Multi-sensor fusion fault diagnosis method of wind turbine bearing based on adaptive convergent viewable neural networks

Effective condition monitoring and fault diagnosis of rolling bearings, integral components of rotating machinery, are crucial for ensuring equipment reliability. However, existing diagnostic methods based on single signals perform poorly due to the detrimental effects of strong noise. Traditional d...

Full description

Saved in:
Bibliographic Details
Published inReliability engineering & system safety Vol. 245; p. 109980
Main Authors Li, Xinming, Wang, Yanxue, Yao, Jiachi, Li, Meng, Gao, Zhikang
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.05.2024
Subjects
Online AccessGet full text
ISSN0951-8320
1879-0836
DOI10.1016/j.ress.2024.109980

Cover

Loading…
Abstract Effective condition monitoring and fault diagnosis of rolling bearings, integral components of rotating machinery, are crucial for ensuring equipment reliability. However, existing diagnostic methods based on single signals perform poorly due to the detrimental effects of strong noise. Traditional deep learning approaches often neglect the interdependence between data samples when dealing with rolling bearing faults, thus constraining the accuracy and reliability of fault diagnosis. To tackle these challenges, this study introduces an intelligent diagnostic framework that integrates multi-source information at multiple levels, using acoustic and vibration signals (AVS) data and graph neural networks. Firstly, a data-level fusion method called Correlation Variance Contribution is proposed to effectively integrate vibration signals, addressing the issue of multi-source information integration. An Adaptive Convergent Viewable Graph (AcvGraph) is introduced to optimize the representation of original AVS data and fused vibration signals, improving the capturing of correlation relationships within the data and enhancing classification accuracy. Furthermore, an enhanced DiffPool method is utilized to downsample the graph-structured data, reducing feature dimensions while preserving crucial information. Finally, the framework combines and integrates feature vectors from diverse inputs to form global feature vectors, enabling the accurate classification of rolling bearing faults. Exhaustive experiments validate the effectiveness of the proposed framework in utilizing AVS data for detecting different types of faults. Additionally, rigorous comparisons with alternative intelligent diagnosis techniques substantiate the superiority and advancements of the proposed method. •Developed an intelligent diagnostic framework with interpretability using graph neural networks.•Proposed CVC method for integrating vibration signals, improving fault classification accuracy.•Introduced AcvGraph algorithm for capturing correlations in time series data, improving recognition performance.
AbstractList Effective condition monitoring and fault diagnosis of rolling bearings, integral components of rotating machinery, are crucial for ensuring equipment reliability. However, existing diagnostic methods based on single signals perform poorly due to the detrimental effects of strong noise. Traditional deep learning approaches often neglect the interdependence between data samples when dealing with rolling bearing faults, thus constraining the accuracy and reliability of fault diagnosis. To tackle these challenges, this study introduces an intelligent diagnostic framework that integrates multi-source information at multiple levels, using acoustic and vibration signals (AVS) data and graph neural networks. Firstly, a data-level fusion method called Correlation Variance Contribution is proposed to effectively integrate vibration signals, addressing the issue of multi-source information integration. An Adaptive Convergent Viewable Graph (AcvGraph) is introduced to optimize the representation of original AVS data and fused vibration signals, improving the capturing of correlation relationships within the data and enhancing classification accuracy. Furthermore, an enhanced DiffPool method is utilized to downsample the graph-structured data, reducing feature dimensions while preserving crucial information. Finally, the framework combines and integrates feature vectors from diverse inputs to form global feature vectors, enabling the accurate classification of rolling bearing faults. Exhaustive experiments validate the effectiveness of the proposed framework in utilizing AVS data for detecting different types of faults. Additionally, rigorous comparisons with alternative intelligent diagnosis techniques substantiate the superiority and advancements of the proposed method. •Developed an intelligent diagnostic framework with interpretability using graph neural networks.•Proposed CVC method for integrating vibration signals, improving fault classification accuracy.•Introduced AcvGraph algorithm for capturing correlations in time series data, improving recognition performance.
ArticleNumber 109980
Author Wang, Yanxue
Yao, Jiachi
Li, Meng
Li, Xinming
Gao, Zhikang
Author_xml – sequence: 1
  givenname: Xinming
  surname: Li
  fullname: Li, Xinming
  organization: School of Mechanical-Electronic and Vehicle Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
– sequence: 2
  givenname: Yanxue
  surname: Wang
  fullname: Wang, Yanxue
  email: yan.xue.wang@gmail.com
  organization: School of Mechanical-Electronic and Vehicle Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
