Graphs determined by their Aα-spectra
Let G be a graph with n vertices, and let A(G) and D(G) denote respectively the adjacency matrix and the degree matrix of G. Define Aα(G)=αD(G)+(1−α)A(G)for any real α∈[0,1]. The collection of eigenvalues of Aα(G) together with multiplicities are called the Aα-spectrum of G. A graph G is said to be...
Saved in:
Published in | Discrete mathematics Vol. 342; no. 2; pp. 441 - 450 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.02.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Let G be a graph with n vertices, and let A(G) and D(G) denote respectively the adjacency matrix and the degree matrix of G. Define Aα(G)=αD(G)+(1−α)A(G)for any real α∈[0,1]. The collection of eigenvalues of Aα(G) together with multiplicities are called the Aα-spectrum of G. A graph G is said to be determined by itsAα-spectrum if all graphs having the same Aα-spectrum as G are isomorphic to G. We first prove that some graphs are determined by their Aα-spectra for 0≤α<1, including the complete graph Kn, the union of cycles, the complement of the union of cycles, the union of copies of K2 and K1, the complement of the union of copies of K2 and K1, the path Pn, and the complement of Pn. Setting α=0 or 12, those graphs are determined by A- or Q-spectra. Secondly, when G is regular, we show that G is determined by its Aα-spectrum if and only if the join G∨Km (m≥2) is determined by its Aα-spectrum for 12<α<1. Furthermore, we also show that the join Km∨Pn (m,n≥2) is determined by its Aα-spectrum for 12<α<1. In the end, we pose some related open problems for future study. |
---|---|
AbstractList | Let G be a graph with n vertices, and let A(G) and D(G) denote respectively the adjacency matrix and the degree matrix of G. Define Aα(G)=αD(G)+(1−α)A(G)for any real α∈[0,1]. The collection of eigenvalues of Aα(G) together with multiplicities are called the Aα-spectrum of G. A graph G is said to be determined by itsAα-spectrum if all graphs having the same Aα-spectrum as G are isomorphic to G. We first prove that some graphs are determined by their Aα-spectra for 0≤α<1, including the complete graph Kn, the union of cycles, the complement of the union of cycles, the union of copies of K2 and K1, the complement of the union of copies of K2 and K1, the path Pn, and the complement of Pn. Setting α=0 or 12, those graphs are determined by A- or Q-spectra. Secondly, when G is regular, we show that G is determined by its Aα-spectrum if and only if the join G∨Km (m≥2) is determined by its Aα-spectrum for 12<α<1. Furthermore, we also show that the join Km∨Pn (m,n≥2) is determined by its Aα-spectrum for 12<α<1. In the end, we pose some related open problems for future study. |
Author | Lin, Huiqiu Liu, Xiaogang Xue, Jie |
Author_xml | – sequence: 1 givenname: Huiqiu surname: Lin fullname: Lin, Huiqiu email: huiqiulin@126.com organization: Department of Mathematics, East China University of Science and Technology, Shanghai 200237, PR China – sequence: 2 givenname: Xiaogang orcidid: 0000-0002-0266-9774 surname: Liu fullname: Liu, Xiaogang email: xiaogliu@nwpu.edu.cn organization: Department of Applied Mathematics, Northwestern Polytechnical University, Xi’an, Shanxi 710072, PR China – sequence: 3 givenname: Jie orcidid: 0000-0002-2346-8920 surname: Xue fullname: Xue, Jie email: jie_xue@126.com organization: Department of Computer Science and Technology, East China Normal University, Shanghai 200062, PR China |
