensitive learning classification strategy for predicting product failures
  publication-title: Expert Syst. Appl.
– volume: 101
  start-page: 229
  year: 2013
  end-page: 242
  ident: b32
  article-title: Weighted extreme learning machine for imbalance learning
  publication-title: Neurocomputing
– volume: 8
  start-page: 305
  year: 2000
  end-page: 311
  ident: b52
  article-title: Fuzzy EMG classification for prosthesis control
  publication-title: IEEE Trans. Rehabil. Eng.
– volume: 102
  start-page: 1178
  year: 2007
  end-page: 1184
  ident: b7
  article-title: Tracheal stenosis: a flow dynamics study
  publication-title: J. Appl. Physiol.
– volume: Vol. 1
  start-page: 19
  year: 2010
  end-page: 23
  ident: b37
  article-title: Incorporating medical history to cost sensitive classification with lazy learning strategy
  publication-title: 2010 IEEE International Conference on Progress in Informatics and Computing
– year: 2017
  ident: b40
  article-title: Decoupled weight decay regularization
– volume: 223
  year: 2023
  ident: b19
  article-title: A remote and personalised novel approach for monitoring asthma severity levels from EEG signals utilizing classification algorithms
  publication-title: Expert Syst. Appl.
– volume: 11
  year: 2010
  ident: b50
  article-title: Permutation tests for studying classifier performance
  publication-title: J. Mach. Learn. Res.
– volume: 46
  start-page: 682
  issue: 5
  year: 2017
  ident: 10.1016/j.bspc.2023.104962_b15
  article-title: An efficient predictive model for myocardial infarction using cost-sensitive J48 model
  publication-title: Iran. J. Public Health
– volume: 29
  start-page: 3573
  issue: 8
  year: 2017
  ident: 10.1016/j.bspc.2023.104962_b28
  article-title: Cost-sensitive learning of deep feature representations from imbalanced data
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2017.2732482
– year: 2017
  ident: 10.1016/j.bspc.2023.104962_b4
– volume: 106
  start-page: 249
  year: 2018
  ident: 10.1016/j.bspc.2023.104962_b34
  article-title: A systematic study of the class imbalance problem in convolutional neural networks
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2018.07.011
– start-page: 1
  year: 2020
  ident: 10.1016/j.bspc.2023.104962_b26
  article-title: Antlion re-sampling based deep neural network model for classification of imbalanced multimodal stroke dataset
  publication-title: Multimedia Tools Appl.
– volume: 31
  start-page: 506
  issue: 4
  year: 2019
  ident: 10.1016/j.bspc.2023.104962_b11
  article-title: Classification of COPD and normal lung airways using feature extraction of electromyographic signals
  publication-title: J. King Saud Univ.-Comput. Inf. Sci.
– volume: 9
  start-page: 2007
  issue: 10
  year: 2019
  ident: 10.1016/j.bspc.2023.104962_b12
  article-title: Estimation of work of breathing from respiratory muscle activity in spontaneous ventilation: A pilot study
  publication-title: Appl. Sci.
  doi: 10.3390/app9102007
– start-page: 1
  year: 2021
  ident: 10.1016/j.bspc.2023.104962_b48
  article-title: Enhancement of prostate cancer diagnosis by machine learning techniques: an algorithm development and validation study
  publication-title: Prostate Cancer Prostatic Dis.
– volume: 11
  issue: 6
  year: 2010
  ident: 10.1016/j.bspc.2023.104962_b50
  article-title: Permutation tests for studying classifier performance
  publication-title: J. Mach. Learn. Res.