– sequence: 3
  givenname: Jiachi
  surname: Yao
  fullname: Yao, Jiachi
  organization: School of Mechanical-Electronic and Vehicle Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
– sequence: 4
  givenname: Meng
  surname: Li
  fullname: Li, Meng
  organization: School of Mechanical-Electronic and Vehicle Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
– sequence: 5
  givenname: Zhikang
  surname: Gao
  fullname: Gao, Zhikang
  organization: School of Mechanical-Electronic and Vehicle Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
BookMark eNp9kM1KAzEUhYNUsFZfwFVeYGoymc4PuJHiH1Tc6DrcSW5q6jQpSdrq25tSVy66OnAu34XvXJKR8w4JueFsyhmvb1fTgDFOS1ZWuei6lp2RMW-brmCtqEdkzLoZL1pRsgtyGeOKMVZ1s2ZMvl-3Q7JFRBd9oGYbrXfUQC6ptrB0PtpI15g-vabe0L11mqZt6K1D2iME65a0h4j56iho2CS7Q6q822FYokt0Z3EP_YDU4TbAkCPtffiKV-TcwBDx-i8n5OPx4X3-XCzenl7m94tClXyWimyC2nDBlKkr3s3qrFMZAF0BB2Rto6ADURvsQDEhdF01ICqmBDSmLxshJqQ9_lXBxxjQSGUTpKyZAthBciYPC8qVPCwoDwvK44IZLf-hm2DXEH5OQ3dHCLNUlg8yKotOobYBVZLa21P4L0LTkB8
CitedBy_id crossref_primary_10_1016_j_compind_2024_104214
crossref_primary_10_1016_j_measurement_2024_116505
crossref_primary_10_1016_j_measurement_2024_115910
crossref_primary_10_1016_j_ress_2024_110362
crossref_primary_10_1016_j_ress_2024_110363
crossref_primary_10_32604_cmes_2024_055633
crossref_primary_10_1016_j_ress_2024_110464
crossref_primary_10_1016_j_engappai_2024_109358
crossref_primary_10_1109_JIOT_2024_3463718
crossref_primary_10_1016_j_measurement_2024_116506
crossref_primary_10_1088_1361_6501_ad99f4
crossref_primary_10_3390_app142411910
crossref_primary_10_1016_j_knosys_2024_112787
crossref_primary_10_1016_j_ress_2025_110863
crossref_primary_10_1088_1361_6501_ad91d7
crossref_primary_10_1177_14759217241296804
crossref_primary_10_1002_msd2_12132
crossref_primary_10_1016_j_ress_2025_110847
crossref_primary_10_1080_23080477_2024_2364537
crossref_primary_10_1088_1361_6501_ad8cfe
crossref_primary_10_1016_j_ress_2024_110328
crossref_primary_10_1016_j_ress_2024_110746
crossref_primary_10_1109_JSEN_2024_3502714
crossref_primary_10_1016_j_eswa_2025_126533
crossref_primary_10_3390_math12132064
crossref_primary_10_1177_14759217241261155
crossref_primary_10_3390_s24165433
crossref_primary_10_1016_j_measurement_2024_115726
crossref_primary_10_1088_1361_6501_ad8024
crossref_primary_10_1016_j_aei_2024_102568
crossref_primary_10_3390_act13100401
crossref_primary_10_1088_1361_6501_ad67f6
crossref_primary_10_1088_1361_6501_ad9f89
Cites_doi 10.1109/JSEN.2021.3086865
10.1016/j.ymssp.2021.108653
10.1016/j.ymssp.2023.110815
10.1016/j.ress.2023.109333
10.1016/j.inffus.2021.03.008
10.1177/09544089211058019
10.1016/j.aei.2023.102075
10.1088/1361-6501/ac5deb
10.1109/TII.2022.3194659
10.1016/j.knosys.2022.110212
10.1016/j.knosys.2023.110334
10.1016/j.est.2023.108181
10.1007/s42417-022-00468-1
10.1177/1550147720923476
10.1016/j.knosys.2021.107980
10.1016/j.ress.2022.108648
10.1016/j.eswa.2022.119057
10.1109/TVT.2023.3239054
10.1109/JAS.2021.1004311
10.1016/j.ymssp.2021.108764
10.1016/j.measurement.2020.107572
10.1016/j.engfailanal.2022.106515
10.1007/s10489-023-04737-8
10.1016/j.knosys.2022.108665
10.1016/j.isatra.2019.08.012
10.1088/1361-6501/ac9cfa
10.1109/JSEN.2021.3126864
10.1007/s10489-021-02587-w
10.1109/JSEN.2023.3303893
10.1016/j.ress.2023.109768
10.3390/app12157366
10.1016/j.knosys.2020.106214
10.1109/JSEN.2022.3176059
10.1016/j.eswa.2023.119982
10.1109/JSEN.2022.3173924
10.1016/j.inffus.2023.01.020
10.1016/j.ins.2023.119496
10.1016/j.aei.2023.102206
10.1109/TIM.2021.3118090
10.1016/j.ymssp.2023.110755
10.1109/JSEN.2023.3274749
10.1016/j.engappai.2023.106756
10.1016/j.inffus.2021.07.018
10.1016/j.knosys.2022.110166
10.1016/j.ress.2023.109288
10.1007/s40799-019-00324-0
10.1109/JSEN.2022.3214286
ContentType Journal Article
Copyright 2024
Copyright_xml – notice: 2024
DBID AAYXX
CITATION
DOI 10.1016/j.ress.2024.109980
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0836
ExternalDocumentID 10_1016_j_ress_2024_109980
S0951832024000553
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
29P
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
9JO
AABNK
AACTN
AAEDT
AAEDW
AAFJI
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABJNI
ABMAC
ABMMH
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKRWK
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PRBVW
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SSB
SSO
SST
SSZ
T5K
TN5
WUQ
XPP
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c215t-980edf130cf6419568364faad4a1ae087ca9a36fe9ac033d647a340c3a7fb2733
IEDL.DBID .~1
ISSN 0951-8320
IngestDate Tue Jul 01 00:45:14 EDT 2025
Thu Apr 24 22:50:33 EDT 2025
Sat Apr 13 16:38:38 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Graph neural networks
Acoustic and vibration signals
Multi-source information fusion
Intelligent diagnosis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c215t-980edf130cf6419568364faad4a1ae087ca9a36fe9ac033d647a340c3a7fb2733
ParticipantIDs crossref_citationtrail_10_1016_j_ress_2024_109980
crossref_primary_10_1016_j_ress_2024_109980
elsevier_sciencedirect_doi_10_1016_j_ress_2024_109980
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2024
2024-05-00
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: May 2024
PublicationDecade 2020
PublicationTitle Reliability engineering & system safety
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Si, Shi, Han, Chen, Zheng (b4) 2021; 22
Prasad, Kolluri, Kumar, Rajasekhar (b13) 2021