BookMark | eNp9j71qwzAUhUVJoUnaF-jkqZtc_diSDV1CaNNCoEsL2YQkXxGZxDaSKeSx-iJ9psqkU4dMh3vgu5xvgWZd3wFC95TklFDx2OaNjzZnhFapyAkRV2hOK8mwqOhuhuaEUIa5KHc3aBFjS9IteDVHD5ugh33MGhghHH0HTWZO2bgHH7LVzzeOA9gx6Ft07fQhwt1fLtHny_PH-hVv3zdv69UWW0bLEWsijBAFMFloU9jaSEaNsaxklTW1AV06STjRTDYGuHRG1tS6sgZgTtaa8yWqzn9t6GMM4JT1ox5936UR_qAoUZOvatXkqybfqUu-CWX_0CH4ow6ny9DTGYIk9eUhqGg9dBYaH5K4anp_Cf8FPp5xnw |
CitedBy_id | crossref_primary_10_1142_S1793557122502151 crossref_primary_10_2298_FIL2404329Z crossref_primary_10_1016_j_amc_2019_124622 crossref_primary_10_1016_j_amc_2023_128005 crossref_primary_10_1016_j_dam_2024_01_019 crossref_primary_10_1016_j_laa_2023_12_024 crossref_primary_10_1016_j_laa_2019_07_026 crossref_primary_10_1142_S1793830922500367 crossref_primary_10_3934_mmc_2022007 crossref_primary_10_1016_j_disopt_2020_100592 crossref_primary_10_1007_s13226_023_00363_9 crossref_primary_10_1016_j_laa_2019_12_010 crossref_primary_10_1016_j_laa_2020_05_001 crossref_primary_10_1016_j_amc_2019_04_077 crossref_primary_10_1016_j_dam_2024_08_021 crossref_primary_10_1080_03081087_2019_1618236 crossref_primary_10_1007_s40819_023_01588_2 crossref_primary_10_11650_tjm_220906 crossref_primary_10_1016_j_amc_2019_124716 crossref_primary_10_1016_j_laa_2022_02_036 crossref_primary_10_1142_S1793557123501565 crossref_primary_10_1016_j_laa_2021_08_028 crossref_primary_10_1142_S1793830923500362 crossref_primary_10_1016_j_disc_2020_111917 crossref_primary_10_1007_s40840_022_01363_4 crossref_primary_10_3934_math_2022825 crossref_primary_10_1016_j_disc_2025_114491 crossref_primary_10_1216_rmj_2024_54_227 crossref_primary_10_1080_09728600_2021_1917973 crossref_primary_10_1080_03081087_2020_1793879 crossref_primary_10_1016_j_laa_2019_12_021 crossref_primary_10_1007_s40840_021_01166_z crossref_primary_10_1016_j_amc_2020_125336 crossref_primary_10_1016_j_laa_2019_04_038 crossref_primary_10_1155_2020_8294312 crossref_primary_10_1016_j_laa_2019_10_025 crossref_primary_10_1016_j_laa_2020_07_022 crossref_primary_10_1080_03081087_2021_1996523 crossref_primary_10_1016_j_laa_2019_12_039 crossref_primary_10_1142_S1793830921501123 crossref_primary_10_1016_j_disc_2020_112132 crossref_primary_10_1016_j_laa_2020_02_025 crossref_primary_10_1080_03081087_2021_1932710 crossref_primary_10_1016_j_laa_2019_06_027 crossref_primary_10_1016_j_disc_2024_113940 crossref_primary_10_1016_j_disc_2023_113447 |
Cites_doi | 10.1016/j.laa.2014.02.027 10.2298/AADM1701081N 10.1016/j.laa.2011.02.007 10.1016/S0024-3795(02)00323-3 10.1016/j.laa.2012.05.003 10.1016/j.disc.2011.05.034 10.1016/S0024-3795(03)00483-X 10.1016/j.laa.2018.02.014 10.1016/j.laa.2009.05.035 10.1016/j.laa.2018.07.003 10.13001/1081-3810.1942 10.1016/j.disc.2016.11.033 10.1016/j.laa.2016.12.042 10.1016/j.disc.2008.09.052 10.1016/j.disc.2008.08.019 10.1016/j.disc.2010.01.021 10.1016/j.laa.2017.01.029 10.1016/j.jctb.2017.04.006 10.1016/j.dam.2016.01.003 10.13001/1081-3810.1428 10.1016/j.disc.2012.02.002 10.1002/hlca.19560390623 10.1016/j.laa.2012.05.019 10.1016/j.camwa.2009.07.028 |