– volume: Vol. 1
  start-page: 19
  year: 2010
  ident: 10.1016/j.bspc.2023.104962_b37
  article-title: Incorporating medical history to cost sensitive classification with lazy learning strategy
– volume: 149
  year: 2020
  ident: 10.1016/j.bspc.2023.104962_b17
  article-title: Classification of human hand movements based on EMG signals using nonlinear dimensionality reduction and data fusion techniques
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113281
– volume: 10
  start-page: 1
  issue: 1
  year: 2009
  ident: 10.1016/j.bspc.2023.104962_b35
  article-title: Using random forest for reliable classification and cost-sensitive learning for medical diagnosis
  publication-title: BMC Bioinformatics
– volume: 513
  start-page: 429
  year: 2020
  ident: 10.1016/j.bspc.2023.104962_b36
  article-title: Data imbalance in classification: Experimental evaluation
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2019.11.004
– volume: 119
  year: 2023
  ident: 10.1016/j.bspc.2023.104962_b31
  article-title: An adaptive machine learning algorithm for the resource-constrained classification problem
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2022.105741
– volume: 19
  start-page: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.bspc.2023.104962_b46
  article-title: Imbalance learning for the prediction of N6-Methylation sites in mRNAs
  publication-title: BMC Genom.
  doi: 10.1186/s12864-018-4928-y
– ident: 10.1016/j.bspc.2023.104962_b43
  doi: 10.1145/2939672.2939785
– year: 2021
  ident: 10.1016/j.bspc.2023.104962_b22
– volume: 13
  start-page: 518
  issue: 3
  year: 2011
  ident: 10.1016/j.bspc.2023.104962_b49
  article-title: Cost-sensitive multi-label learning for audio tag annotation and retrieval
  publication-title: IEEE Trans. Multimed.
  doi: 10.1109/TMM.2011.2129498
– start-page: 13
  year: 2013
  ident: 10.1016/j.bspc.2023.104962_b23
– year: 2018
  ident: 10.1016/j.bspc.2023.104962_b44
– volume: 34
  start-page: 631
  issue: 9
  year: 2007
  ident: 10.1016/j.bspc.2023.104962_b20
  article-title: Review of clinical EMG studies related to muscle and occlusal factors in healthy and TMD subjects
  publication-title: J. Oral Rehabil.
  doi: 10.1111/j.1365-2842.2007.01769.x
– year: 2017
  ident: 10.1016/j.bspc.2023.104962_b40
– volume: 223
  year: 2023
  ident: 10.1016/j.bspc.2023.104962_b19
  article-title: A remote and personalised novel approach for monitoring asthma severity levels from EEG signals utilizing classification algorithms
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.119799
– start-page: 63
  year: 2018
  ident: 10.1016/j.bspc.2023.104962_b25
  article-title: Cost-sensitive learning
– start-page: 303
  year: 2007
  ident: 10.1016/j.bspc.2023.104962_b13
  article-title: Cost-sensitive decision trees applied to medical data
– volume: 173
  year: 2021
  ident: 10.1016/j.bspc.2023.104962_b18
  article-title: Classification of severity of trachea stenosis from EEG signals using ordinal decision-tree based algorithms and ensemble-based ordinal and non-ordinal algorithms
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.114707
– volume: 51
  start-page: 133
  issue: 2
  year: 2011
  ident: 10.1016/j.bspc.2023.104962_b14
  article-title: Cost-sensitive case-based reasoning using a genetic algorithm: Application to medical diagnosis
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2010.12.001
– volume: 102
  start-page: 1178
  issue: 3
  year: 2007
  ident: 10.1016/j.bspc.2023.104962_b7
  article-title: Tracheal stenosis: a flow dynamics study
  publication-title: J. Appl. Physiol.
  doi: 10.1152/japplphysiol.01063.2006
– volume: 47
  start-page: 2826
  issue: 12
  year: 2020
  ident: 10.1016/j.bspc.2023.104962_b27
  article-title: Effect of machine learning re-sampling techniques for imbalanced datasets in 18F-FDG PET-based radiomics model on prognostication performance in cohorts of head and neck cancer patients
  publication-title: Eur. J. Nucl. Med. Mol. Imaging
  doi: 10.1007/s00259-020-04756-4
– start-page: 196
  year: 2017
  ident: 10.1016/j.bspc.2023.104962_b9
  article-title: Classification of human breathing task based on electromyography signal of respiratory muscles
– volume: 101
  start-page: 229
  year: 2013
  ident: 10.1016/j.bspc.2023.104962_b32
  article-title: Weighted extreme learning machine for imbalance learning
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.08.010
– volume: 91
  year: 2020
  ident: 10.1016/j.bspc.2023.104962_b30
  article-title: Directional adversarial training for cost sensitive deep learning classification applications
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2020.103550
– volume: 61
  start-page: 85
  issue: 1
  year: 1976
  ident: 10.1016/j.bspc.2023.104962_b6
  article-title: Diagnosis of obstruction of the upper and central airways
  publication-title: Amer. J. Med.
  doi: 10.1016/0002-9343(76)90048-6
– start-page: 1
  year: 2021
  ident: 10.1016/j.bspc.2023.104962_b21
  article-title: EMG-based speech recognition using dimensionality reduction methods
  publication-title: J. Ambient Intell. Humaniz. Comput.