Hou, Yi, Jin, Gui, Sui, Zhang (b6) 2023
Meng, Geng, Han (b49) 2023; 236
Liao, Hu, Li, Du, Peng (b54) 2022; 246
Iqbal, Madan (b19) 2022; 10
Su, Jiang, Zhang, Feng, Cui, Qin (b28) 2023
Liu, Wang, Liang, Zhu, Qiu, Yin (b37) 2021; 21
Han, Xie, Pei (b30) 2023; 648
Wang, Ding, He, Li, Li, Tang (b10) 2023
Pacheco-Chérrez, Fortoul-Díaz, Cortés-Santacruz, Aloso-Valerdi, Ibarra-Zarate (b15) 2022; 139
Cui, Zhu, Feng, He, Chen (b29) 2023; 72
Zhang, Chen, Chen, He, Li, Zhou (b1) 2022; 239
Cao, Li, Zhang, Luo, Li, Huang (b21) 2023; 261
Ju, Li, Sharma, Zhang (b52) 2023
Xu, Wang, Li, Qian (b40) 2022; 12
Liang, Yu, Wang, Xu, Tian (b50) 2023; 57
Chen, Yao, Gui, Yang (b16) 2022; 22
Feng, Bao, Xu, Zhang, Hou, Steyskal (b42) 2023
Kumar, Gandhi, Tang, Sun, Xiang (b2) 2023
Lyu, Wu, Lai, Yang, Li, Zhou (b38) 2022; 35
Wang, Yu, Li, Shen, Yao (b53) 2023; 224
Dai, Wang, Wang, Liu (b9) 2022; 34
Hu, Wang, Gu (b47) 2020; 209
Zhong, Xiao, Wang, Wei, Zhang (b43) 2022; 77
Ma, Shen, Song, Xu (b17) 2023; 204
Kumar, Glowacz, Tang, Xiang (b32) 2023; 126
Qiu, Niu, Zhang (b39) 2023; 265
Xu, Xiao, Hao, Dong, Qiu, Peng (b45) 2023; 260
Lu, Cui, Hu, Yin (b25) 2023; 213
Liu, Wu, Teng, Liu, Lu, Ju (b23) 2021; 70
Meng, Li, Yin, Pan (b12) 2020; 156
Gunerkar, Jalan (b18) 2019; 43
Li, Zhou, Li, Sun, Yan, Chen (b41) 2022; 168
Sun, Gao, Shen, Liu, Liang, Du (b36) 2022; 19
Liang, Kintak, Ning, Tiwari, Nowaczyk, Kumar (b35) 2023
Shao, Lin, Zhang, Galar, Kumar (b24) 2021; 74
Bui, Cho, Yi (b33) 2022; 52
Yao, Zheng, Xiao, Zhang, Zhang, Gong (b46) 2023; 72
Goktas (b44) 2022; 22
Han, Liu, Yang, Jiang (b3) 2020; 97
Kumar, Kumar, Tang, Xiang (b5) 2024; 242
Xing, Yi, Lin, Zhou (b31) 2023
Song, Ma, Li, Xu (b14) 2022; 22
Qiang, Jieying, Junming, Ying, Shilei (b27) 2020; 16
Liu, Chen, Wei, Wang, Li (b48) 2022
Han, Li (b7) 2022; 226
Waikhom, Patgiri, Singh (b34) 2023; 53
Liu, Yan, Deng, Li, Ye, Fan (b55) 2021; 9
Chen, Li, Chen, Hai, Zhou, Chen (b11) 2023; 204
Zhang, Gao, Shi (b20) 2022; 33
Sun, Li, Jia, Feng, Liu (b26) 2023; 94
Kumar, Parkash, Tang, Xiang (b8) 2023; 58
He, Su, Zio, Peng, Fan, Yang (b51) 2023; 237
Hebda-Sobkowicz, Zimroz, Wyłomańska, Antoni (b22) 2022; 170
Waikhom (10.1016/j.ress.2024.109980_b34) 2023; 53
Su (10.1016/j.ress.2024.109980_b28) 2023
Ma (10.1016/j.ress.2024.109980_b17) 2023; 204
Pacheco-Chérrez (10.1016/j.ress.2024.109980_b15) 2022; 139
Liang (10.1016/j.ress.2024.109980_b35) 2023
Qiu (10.1016/j.ress.2024.109980_b39) 2023; 265
Liao (10.1016/j.ress.2024.109980_b54) 2022; 246
Kumar (10.1016/j.ress.2024.109980_b8) 2023; 58
Ju (10.1016/j.ress.2024.109980_b52) 2023
Liu (10.1016/j.ress.2024.109980_b55) 2021; 9
Song (10.1016/j.ress.2024.109980_b14) 2022; 22
Yao (10.1016/j.ress.2024.109980_b46) 2023; 72
Wang (10.1016/j.ress.2024.109980_b53) 2023; 224
Gunerkar (10.1016/j.ress.2024.109980_b18) 2019; 43
Han (10.1016/j.ress.2024.109980_b7) 2022; 226
Meng (10.1016/j.ress.2024.109980_b49) 2023; 236
Xu (10.1016/j.ress.2024.109980_b45) 2023; 260
Xing (10.1016/j.ress.2024.109980_b31) 2023
Xu (10.1016/j.ress.2024.109980_b40) 2022; 12
Han (10.1016/j.ress.2024.109980_b30) 2023; 648
Sun (10.1016/j.ress.2024.109980_b36) 2022; 19
Han (10.1016/j.ress.2024.109980_b3) 2020; 97
Liu (10.1016/j.ress.2024.109980_b37) 2021; 21
Cao (10.1016/j.ress.2024.109980_b21) 2023; 261
Bui (10.1016/j.ress.2024.109980_b33) 2022; 52
Iqbal (10.1016/j.ress.2024.109980_b19) 2022; 10
Liu (10.1016/j.ress.2024.109980_b23) 2021; 70
Meng (10.1016/j.ress.2024.109980_b12) 2020; 156
Feng (10.1016/j.ress.2024.109980_b42) 2023
Qiang (10.1016/j.ress.2024.109980_b27) 2020; 16
Hou (10.1016/j.ress.2024.109980_b6) 2023
Hu (10.1016/j.ress.2024.109980_b47) 2020; 209
He (10.1016/j.ress.2024.109980_b51) 2023; 237
Lyu (10.1016/j.ress.2024.109980_b38) 2022; 35
Lu (10.1016/j.ress.2024.109980_b25) 2023; 213
Liang (10.1016/j.ress.2024.109980_b50) 2023; 57
Li (10.1016/j.ress.2024.109980_b41) 2022; 168
Si (10.1016/j.ress.2024.109980_b4) 2021; 22
Kumar (10.1016/j.ress.2024.109980_b32) 2023; 126
Zhang (10.1016/j.ress.2024.109980_b1) 2022; 239
Chen (10.1016/j.ress.2024.109980_b11) 2023; 204
Shao (10.1016/j.ress.2024.109980_b24) 2021; 74
Zhong (10.1016/j.ress.2024.109980_b43) 2022; 77
Goktas (10.1016/j.ress.2024.109980_b44) 2022; 22
Kumar (10.1016/j.ress.2024.109980_b2) 2023
Kumar (10.1016/j.ress.2024.109980_b5) 2024; 242
Chen (10.1016/j.ress.2024.109980_b16) 2022; 22
Cui (10.1016/j.ress.2024.109980_b29) 2023; 72
Hebda-Sobkowicz (10.1016/j.ress.2024.109980_b22) 2022; 170
Prasad (10.1016/j.ress.2024.109980_b13) 2021
Sun (10.1016/j.ress.2024.109980_b26) 2023; 94
Wang (10.1016/j.ress.2024.109980_b10) 2023
Dai (10.1016/j.ress.2024.109980_b9) 2022; 34
Zhang (10.1016/j.ress.2024.109980_b20) 2022; 33
Liu (10.1016/j.ress.2024.109980_b48) 2022
References_xml – volume: 204
  year: 2023
  ident: b17
  article-title: A vibro-acoustic signals hybrid fusion model for blade crack detection
  publication-title: Mech Syst Signal Process
– volume: 58
  year: 2023
  ident: b8
  article-title: Intelligent framework for degradation monitoring, defect identification and estimation of remaining useful life (RUL) of bearing
  publication-title: Adv Eng Inform
– volume: 72
  start-page: 1
  year: 2023
  end-page: 13
  ident: b29
  article-title: Intelligent fault quantitative identification via the improved deep deterministic policy gradient (DDPG) algorithm accompanied with imbalanced sample
  publication-title: IEEE Trans Instrum Meas
– volume: 265
  year: 2023
  ident: b39