ContentType | Journal Article |
Copyright | 2018 |
Copyright_xml | – notice: 2018 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.disc.2018.10.006 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1872-681X |
EndPage | 450 |
ExternalDocumentID | 10_1016_j_disc_2018_10_006 S0012365X18303406 |
GroupedDBID | --K --M -DZ -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 29G 4.4 41~ 457 4G. 5GY 5VS 6I. 6OB 6TJ 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AASFE AAXUO ABAOU ABEFU ABFNM ABJNI ABMAC ABTAH ABVKL ABXDB ABYKQ ACAZW ACDAQ ACGFS ACRLP ADBBV ADEZE ADIYS ADMUD AEBSH AEKER AENEX AEXQZ AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AI. AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FA8 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE IXB J1W KOM M26 M41 MHUIS MO0 MVM N9A NCXOZ O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSW SSZ T5K TN5 UPT VH1 WH7 WUQ XJT XOL XPP ZCG ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN ADXHL AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c215t-a06b664e274ab4c9b721bbc2528cb9bea5f7030a27dbe37fb791cf59ee2f79a33 |
IEDL.DBID | IXB |
ISSN | 0012-365X |
IngestDate | Thu Apr 24 23:08:28 EDT 2025 Tue Jul 01 04:11:07 EDT 2025 Fri Feb 23 02:48:06 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Aα-spectrum Join Determined by the Aα-spectrum |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c215t-a06b664e274ab4c9b721bbc2528cb9bea5f7030a27dbe37fb791cf59ee2f79a33 |
ORCID | 0000-0002-0266-9774 0000-0002-2346-8920 |
PageCount | 10 |
ParticipantIDs | crossref_citationtrail_10_1016_j_disc_2018_10_006 crossref_primary_10_1016_j_disc_2018_10_006 elsevier_sciencedirect_doi_10_1016_j_disc_2018_10_006 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2019 2019-02-00 |
PublicationDateYYYYMMDD | 2019-02-01 |
PublicationDate_xml | – month: 02 year: 2019 text: February 2019 |
PublicationDecade | 2010 |
PublicationTitle | Discrete mathematics |
PublicationYear | 2019 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Lin, Xue, Shu (b9) 2018; 556 Omidi (b21) 2009; 431 Tait, Tobin (b22) 2017; 126 Nikiforov (b18) 2017; 11 Liu, Liu, Wei (b11) 2011; 22 Cvetković, Rowlinson, Simić (b3) 2010 Cui, Tian (b1) 2012; 437 Cvetković, Doob, Sachs (b2) 1995 Das, Liu (b6) 2016; 205 Lou, Huang, Huang (b16) 2017; 340 Liu, Shan, Das (b13) 2014; 449 Zhou, Bu (b27) 2012; 312 McLeman, McNicholas (b17) 2011; 435 Liu, Lu (b12) 2015; 30 Zhang (b24) 2005 Zhang, Liu, Zhang, Yong (b26) 2009; 309 Liu, Liu (b10) 2018; 546 Wang, Huang, Belardoc, Li Marzi (b23) 2010; 310 Günthard, Primas (b8) 1956; 39 Liu, Wang (b14) 2012; 437 Doob, Haemers (b7) 2002; 356 van Dam, Haemers (b5) 2009; 309 Liu, Wang, Zhang, Yong (b15) 2011; 311 Nikiforov, Pastén, Rojo, Soto (b19) 2017; 520 Nikiforov, Rojo (b20) 2017; 519 van Dam, Haemers (b4) 2003; 373 Zhang, Liu, Yong (b25) 2009; 58 Cvetković (10.1016/j.disc.2018.10.006_b2) 1995 van Dam (10.1016/j.disc.2018.10.006_b4) 2003; 373 Tait (10.1016/j.disc.2018.10.006_b22) 2017; 126 Liu (10.1016/j.disc.2018.10.006_b12) 2015; 30 Liu (10.1016/j.disc.2018.10.006_b11) 2011; 22 Zhang (10.1016/j.disc.2018.10.006_b25) 2009; 58 Zhang (10.1016/j.disc.2018.10.006_b26) 2009; 309 Nikiforov (10.1016/j.disc.2018.10.006_b18) 2017; 11 Nikiforov (10.1016/j.disc.2018.10.006_b20) 2017; 519 Lin (10.1016/j.disc.2018.10.006_b9) 2018; 556 Liu (10.1016/j.disc.2018.10.006_b10) 2018; 546 Omidi (10.1016/j.disc.2018.10.006_b21) 2009; 431 Doob (10.1016/j.disc.2018.10.006_b7) 2002; 356 Günthard (10.1016/j.disc.2018.10.006_b8) 1956; 39 Liu (10.1016/j.disc.2018.10.006_b13) 2014; 449 McLeman (10.1016/j.disc.2018.10.006_b17) 2011; 435 van Dam (10.1016/j.disc.2018.10.006_b5) 2009; 309 Wang (10.1016/j.disc.2018.10.006_b23) 2010; 310 Cui (10.1016/j.disc.2018.10.006_b1) 2012; 437 Liu (10.1016/j.disc.2018.10.006_b14) 2012; 437 Liu (10.1016/j.disc.2018.10.006_b15) 2011; 311 Zhou (10.1016/j.disc.2018.10.006_b27) 2012; 312 Cvetković (10.1016/j.disc.2018.10.006_b3) 2010 Nikiforov (10.1016/j.disc.2018.10.006_b19) 2017; 520 Das (10.1016/j.disc.2018.10.006_b6) 2016; 205 Zhang (10.1016/j.disc.2018.10.006_b24) 2005 Lou (10.1016/j.disc.2018.10.006_b16) 2017; 340 |
References_xml | – volume: 546 start-page: 274 year: 2018 end-page: 288 ident: b10 article-title: On the publication-title: Linear Algebra Appl. – volume: 373 start-page: 241 year: 2003 end-page: 272 ident: b4 article-title: Which graphs are determined by their spectrum? publication-title: Linear Algebra Appl. – volume: 312 start-page: 1591 year: 2012 end-page: 1595 ident: b27 article-title: Laplacian spectral characterization of some graphs obtained by product operation publication-title: Discrete Math. – volume: 311 start-page: 2317 year: 2011 end-page: 2336 ident: b15 article-title: On the spectral characterization of some unicyclic graphs publication-title: Discrete Math. – volume: 556 start-page: 210 year: 2018 end-page: 219 ident: b9 article-title: On the publication-title: Linear Algebra Appl. – volume: 126 start-page: 137 year: 2017 end-page: 161 ident: b22 article-title: Three conjectures in extremal spectral graph theory publication-title: J. Combin. Theory Ser. B – year: 2005 ident: b24 article-title: The Schur Complement and Its Applications – year: 1995 ident: b2 article-title: Spectra of Graphs - Theory and Applications – volume: 58 start-page: 1887 year: 2009 end-page: 1890 ident: b25 article-title: Which wheel graphs are determined by their Laplacian spectra? publication-title: Comput. Math. Appl. – volume: 431 start-page: 1607 year: 2009 end-page: 1615 ident: b21 article-title: On a signless Laplacian spectral characterization of publication-title: Linear Algebra Appl. – volume: 11 start-page: 81 year: 2017 end-page: 107 ident: b18 article-title: Merging the publication-title: Appl. Anal. Discrete Math. – volume: 437 start-page: 1692 year: 2012 end-page: 1703 ident: b1 article-title: The spectrum and the signless Laplacian spectrum of coronae publication-title: Linear Algebra Appl. – volume: 30 start-page: 443 year: 2015 end-page: 454 ident: b12 article-title: Signless Laplacian spectral characterization of some joins publication-title: Electron. J. Linear Algebra – volume: 437 start-page: 1749 year: 2012 end-page: 1759 ident: b14 article-title: Laplacian spectral characterization of some graph products publication-title: Linear Algebra Appl. – volume: 520 start-page: 286 year: 2017 end-page: 305 ident: b19 article-title: On the publication-title: Linear Algebra Appl. – volume: 205 start-page: 45 year: 2016 end-page: 51 ident: b6 article-title: Complete split graph determined by its (signless) Laplacian spectrum publication-title: Discrete Appl. Math. – volume: 309 start-page: 3364 year: 2009 end-page: 3369 ident: b26 article-title: The lollipop graph is determined by its publication-title: Discrete Math. – volume: 309 start-page: 576 year: 2009 end-page: 586 ident: b5 article-title: Developments on spectral characterizations of graphs publication-title: Discrete Math. – volume: 39 start-page: 1645 year: 1956 end-page: 1653 ident: b8 article-title: Zusammenhang von Graphtheorie und Mo-Theotie von Molekeln mit Systemen konjugierter Bindungen publication-title: Helv. Chim. Acta – volume: 356 start-page: 57 year: 2002 end-page: 65 ident: b7 article-title: The complement of the path is determined by its spectrum publication-title: Linear Algebra Appl. – volume: 519 start-page: 156 year: 2017 end-page: 163 ident: b20 article-title: A note on the positive semidefiniteness of publication-title: Linear Algebra Appl. – volume: 22 start-page: 112 year: 2011 end-page: 124 ident: b11 article-title: Graphs determined by their (signless) Laplacian spectra publication-title: Electron. J. Linear Algebra – year: 2010 ident: b3 article-title: An Introduction to the Theory of Graph Spectra – volume: 435 start-page: 998 year: 2011 end-page: 1007 ident: b17 article-title: Spectra of coronae publication-title: Linear Algebra Appl. – volume: 310 start-page: 1845 year: 2010 end-page: 1855 ident: b23 article-title: On the spectral characterizations of publication-title: Discrete Math. – volume: 449 start-page: 154 year: 2014 end-page: 165 ident: b13 article-title: Some graphs determined by their (signless) Laplacian spectra publication-title: Linear Algebra Appl. – volume: 340 start-page: 607 year: 2017 end-page: 616 ident: b16 article-title: Construction of graphs with distinct eigenvalues publication-title: Discrete Math. – volume: 449 start-page: 154 year: 2014 ident: 10.1016/j.disc.2018.10.006_b13 article-title: Some graphs determined by their (signless) Laplacian spectra publication-title: Linear Algebra Appl. doi: 10.1016/j.laa.2014.02.027 – volume: 11 start-page: 81 year: 2017 ident: 10.1016/j.disc.2018.10.006_b18 article-title: Merging the A- and Q-spectral theories publication-title: Appl. Anal. Discrete Math. doi: 10.2298/AADM1701081N – volume: 435 start-page: 998 year: 2011 ident: 10.1016/j.disc.2018.10.006_b17 article-title: Spectra of coronae publication-title: Linear Algebra Appl. doi: 10.1016/j.laa.2011.02.007 – volume: 356 start-page: 57 year: 2002 ident: 10.1016/j.disc.2018.10.006_b7 article-title: The complement of the path is determined by its spectrum publication-title: Linear Algebra Appl. doi: 10.1016/S0024-3795(02)00323-3 – volume: 437 start-page: 1749 year: 2012 ident: 10.1016/j.disc.2018.10.006_b14 article-title: Laplacian spectral characterization of some graph products publication-title: Linear Algebra Appl. doi: 10.1016/j.laa.2012.05.003 – volume: 311 start-page: 2317 year: 2011 ident: 10.1016/j.disc.2018.10.006_b15 article-title: On the spectral characterization of some unicyclic graphs publication-title: Discrete Math. doi: 10.1016/j.disc.2011.05.034 – volume: 373 start-page: 241 year: 2003 ident: 10.1016/j.disc.2018.10.006_b4 article-title: Which graphs are determined by their spectrum? publication-title: Linear Algebra Appl. doi: 10.1016/S0024-3795(03)00483-X – volume: 546 start-page: 274 year: 2018 ident: 10.1016/j.disc.2018.10.006_b10 article-title: On the Aα-characteristic polynomial of a graph publication-title: Linear Algebra Appl. doi: 10.1016/j.laa.2018.02.014 – volume: 431 start-page: 1607 year: 2009 ident: 10.1016/j.disc.2018.10.006_b21 article-title: On a signless Laplacian spectral characterization of T-shape trees publication-title: Linear Algebra Appl. doi: 10.1016/j.laa.2009.05.035 – volume: 556 start-page: 210 year: 2018 ident: 10.1016/j.disc.2018.10.006_b9 article-title: On the Aα-spectra of graphs publication-title: Linear Algebra Appl. doi: 10.1016/j.laa.2018.07.003 – volume: 30 start-page: 443 year: 2015 ident: 10.1016/j.disc.2018.10.006_b12 article-title: Signless Laplacian spectral characterization of some joins publication-title: Electron. J. Linear Algebra doi: 10.13001/1081-3810.1942 – volume: 340 start-page: 607 year: 2017 ident: 10.1016/j.disc.2018.10.006_b16 article-title: Construction of graphs with distinct eigenvalues publication-title: Discrete Math. doi: 10.1016/j.disc.2016.11.033 – volume: 519 start-page: 156 year: 2017 ident: 10.1016/j.disc.2018.10.006_b20 article-title: A note on the positive semidefiniteness of Aα(G) publication-title: Linear Algebra Appl. doi: 10.1016/j.laa.2016.12.042 – volume: 309 start-page: 3364 year: 2009 ident: 10.1016/j.disc.2018.10.006_b26 article-title: The lollipop graph is determined by its Q-spectrum publication-title: Discrete Math. doi: 10.1016/j.disc.2008.09.052 – year: 2005 ident: 10.1016/j.disc.2018.10.006_b24 – volume: 309 start-page: 576 year: 2009 ident: 10.1016/j.disc.2018.10.006_b5 article-title: Developments on spectral characterizations of graphs publication-title: Discrete Math. doi: 10.1016/j.disc.2008.08.019 – year: 1995 ident: 10.1016/j.disc.2018.10.006_b2 – year: 2010 ident: 10.1016/j.disc.2018.10.006_b3 – volume: 310 start-page: 1845 year: 2010 ident: 10.1016/j.disc.2018.10.006_b23 article-title: On the spectral characterizations of ∞-graphs publication-title: Discrete Math. doi: 10.1016/j.disc.2010.01.021 – volume: 520 start-page: 286 year: 2017 ident: 10.1016/j.disc.2018.10.006_b19 article-title: On the Aα-spectra of trees publication-title: Linear Algebra Appl. doi: 10.1016/j.laa.2017.01.029 – volume: 126 start-page: 137 year: 2017 ident: 10.1016/j.disc.2018.10.006_b22 article-title: Three conjectures in extremal spectral graph theory publication-title: J. Combin. Theory Ser. B doi: 10.1016/j.jctb.2017.04.006 – volume: 205 start-page: 45 year: 2016 ident: 10.1016/j.disc.2018.10.006_b6 article-title: Complete split graph determined by its (signless) Laplacian spectrum publication-title: Discrete Appl. Math. doi: 10.1016/j.dam.2016.01.003 – volume: 22 start-page: 112 year: 2011 ident: 10.1016/j.disc.2018.10.006_b11 article-title: Graphs determined by their (signless) Laplacian spectra publication-title: Electron. J. Linear