– volume: 52
  start-page: 271
  issue: 19
  year: 2019
  ident: 10.1016/j.bspc.2023.104962_b51
  article-title: EMG signals based human action recognition via deep belief networks
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2019.12.108
– volume: 13
  start-page: 2119
  issue: 12
  year: 2016
  ident: 10.1016/j.bspc.2023.104962_b3
  article-title: Accuracy and quality of spirometry in primary care offices
  publication-title: Ann. Amer. Thoracic Soc.
  doi: 10.1513/AnnalsATS.201605-418OC
– volume: 50
  start-page: 1937
  issue: 2
  year: 2019
  ident: 10.1016/j.bspc.2023.104962_b29
  article-title: Learning from imbalanced data sets with weighted cross-entropy function
  publication-title: Neural Process. Lett.
  doi: 10.1007/s11063-018-09977-1
– volume: 32
  year: 2019
  ident: 10.1016/j.bspc.2023.104962_b41
  article-title: Pytorch: An imperative style, high-performance deep learning library
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 9
  issue: 4
  year: 2017
  ident: 10.1016/j.bspc.2023.104962_b10
  article-title: Human breathing classification using electromyography signal with features based on mel-frequency cepstral coefficients
  publication-title: Int. J. Integr. Eng.
– volume: 152
  year: 2020
  ident: 10.1016/j.bspc.2023.104962_b24
  article-title: A weighted information-gain measure for ordinal classification trees
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113375
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 10.1016/j.bspc.2023.104962_b42
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 21
  start-page: 961
  issue: 05
  year: 2007
  ident: 10.1016/j.bspc.2023.104962_b33
  article-title: A weighted support vector machine for data classification
  publication-title: Int. J. Pattern Recognit. Artif. Intell.
  doi: 10.1142/S0218001407005703
– volume: 161
  year: 2020
  ident: 10.1016/j.bspc.2023.104962_b47
  article-title: Cost-sensitive learning classification strategy for predicting product failures
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113653
– ident: 10.1016/j.bspc.2023.104962_b38
  doi: 10.1109/CVPR.2016.90
– volume: 163
  start-page: 82
  issue: 1–3
  year: 2008
  ident: 10.1016/j.bspc.2023.104962_b2
  article-title: Mechanics of respiratory muscles
  publication-title: Respir. Physiol. Neurobiol.
  doi: 10.1016/j.resp.2008.04.019
– volume: 34
  year: 2021
  ident: 10.1016/j.bspc.2023.104962_b39
  article-title: Revisiting deep learning models for tabular data
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 44
  start-page: 139
  year: 2019
  ident: 10.1016/j.bspc.2023.104962_b8
  article-title: Surface electromyography in inspiratory muscles in adults and elderly individuals: A systematic review
  publication-title: J. Electromyogr. Kinesiol.
  doi: 10.1016/j.jelekin.2019.01.002
– start-page: 24
  year: 2004
  ident: 10.1016/j.bspc.2023.104962_b45
– volume: 188
  year: 2020
  ident: 10.1016/j.bspc.2023.104962_b5
  article-title: Automatic detection of breathing disorder from ballistocardiography signals
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2019.104973
– volume: 8
  start-page: 305
  issue: 3
  year: 2000
  ident: 10.1016/j.bspc.2023.104962_b52
  article-title: Fuzzy EMG classification for prosthesis control
  publication-title: IEEE Trans. Rehabil. Eng.
  doi: 10.1109/86.867872
– start-page: 371
  year: 2017
  ident: 10.1016/j.bspc.2023.104962_b1
  article-title: Upper airway obstruction
– volume: 6
  start-page: 321
  issue: 3
  year: 2012
  ident: 10.1016/j.bspc.2023.104962_b16
  article-title: Past, present and future uses of methacholine testing
  publication-title: Expert Rev. Respir. Med.