  article-title: Research on the multi-source causal feature selection method based on multiple causal relevance
  publication-title: Knowl-Based Syst
– volume: 648
  year: 2023
  ident: b30
  article-title: Semi-supervised adversarial discriminative learning approach for intelligent fault diagnosis of wind turbine
  publication-title: Inform Sci
– volume: 22
  start-page: 22344
  year: 2022
  end-page: 22355
  ident: b16
  article-title: Gear fault diagnosis under variable load conditions based on acoustic signals
  publication-title: IEEE Sens J
– volume: 213
  year: 2023
  ident: b25
  article-title: Multi-view and multi-level network for fault diagnosis accommodating feature transferability
  publication-title: Expert Syst Appl
– volume: 70
  start-page: 1
  year: 2021
  end-page: 12
  ident: b23
  article-title: A two-stage learning model for track-side acoustic bearing fault diagnosis
  publication-title: IEEE Trans Instrum Meas
– start-page: 6314
  year: 2023
  end-page: 6341
  ident: b52
  article-title: Generalization in graph neural networks: Improved PAC-Bayesian bounds on graph diffusion
  publication-title: International conference on artificial intelligence and statistics
– volume: 43
  start-page: 635
  year: 2019
  end-page: 643
  ident: b18
  article-title: Classification of ball bearing faults using vibro-acoustic sensor data fusion
  publication-title: Exp Tech
– volume: 53
  start-page: 23166
  year: 2023
  end-page: 23178
  ident: b34
  article-title: Dynamic temporal position observant graph neural network for traffic forecasting
  publication-title: Appl Intell
– volume: 156
  year: 2020
  ident: b12
  article-title: Remaining useful life prediction of rolling bearing using fractal theory
  publication-title: Measurement
– volume: 12
  start-page: 7366
  year: 2022
  ident: b40
  article-title: Fault diagnosis method based on time series in autonomous unmanned system
  publication-title: Appl Sci
– volume: 242
  year: 2024
  ident: b5
  article-title: A comprehensive study on developing an intelligent framework for identification and quantitative evaluation of the bearing defect size
  publication-title: Reliab Eng Syst Saf
– volume: 260
  year: 2023
  ident: b45
  article-title: Semi-supervised learning with pseudo-negative labels for image classification
  publication-title: Knowl-Based Syst
– volume: 237
  year: 2023
  ident: b51
  article-title: A systematic method of remaining useful life estimation based on physics-informed graph neural networks with multisensor data
  publication-title: Reliab Eng Syst Saf
– start-page: 1
  year: 2023
  end-page: 16
  ident: b42
  article-title: Rotating machinery fault diagnosis based on feature extraction via an unsupervised graph neural network
  publication-title: Appl Intell
– volume: 19
  start-page: 382
  year: 2022
  end-page: 393
  ident: b36
  article-title: Separated graph neural networks for recommendation systems
  publication-title: IEEE Trans Ind Inf
– year: 2021
  ident: b13
  article-title: Development of multi sensor fusion based DAQ for in-process TCMS: Experimental and empirical analysis
  publication-title: Proc Inst Mech Eng Part E: J Process Mech Eng
– volume: 74
  start-page: 65
  year: 2021
  end-page: 76
  ident: b24
  article-title: A novel approach of multisensory fusion to collaborative fault diagnosis in maintenance
  publication-title: Inf Fusion
– volume: 94
  start-page: 112
  year: 2023
  end-page: 125
  ident: b26
  article-title: Non-contact diagnosis for gearbox based on the fusion of multi-sensor heterogeneous data
  publication-title: Inf Fusion
– volume: 16
  year: 2020
  ident: b27
  article-title: Gearbox fault diagnosis using data fusion based on self-organizing map neural network
  publication-title: Int J Distrib Sens Netw
– volume: 21
  start-page: 25171
  year: 2021
  end-page: 25180
  ident: b37
  article-title: High-quality paths: Multi-view attention neural network with high-quality paths for top-N recommendation
  publication-title: IEEE Sens J
– volume: 22
  start-page: 13602
  year: 2022
  end-page: 13611
  ident: b44
  article-title: Evaluation and classification of double bar breakages through three-axes vibration sensor in induction motors
  publication-title: IEEE Sens J
– start-page: 228
  year: 2023
  end-page: 242
  ident: b6
  article-title: Inter-shaft bearing fault diagnosis based on aero-engine system: A benchmarking dataset study
  publication-title: J Dyn Monit Diagn
– volume: 33
  year: 2022
  ident: b20
  article-title: Bearing fault diagnosis method based on multi-source heterogeneous information fusion
  publication-title: Meas Sci Technol
– volume: 34
  year: 2022
  ident: b9
  article-title: Element analysis and its application in rotating machinery fault diagnosis
  publication-title: Meas Sci Technol
– year: 2023
  ident: b28
  article-title: Evidential deep learning-based adversarial network for universal cross-domain fault diagnosis of rotary machinery
  publication-title: IEEE Sens J
– volume: 224
  year: 2023
  ident: b53
  article-title: SR-HGN: Semantic-and relation-aware heterogeneous graph neural network
  publication-title: Expert Syst Appl
– year: 2022
  ident: b48
  article-title: Braking sensor and actuator fault diagnosis with combined model-based and data-driven pressure estimation methods
  publication-title: IEEE Trans Ind Electron
– volume: 204
  year: 2023
  ident: b11
  article-title: Filter bank property of direct fast iterative filtering and its applications
  publication-title: Mech Syst Signal Process
– volume: 97
  start-page: 269
  year: 2020
  end-page: 281
  ident: b3
  article-title: Deep transfer network with joint distribution adaptation: A new intelligent fault diagnosis framework for industry application
  publication-title: ISA Trans
– volume: 57
  year: 2023
  ident: b50
  article-title: Fault transfer diagnosis of rolling bearings across multiple working conditions via subdomain adaptation and improved vision transformer network
  publication-title: Adv Eng Inform
– volume: 168
  year: 2022
  ident: b41
  article-title: The emerging graph neural networks for intelligent fault diagnostics and prognostics: A guideline and a benchmark study
  publication-title: Mech Syst Signal Process
– volume: 22
  start-page: 510
  year: 2021
  end-page: 519
  ident: b4
  article-title: Learn generalized features via multi-source domain adaptation: Intelligent diagnosis under variable/constant machine conditions
  publication-title: IEEE Sens J
– volume: 10
  start-page: 1613
  year: 2022
  end-page: 1621
  ident: b19
  article-title: CNC machine-bearing fault detection based on convolutional neural network using vibration and acoustic signal
  publication-title: J Vib Eng Technol
– volume: 239
  year: 2022
  ident: b1
  article-title: A multi-module generative adversarial network augmented with adaptive decoupling strategy for intelligent fault diagnosis of machines with small sample
  publication-title: Knowl-Based Syst
– volume: 226
  year: 2022
  ident: b7
  article-title: Out-of-distribution detection-assisted trustworthy machinery fault diagnosis approach with uncertainty-aware deep ensembles
  publication-title: Reliab Eng Syst Saf
– volume: 72
  year: 2023
  ident: b46
  article-title: An intelligent fault diagnosis method for lithium-ion battery pack based on empirical mode decomposition and convolutional neural network
  publication-title: J Energy Storage
– year: 2023
  ident: b35
  article-title: Semantics-aware dynamic graph convolutional network for traffic flow forecasting
  publication-title: IEEE Trans Veh Technol
– volume: 52
  start-page: 2763
  year: 2022
  end-page: 2774
  ident: b33
  article-title: Spatial-temporal graph neural network for traffic forecasting: An overview and open research issues
  publication-title: Appl Intell
– volume: 126
  year: 2023
  ident: b32
  article-title: Knowledge addition for improving the transfer learning from the laboratory to identify defects of hydraulic machinery
  publication-title: Eng Appl Artif Intell
– volume: 261
  year: 2023
  ident: b21
  article-title: Cross-attention-based multi-sensing signals fusion for penetration state monitoring during laser welding of aluminum alloy
  publication-title: Knowl-Based Syst
– year: 2023
  ident: b2
  article-title: Latest innovations in the field of condition-based maintenance of rotatory machinery: A review
  publication-title: Meas Sci Technol
– volume: 35
  start-page: 4954
  year: 2022
  end-page: 4968
  ident: b38
  article-title: Knowledge enhanced graph neural networks for explainable recommendation
  publication-title: IEEE Trans Knowl Data Eng
– volume: 236
  year: 2023
  ident: b49
  article-title: Long short-term memory network with Bayesian optimization for health prognostics of lithium-ion batteries based on partial incremental capacity analysis
  publication-title: Reliab Eng Syst Saf
– volume: 22
  start-page: 12209
  year: 2022
  end-page: 12218
  ident: b14
  article-title: Data and decision level fusion-based crack detection for compressor blade using acoustic and vibration signal
  publication-title: IEEE Sens J
– year: 2023
  ident: b31
  article-title: A novel periodic cyclic sparse network with entire domain adaptation for deep transfer fault diagnosis of rolling bearing
  publication-title: IEEE Sens J
– volume: 9
  start-page: 205
  year: 2021
  end-page: 234
  ident: b55
  article-title: Sampling methods for efficient training of graph convolutional networks: A survey
  publication-title: IEEE/CAA J Autom Sin
– volume: 139
  year: 2022
  ident: b15
  article-title: Bearing fault detection with vibration and acoustic signals: Comparison among different machine leaning classification methods
  publication-title: Eng Fail Anal
– volume: 170
  year: 2022
  ident: b22
  article-title: Infogram performance analysis and its enhancement for bearings diagnostics in presence of non-Gaussian noise
  publication-title: Mech Syst Signal Process
– volume: 246
  year: 2022
  ident: b54
  article-title: Deep linear graph attention model for attributed graph clustering
  publication-title: Knowl-Based Syst
– volume: 77
  start-page: 81
  year: 2022
  end-page: 89
  ident: b43
  article-title: PESA-Net: Permutation-equivariant split attention network for correspondence learning
  publication-title: Inf Fusion
– year: 2023
  ident: b10
  article-title: Shift-invariant sparse filtering for bearing weak fault signal denoising
  publication-title: IEEE Sens J
– volume: 209
  year: 2020
  ident: b47
  article-title: Cross-domain intelligent fault classification of bearings based on tensor-aligned invariant subspace learning and two-dimensional convolutional neural networks
  publication-title: Knowl-Based Syst
– volume: 21
  start-page: 25171
  issue: 22
  year: 2021
  ident: 10.1016/j.ress.2024.109980_b37
  article-title: High-quality paths: Multi-view attention neural network with high-quality paths for top-N recommendation
  publication-title: IEEE Sens J
  doi: 10.1109/JSEN.2021.3086865
– year: 2022
  ident: 10.1016/j.ress.2024.109980_b48
  article-title: Braking sensor and actuator fault diagnosis with combined model-based and data-driven pressure estimation methods
  publication-title: IEEE Trans Ind Electron
– volume: 168
  year: 2022
  ident: 10.1016/j.ress.2024.109980_b41
  article-title: The emerging graph neural networks for intelligent fault diagnostics and prognostics: A guideline and a benchmark study
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2021.108653
– volume: 204
  year: 2023
  ident: 10.1016/j.ress.2024.109980_b17
  article-title: A vibro-acoustic signals hybrid fusion model for blade crack detection
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2023.110815
– volume: 237
  year: 2023
  ident: 10.1016/j.ress.2024.109980_b51
  article-title: A systematic method of remaining useful life estimation based on physics-informed graph neural networks with multisensor data
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2023.109333
– volume: 74
  start-page: 65
  year: 2021
  ident: 10.1016/j.ress.2024.109980_b24
  article-title: A novel approach of multisensory fusion to collaborative fault diagnosis in maintenance
  publication-title: Inf Fusion
  doi: 10.1016/j.inffus.2021.03.008
– year: 2021
  ident: 10.1016/j.ress.2024.109980_b13
  article-title: Development of multi sensor fusion based DAQ for in-process TCMS: Experimental and empirical analysis
  publication-title: Proc Inst Mech Eng Part E: J Process Mech Eng
  doi: 10.1177/09544089211058019
– volume: 57
  year: 2023
  ident: 10.1016/j.ress.2024.109980_b50
  article-title: Fault transfer diagnosis of rolling bearings across multiple working conditions via subdomain adaptation and improved vision transformer network
  publication-title: Adv Eng Inform
  doi: 10.1016/j.aei.2023.102075
– volume: 33
  issue: 7
  year: 2022
  ident: 10.1016/j.ress.2024.109980_b20
  article-title: Bearing fault diagnosis method based on multi-source heterogeneous information fusion
  publication-title: Meas Sci Technol
  doi: 10.1088/1361-6501/ac5deb
– volume: 19
  start-page: 382
  issue: 1
  year: 2022
  ident: 10.1016/j.ress.2024.109980_b36
  article-title: Separated graph neural networks for recommendation systems
  publication-title: IEEE Trans Ind Inf
  doi: 10.1109/TII.2022.3194659
– volume: 261
  year: 2023
  ident: 10.1016/j.ress.2024.109980_b21
  article-title: Cross-attention-based multi-sensing signals fusion for penetration state monitoring during laser welding of aluminum alloy
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2022.110212
– volume: 265
  year: 2023
  ident: 10.1016/j.ress.2024.109980_b39
  article-title: Research on the multi-source causal feature selection method based on multiple causal relevance
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2023.110334
– volume: 72
  year: 2023
  ident: 10.1016/j.ress.2024.109980_b46
  article-title: An intelligent fault diagnosis method for lithium-ion battery pack based on empirical mode decomposition and convolutional neural network
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2023.108181
– volume: 10
  start-page: 1613
  issue: 5
  year: 2022
  ident: 10.1016/j.ress.2024.109980_b19
  article-title: CNC machine-bearing fault detection based on convolutional neural network using vibration and acoustic signal
  publication-title: J Vib Eng Technol
  doi: 10.1007/s42417-022-00468-1
– volume: 16
  issue: 5
  year: 2020
  ident: 10.1016/j.ress.2024.109980_b27
  article-title: Gearbox fault diagnosis using data fusion based on self-organizing map neural network
  publication-title: Int J Distrib Sens Netw
  doi: 10.1177/1550147720923476
– volume: 239
  year: 2022
  ident: 10.1016/j.ress.2024.109980_b1
  article-title: A multi-module generative adversarial network augmented with adaptive decoupling strategy for intelligent fault diagnosis of machines with small sample
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2021.107980
– volume: 226
  year: 2022
  ident: 10.1016/j.ress.2024.109980_b7
  article-title: Out-of-distribution detection-assisted trustworthy machinery fault diagnosis approach with uncertainty-aware deep ensembles
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2022.108648
– volume: 213
  year: 2023
  ident: 10.1016/j.ress.2024.109980_b25
  article-title: Multi-view and multi-level network for fault diagnosis accommodating feature transferability
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2022.119057
– year: 2023
  ident: 10.1016/j.ress.2024.109980_b35
  article-title: Semantics-aware dynamic graph convolutional network for traffic flow forecasting
  publication-title: IEEE Trans Veh Technol
  doi: 10.1109/TVT.2023.3239054
– volume: 9
  start-page: 205
  issue: 2
  year: 2021
  ident: 10.1016/j.ress.2024.109980_b55
  article-title: Sampling methods for efficient training of graph convolutional networks: A survey
  publication-title: IEEE/CAA J Autom Sin
  doi: 10.1109/JAS.2021.1004311
– year: 2023
  ident: 10.1016/j.ress.2024.109980_b2
  article-title: Latest innovations in the field of condition-based maintenance of rotatory machinery: A review
  publication-title: Meas Sci Technol
– volume: 170
  year: 2022
  ident: 10.1016/j.ress.2024.109980_b22
  article-title: Infogram performance analysis and its enhancement for bearings diagnostics in presence of non-Gaussian noise
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2021.108764
– volume: 156
  year: 2020
  ident: 10.1016/j.ress.2024.109980_b12
  article-title: Remaining useful life prediction of rolling bearing using fractal theory
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.107572
– volume: 139
  year: 2022
  ident: 10.1016/j.ress.2024.109980_b15
  article-title: Bearing fault detection with vibration and acoustic signals: Comparison among different machine leaning classification methods
  publication-title: Eng Fail Anal
  doi: 10.1016/j.engfailanal.2022.106515
– volume: 53
  start-page: 23166
  issue: 20
  year: 2023
  ident: 10.1016/j.ress.2024.109980_b34
  article-title: Dynamic temporal position observant graph neural network for traffic forecasting
  publication-title: Appl Intell
  doi: 10.1007/s10489-023-04737-8
– volume: 246
  year: 2022
  ident: 10.1016/j.ress.2024.109980_b54
  article-title: Deep linear graph attention model for attributed graph clustering
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2022.108665
– volume: 97
  start-page: 269
  year: 2020
  ident: 10.1016/j.ress.2024.109980_b3
  article-title: Deep transfer network with joint distribution adaptation: A new intelligent fault diagnosis framework for industry application
  publication-title: ISA Trans
  doi: 10.1016/j.isatra.2019.08.012
– volume: 34
  issue: 2
  year: 2022
  ident: 10.1016/j.ress.2024.109980_b9
  article-title: Element analysis and its application in rotating machinery fault diagnosis
  publication-title: Meas Sci Technol
  doi: 10.1088/1361-6501/ac9cfa
– volume: 22
  start-page: 510
  issue: 1
  year: 2021
  ident: 10.1016/j.ress.2024.109980_b4
  article-title: Learn generalized features via multi-source domain adaptation: Intelligent diagnosis under variable/constant machine conditions
  publication-title: IEEE Sens J
  doi: 10.1109/JSEN.2021.3126864
– year: 2023
  ident: 10.1016/j.ress.2024.109980_b10
  article-title: Shift-invariant sparse filtering for bearing weak fault signal denoising
  publication-title: IEEE Sens J
– volume: 52
  start-page: 2763
  issue: 3
  year: 2022
  ident: 10.1016/j.ress.2024.109980_b33
  article-title: Spatial-temporal graph neural network for traffic forecasting: An overview and open research issues
  publication-title: Appl Intell
  doi: 10.1007/s10489-021-02587-w
– year: 2023
  ident: 10.1016/j.ress.2024.109980_b28
  article-title: Evidential deep learning-based adversarial network for universal cross-domain fault diagnosis of rotary machinery
  publication-title: IEEE Sens J
  doi: 10.1109/JSEN.2023.3303893
– start-page: 6314
  year: 2023
  ident: 10.1016/j.ress.2024.109980_b52
  article-title: Generalization in graph neural networks: Improved PAC-Bayesian bounds on graph diffusion
– volume: 242
  year: 2024
  ident: 10.1016/j.ress.2024.109980_b5
  article-title: A comprehensive study on developing an intelligent framework for identification and quantitative evaluation of the bearing defect size
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2023.109768
– volume: 12
  start-page: 7366
  issue: 15
  year: 2022
  ident: 10.1016/j.ress.2024.109980_b40
  article-title: Fault diagnosis method based on time series in autonomous unmanned system
  publication-title: Appl Sci
  doi: 10.3390/app12157366
– volume: 209
  year: 2020
  ident: 10.1016/j.ress.2024.109980_b47
  article-title: Cross-domain intelligent fault classification of bearings based on tensor-aligned invariant subspace learning and two-dimensional convolutional neural networks
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2020.106214
– volume: 22
  start-page: 13602
  issue: 13
  year: 2022
  ident: 10.1016/j.ress.2024.109980_b44
  article-title: Evaluation and classification of double bar breakages through three-axes vibration sensor in induction motors
  publication-title: IEEE Sens J
  doi: 10.1109/JSEN.2022.3176059
– volume: 72
  start-page: 1
  year: 2023
  ident: 10.1016/j.ress.2024.109980_b29
  article-title: Intelligent fault quantitative identification via the improved deep deterministic policy gradient (DDPG) algorithm accompanied with imbalanced sample
  publication-title: IEEE Trans Instrum Meas
– volume: 224
  year: 2023
  ident: 10.1016/j.ress.2024.109980_b53
  article-title: SR-HGN: Semantic-and relation-aware heterogeneous graph neural network
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2023.119982
– volume: 22
  start-page: 12209
  issue: 12
  year: 2022
  ident: 10.1016/j.ress.2024.109980_b14
  article-title: Data and decision level fusion-based crack detection for compressor blade using acoustic and vibration signal
  publication-title: IEEE Sens J
  doi: 10.1109/JSEN.2022.3173924
– volume: 94
  start-page: 112
  year: 2023
  ident: 10.1016/j.ress.2024.109980_b26
  article-title: Non-contact diagnosis for gearbox based on the fusion of multi-sensor heterogeneous data
  publication-title: Inf Fusion
  doi: 10.1016/j.inffus.2023.01.020
– volume: 648
  year: 2023
  ident: 10.1016/j.ress.2024.109980_b30
  article-title: Semi-supervised adversarial discriminative learning approach for intelligent fault diagnosis of wind turbine
  publication-title: Inform Sci
  doi: 10.1016/j.ins.2023.119496
– volume: 58
  year: 2023
  ident: 10.1016/j.ress.2024.109980_b8
  article-title: Intelligent framework for degradation monitoring, defect identification and estimation of remaining useful life (RUL) of bearing
  publication-title: Adv Eng Inform
  doi: 10.1016/j.aei.2023.102206
– volume: 70
  start-page: 1
  year: 2021
  ident: 10.1016/j.ress.2024.109980_b23
  article-title: A two-stage learning model for track-side acoustic bearing fault diagnosis
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/TIM.2021.3118090
– volume: 35
  start-page: 4954
  issue: 5
  year: 2022
  ident: 10.1016/j.ress.2024.109980_b38
  article-title: Knowledge enhanced graph neural networks for explainable recommendation
  publication-title: IEEE Trans Knowl Data Eng
– volume: 204
  year: 2023
  ident: 10.1016/j.ress.2024.109980_b11
  article-title: Filter bank property of direct fast iterative filtering and its applications
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2023.110755
– year: 2023
  ident: 10.1016/j.ress.2024.109980_b31
  article-title: A novel periodic cyclic sparse network with entire domain adaptation for deep transfer fault diagnosis of rolling bearing
  publication-title: IEEE Sens J
  doi: 10.1109/JSEN.2023.3274749
– volume: 126
  year: 2023
  ident: 10.1016/j.ress.2024.109980_b32
  article-title: Knowledge addition for improving the transfer learning from the laboratory to identify defects of hydraulic machinery
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2023.106756
– start-page: 1
  year: 2023
  ident: 10.1016/j.ress.2024.109980_b42
  article-title: Rotating machinery fault diagnosis based on feature extraction via an unsupervised graph neural network
  publication-title: Appl Intell
– volume: 77
  start-page: 81
  year: 2022
  ident: 10.1016/j.ress.2024.109980_b43
  article-title: PESA-Net: Permutation-equivariant split attention network for correspondence learning
  publication-title: Inf Fusion
  doi: 10.1016/j.inffus.2021.07.018
– volume: 260
  year: 2023
  ident: 10.1016/j.ress.2024.109980_b45
  article-title: Semi-supervised learning with pseudo-negative labels for image classification
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2022.110166
– volume: 236
  year: 2023
  ident: 10.1016/j.ress.2024.109980_b49
  article-title: Long short-term memory network with Bayesian optimization for health prognostics of lithium-ion batteries based on partial incremental capacity analysis
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2023.109288
– start-page: 228
  year: 2023
  ident: 10.1016/j.ress.2024.109980_b6
  article-title: Inter-shaft bearing fault diagnosis based on aero-engine system: A benchmarking dataset study
  publication-title: J Dyn Monit Diagn
– volume: 43
  start-page: 635
  year: 2019
  ident: 10.1016/j.ress.2024.109980_b18
  article-title: Classification of ball bearing faults using vibro-acoustic sensor data fusion
  publication-title: Exp Tech
  doi: 10.1007/s40799-019-00324-0
– volume: 22
  start-page: 22344
  issue: 23
  year: 2022
  ident: 10.1016/j.ress.2024.109980_b16
  article-title: Gear fault diagnosis under variable load conditions based on acoustic signals
  publication-title: IEEE Sens J
  doi: 10.1109/JSEN.2022.3214286
SSID ssj0004957
Score 2.4654334
Snippet Effective condition monitoring and fault diagnosis of rolling bearings, integral components of rotating machinery, are crucial for ensuring equipment...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 109980
SubjectTerms Acoustic and vibration signals
Deep learning
Graph neural networks
Intelligent diagnosis
Multi-source information fusion
Title Multi-sensor fusion fault diagnosis method of wind turbine bearing based on adaptive convergent viewable neural networks
URI https://dx.doi.org/10.1016/j.ress.2024.109980
Volume 245
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIryqDywobRJ7cTJWFVUBUQXqNQtuji2VITSqg_BxG_nLk6gSIiBMY5tOeeT7y7-7jvGrjFITkBjpKqSJPMkJMrLjJGeAalisL71Dd3oPo6j0UTeT8Npgw3qXBiCVVZnvzvTy9O6aulW0uwuZrPuEzkHMZX_luR4hMT4Sex1qNOdj2-YBwYAqi4nT72rxBmH8aKItkMzEKtSQtSQvxmnLYMzPGD7lafI-24xh6xhiiO2t8UfeMzey_RZb4Wh6HzJ7Yb-fHEL2MhzB6GbrbirEc3nlr9h_M3RxGAwbHiGKo6TcDJj-LbgkMOCzj5eAtEpJ3PN6d6Acqs40V7iYgoHGl-dsMnw9nkw8qpSCp5Gm7728NtMbtFeaRvJMkVQRNIC5BICMH6sNCQgImto44TII6lASF8LUDZDD0ecsmYxL8wZ46ENtAyVCE0PZIxry-IIAhvEupf5QvVaLKhlmOqKZ5zKXbymNaDsJSW5pyT31Mm9xW6-xiwcy8afvcN6a9IfupKiGfhj3Pk_x12wXXpyMMdL1lwvN-YKXZF11i51rc12-ncPo_EnpB7gZA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB2V9gAcEKsoqw_cUGhSO9sRIVBKlwsgcYsmiS0VobTqIvh8ZuqERUIcuMYZyxlbs8Tz3gBcUJIcY06ZahjHmaMwDp1Ma-VoVGGExjWu5hvd4ShIntT9s__cgJsaC8NllZXttzZ9Za2rJ51Km53peNx54OAg4vbfigMPX65Bi9mpVBNa171-MvqCR8aW8JM7yrNAhZ2xZV6c1F7xJEysFDM75G_-6ZvPuduGrSpYFNd2PTvQ0OUubH6jENyD9xWC1plTNjqZCbPkn1_CID0Uha2iG8-FbRMtJka8UQouyMtQPqxFRqecJhHsyWi0FFjglM2fWNWiMyxzIfjqgOFVgpkvaTGlrRuf78PT3e3jTeJU3RScnNz6wqFv04Uhl5WbQK1QgjJQBrFQ6KF2ozDHGGVgNO-dlEWgQpTKzSWGJqMgRx5As5yU-hCEb7xc-aH0dRdVRGvLogA940V5N3Nl2G2DV-swzSuqce548ZrWNWUvKes9Zb2nVu9tuPyUmVqijT_f9uutSX8cl5Q8wR9yR_-UO4f15HE4SAe9Uf8YNnjEVj2eQHMxW-pTikwW2Vl18j4AWMbjFQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-sensor+fusion+fault+diagnosis+method+of+wind+turbine+bearing+based+on+adaptive+convergent+viewable+neural+networks&rft.jtitle=Reliability+engineering+%26+system+safety&rft.au=Li%2C+Xinming&rft.au=Wang%2C+Yanxue&rft.au=Yao%2C+Jiachi&rft.au=Li%2C+Meng&rft.date=2024-05-01&rft.pub=Elsevier+Ltd&rft.issn=0951-8320&rft.eissn=1879-0836&rft.volume=245&rft_id=info:doi/10.1016%2Fj.ress.2024.109980&rft.externalDocID=S0951832024000553
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-8320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-8320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-8320&client=summon