Algebra doi: 10.13001/1081-3810.1428 – volume: 312 start-page: 1591 year: 2012 ident: 10.1016/j.disc.2018.10.006_b27 article-title: Laplacian spectral characterization of some graphs obtained by product operation publication-title: Discrete Math. doi: 10.1016/j.disc.2012.02.002 – volume: 39 start-page: 1645 year: 1956 ident: 10.1016/j.disc.2018.10.006_b8 article-title: Zusammenhang von Graphtheorie und Mo-Theotie von Molekeln mit Systemen konjugierter Bindungen publication-title: Helv. Chim. Acta doi: 10.1002/hlca.19560390623 – volume: 437 start-page: 1692 year: 2012 ident: 10.1016/j.disc.2018.10.006_b1 article-title: The spectrum and the signless Laplacian spectrum of coronae publication-title: Linear Algebra Appl. doi: 10.1016/j.laa.2012.05.019 – volume: 58 start-page: 1887 year: 2009 ident: 10.1016/j.disc.2018.10.006_b25 article-title: Which wheel graphs are determined by their Laplacian spectra? publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2009.07.028 |
SSID | ssj0001638 |
Score | 2.446661 |
Snippet | Let G be a graph with n vertices, and let A(G) and D(G) denote respectively the adjacency matrix and the degree matrix of G. Define Aα(G)=αD(G)+(1−α)A(G)for... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 441 |
SubjectTerms | [formula omitted]-spectrum Determined by the [formula omitted]-spectrum Join |
Title | Graphs determined by their Aα-spectra |
URI | https://dx.doi.org/10.1016/j.disc.2018.10.006 |
Volume | 342 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwED2VssCA-BTlo8qAWJDb5sNJPZaKUkDtRKVskc92JBAqVVsGFv4Tf4TfhC9xKpBQB8ZYPim5OOd70XvPABeEMmSgQmabD2SRCDRD34IVTLRvSDUjC1Of0TgeTqL7lKc16FdaGKJVutpf1vSiWruRtstme_b0RBpfcg7hqV2UnTAqbLfDqFuI-NLrVTWmfqOsxgGj2U44U3K8SPlK9K5uq2R4_b05_dhwBruw4zpFr1fezB7UzHQftkcrm9XFAVzekt30wtOO02K0h-9e8e_f6319skJGOZeHMBncPPaHzB18wJTdgZdMdmKM48hYxCgxUgItTENUAQ-6CgUayXP6UGWQaDRhkmMifJVzYUyQJ0KG4RHUp69TcwweCqN9rnjOtbJIA2WsQqMtIhZoA4RsgF89caacKzgdTvGSVfSv54yylFGWaMxmqQFXq5hZ6YmxdjavEpn9erOZLdpr4k7-GXcKW_ZKlMzqM6gv52_m3DYOS2zCRuvDb8Jm7-5hOG4W6-QbF73C1Q |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ4QPagH4zPiswfjxazQx7bsEYkICpwg6a3Z2d0mGIME8ODP8o_4m9xpF6KJ4eB1u5O00-3MfM033wBcE8qQgQqZLT6QRSLQDH0LVjDRvqGuGVmI-vQHcWcUPaU8rUBr2QtDtEoX-8uYXkRrt1Jz3qxNx2Pq8SXlEJ7aQ1kPI5Ld3rTVQELzG7rp_SocU8FRhuOA0XbXOVOSvKj1lfhdjbuS4vV3dvqRcdp7sOtKRa9Z3s0-VMzkAHb6K53V-SHcPJLe9NzTjtRitIcfXvHz32t-fbKij3Imj2DUfhi2OsxNPmDKpuAFk_UY4zgyFjJKjJRAi9MQVcCDhkKBRvKcvlQZJBpNmOSYCF_lXBgT5ImQYXgMG5O3iTkBD4XRPlc851pZqIEyVqHRFhILtAZCVsFfPnGmnCw4Tad4zZb8r5eMvJSRl2jNeqkKtyubaSmKsXY3Xzoy-_VqMxu119id_tPuCrY6w34v63UHz2ewba-IkmZ9DhuL2bu5sFXEAi-LU_INPdnDaA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graphs+determined+by+their+A+%CE%B1+-spectra&rft.jtitle=Discrete+mathematics&rft.au=Lin%2C+Huiqiu&rft.au=Liu%2C+Xiaogang&rft.au=Xue%2C+Jie&rft.date=2019-02-01&rft.issn=0012-365X&rft.volume=342&rft.issue=2&rft.spage=441&rft.epage=450&rft_id=info:doi/10.1016%2Fj.disc.2018.10.006&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_disc_2018_10_006 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0012-365X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0012-365X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0012-365X&client=summon |