  doi: 10.1586/ers.12.29
SSID ssj0048714
Score 2.3078883
Snippet Upper airway obstruction is characterized by loss of normal airway architecture resulting from various disorders such as infections and asthma. Early detection...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 104962
SubjectTerms Adaptive learning
Airway obstruction
Cost-sensitive learning
Deep learning
Electromyogram
Misclassification costs
Title Classification of tracheal stenosis with asymmetric misclassification errors from EMG signals using an adaptive cost-sensitive learning method
URI https://dx.doi.org/10.1016/j.bspc.2023.104962
Volume 85
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7BcqEHVChVecqH3qp0Eyex4yNCwLYVXCgSt8jxA21VklUSDlz4Cf3NnUmcCqSKA0c7HimasWa-sT_PAHx2ylru8jRCqJpHWW5sVBWZw5xHJVoaHVtPN7qXV2Jxk32_zW_X4HR6C0O0yuD7R58-eOswMw_anK-Wy_k1YmlRYHaCIDpOEeavwwZPlchnsHHy7cfianLICMmHEt-0PiKB8HZmpHlV3YoqGfKUbjuV4P-PT89izvl72ApgkZ2M_7MNa67egXfPSgh-gD9DV0vi-wwqZo1nfUtFmlEODVg33bJjdNjKdPd4f0_9swxD25qXYq5tm7Zj9NiEnV1eMKJ14MZkRIu_Y7pm2uoVeUZmmq6POqK9D8PQdeKOja2od-Hm_Ozn6SIKPRYig8G-j6xXOtZaVJQXZUb6RAqlTKWl4_jNZ8M5aVZ4oUVsikJ5ZXyRG-65j42V6UeY1U3tPgHTiDRkXGjJEdRoa3QSOymt4bkTtlLZHiSTZksTCpBTH4zf5cQ0-1WSNUqyRjlaYw--_JNZjeU3Xl2dTwYrX2yiEuPDK3L7b5Q7gE0ajXzAQ5j17YM7QozSV8ew_vUpOQ478S_Xa-oT
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGYAB8RTl6YENhaZ5OR5R1VKg7QJI3SLHD1REkyoJAws_gd_MXZKiVkIMjLHvpMhn3X1nf74j5FJzpRztuxZAVd_yfKmsOPQ05Dy8I5gUtjJ4ozsaB4Nn737iTxqku3gLg7TK2vdXPr301vVIu17N9nw6bT8Clg5CyE4ARNsuwPw1su75LkNe3_XnD88DAHlZ4BulLRSvX85UJK84n2MdQ8fFu04eOL9Hp6WI098h2zVUpDfV3-yShk72yNZSAcF98lX2tES2T7nANDW0yLBEM-iB-ZI0n-YUj1qpyD9mM-yeJSlYVq6q6SxLs5ziUxPaG91SJHXAtqRIin-hIqFCiTn6RSrTvLByJL2Xn3XPiRdaNaI-IM_93lN3YNUdFiwJob6wlOHCFiKIMSvyJDMdFnAuY8G0A3PGK09JvdAEIrBlGHLDpQl96RjH2FIx95A0kzTRR4QKwBnMDgVzANIIJUXH1owp6fg6UDH3WqSzWNlI1uXHsQvGW7Tgmb1GaI0IrRFV1miRqx-deVV8409pf2GwaGULRRAd_tA7_qfeBdkYPI2G0fBu_HBCNnGmYgaekmaRveszQCtFfF7uxm_XOure
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classification+of+tracheal+stenosis+with+asymmetric+misclassification+errors+from+EMG+signals+using+an+adaptive+cost-sensitive+learning+method&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Volk%2C+Ohad&rft.au=Ratnovsky%2C+Anat&rft.au=Naftali%2C+Sara&rft.au=Singer%2C+Gonen&rft.date=2023-08-01&rft.issn=1746-8094&rft.volume=85&rft.spage=104962&rft_id=info:doi/10.1016%2Fj.bspc.2023.104962&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bspc_2023_104962
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon