Multi-sensor fusion fault diagnosis method of wind turbine bearing based on adaptive convergent viewable neural networks
Effective condition monitoring and fault diagnosis of rolling bearings, integral components of rotating machinery, are crucial for ensuring equipment reliability. However, existing diagnostic methods based on single signals perform poorly due to the detrimental effects of strong noise. Traditional d...
Saved in:
Published in | Reliability engineering & system safety Vol. 245; p. 109980 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.05.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 0951-8320 1879-0836 |
DOI | 10.1016/j.ress.2024.109980 |
Cover
Loading…
Abstract | Effective condition monitoring and fault diagnosis of rolling bearings, integral components of rotating machinery, are crucial for ensuring equipment reliability. However, existing diagnostic methods based on single signals perform poorly due to the detrimental effects of strong noise. Traditional deep learning approaches often neglect the interdependence between data samples when dealing with rolling bearing faults, thus constraining the accuracy and reliability of fault diagnosis. To tackle these challenges, this study introduces an intelligent diagnostic framework that integrates multi-source information at multiple levels, using acoustic and vibration signals (AVS) data and graph neural networks. Firstly, a data-level fusion method called Correlation Variance Contribution is proposed to effectively integrate vibration signals, addressing the issue of multi-source information integration. An Adaptive Convergent Viewable Graph (AcvGraph) is introduced to optimize the representation of original AVS data and fused vibration signals, improving the capturing of correlation relationships within the data and enhancing classification accuracy. Furthermore, an enhanced DiffPool method is utilized to downsample the graph-structured data, reducing feature dimensions while preserving crucial information. Finally, the framework combines and integrates feature vectors from diverse inputs to form global feature vectors, enabling the accurate classification of rolling bearing faults. Exhaustive experiments validate the effectiveness of the proposed framework in utilizing AVS data for detecting different types of faults. Additionally, rigorous comparisons with alternative intelligent diagnosis techniques substantiate the superiority and advancements of the proposed method.
•Developed an intelligent diagnostic framework with interpretability using graph neural networks.•Proposed CVC method for integrating vibration signals, improving fault classification accuracy.•Introduced AcvGraph algorithm for capturing correlations in time series data, improving recognition performance. |
---|---|
AbstractList | Effective condition monitoring and fault diagnosis of rolling bearings, integral components of rotating machinery, are crucial for ensuring equipment reliability. However, existing diagnostic methods based on single signals perform poorly due to the detrimental effects of strong noise. Traditional deep learning approaches often neglect the interdependence between data samples when dealing with rolling bearing faults, thus constraining the accuracy and reliability of fault diagnosis. To tackle these challenges, this study introduces an intelligent diagnostic framework that integrates multi-source information at multiple levels, using acoustic and vibration signals (AVS) data and graph neural networks. Firstly, a data-level fusion method called Correlation Variance Contribution is proposed to effectively integrate vibration signals, addressing the issue of multi-source information integration. An Adaptive Convergent Viewable Graph (AcvGraph) is introduced to optimize the representation of original AVS data and fused vibration signals, improving the capturing of correlation relationships within the data and enhancing classification accuracy. Furthermore, an enhanced DiffPool method is utilized to downsample the graph-structured data, reducing feature dimensions while preserving crucial information. Finally, the framework combines and integrates feature vectors from diverse inputs to form global feature vectors, enabling the accurate classification of rolling bearing faults. Exhaustive experiments validate the effectiveness of the proposed framework in utilizing AVS data for detecting different types of faults. Additionally, rigorous comparisons with alternative intelligent diagnosis techniques substantiate the superiority and advancements of the proposed method.
•Developed an intelligent diagnostic framework with interpretability using graph neural networks.•Proposed CVC method for integrating vibration signals, improving fault classification accuracy.•Introduced AcvGraph algorithm for capturing correlations in time series data, improving recognition performance. |
ArticleNumber | 109980 |
Author | Wang, Yanxue Yao, Jiachi Li, Meng Li, Xinming Gao, Zhikang |
Author_xml | – sequence: 1 givenname: Xinming surname: Li fullname: Li, Xinming organization: School of Mechanical-Electronic and Vehicle Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China – sequence: 2 givenname: Yanxue surname: Wang fullname: Wang, Yanxue email: yan.xue.wang@gmail.com organization: School of Mechanical-Electronic and Vehicle Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China – sequence: 3 givenname: Jiachi surname: Yao fullname: Yao, Jiachi organization: School of Mechanical-Electronic and Vehicle Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China – sequence: 4 givenname: Meng surname: Li fullname: Li, Meng organization: School of Mechanical-Electronic and Vehicle Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China – sequence: 5 givenname: Zhikang surname: Gao fullname: Gao, Zhikang organization: School of Mechanical-Electronic and Vehicle Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China |
BookMark | eNp9kM1KAzEUhYNUsFZfwFVeYGoymc4PuJHiH1Tc6DrcSW5q6jQpSdrq25tSVy66OnAu34XvXJKR8w4JueFsyhmvb1fTgDFOS1ZWuei6lp2RMW-brmCtqEdkzLoZL1pRsgtyGeOKMVZ1s2ZMvl-3Q7JFRBd9oGYbrXfUQC6ptrB0PtpI15g-vabe0L11mqZt6K1D2iME65a0h4j56iho2CS7Q6q822FYokt0Z3EP_YDU4TbAkCPtffiKV-TcwBDx-i8n5OPx4X3-XCzenl7m94tClXyWimyC2nDBlKkr3s3qrFMZAF0BB2Rto6ADURvsQDEhdF01ICqmBDSmLxshJqQ9_lXBxxjQSGUTpKyZAthBciYPC8qVPCwoDwvK44IZLf-hm2DXEH5OQ3dHCLNUlg8yKotOobYBVZLa21P4L0LTkB8 |
CitedBy_id | crossref_primary_10_1016_j_compind_2024_104214 crossref_primary_10_1016_j_measurement_2024_116505 crossref_primary_10_1016_j_measurement_2024_115910 crossref_primary_10_1016_j_ress_2024_110362 crossref_primary_10_1016_j_ress_2024_110363 crossref_primary_10_32604_cmes_2024_055633 crossref_primary_10_1016_j_ress_2024_110464 crossref_primary_10_1016_j_engappai_2024_109358 crossref_primary_10_1109_JIOT_2024_3463718 crossref_primary_10_1016_j_measurement_2024_116506 crossref_primary_10_1088_1361_6501_ad99f4 crossref_primary_10_3390_app142411910 crossref_primary_10_1016_j_knosys_2024_112787 crossref_primary_10_1016_j_ress_2025_110863 crossref_primary_10_1088_1361_6501_ad91d7 crossref_primary_10_1177_14759217241296804 crossref_primary_10_1002_msd2_12132 crossref_primary_10_1016_j_ress_2025_110847 crossref_primary_10_1080_23080477_2024_2364537 crossref_primary_10_1088_1361_6501_ad8cfe crossref_primary_10_1016_j_ress_2024_110328 crossref_primary_10_1016_j_ress_2024_110746 crossref_primary_10_1109_JSEN_2024_3502714 crossref_primary_10_1016_j_eswa_2025_126533 crossref_primary_10_3390_math12132064 crossref_primary_10_1177_14759217241261155 crossref_primary_10_3390_s24165433 crossref_primary_10_1016_j_measurement_2024_115726 crossref_primary_10_1088_1361_6501_ad8024 crossref_primary_10_1016_j_aei_2024_102568 crossref_primary_10_3390_act13100401 crossref_primary_10_1088_1361_6501_ad67f6 crossref_primary_10_1088_1361_6501_ad9f89 |
Cites_doi | 10.1109/JSEN.2021.3086865 10.1016/j.ymssp.2021.108653 10.1016/j.ymssp.2023.110815 10.1016/j.ress.2023.109333 10.1016/j.inffus.2021.03.008 10.1177/09544089211058019 10.1016/j.aei.2023.102075 10.1088/1361-6501/ac5deb 10.1109/TII.2022.3194659 10.1016/j.knosys.2022.110212 10.1016/j.knosys.2023.110334 10.1016/j.est.2023.108181 10.1007/s42417-022-00468-1 10.1177/1550147720923476 10.1016/j.knosys.2021.107980 10.1016/j.ress.2022.108648 10.1016/j.eswa.2022.119057 10.1109/TVT.2023.3239054 10.1109/JAS.2021.1004311 10.1016/j.ymssp.2021.108764 10.1016/j.measurement.2020.107572 10.1016/j.engfailanal.2022.106515 10.1007/s10489-023-04737-8 10.1016/j.knosys.2022.108665 10.1016/j.isatra.2019.08.012 10.1088/1361-6501/ac9cfa 10.1109/JSEN.2021.3126864 10.1007/s10489-021-02587-w 10.1109/JSEN.2023.3303893 10.1016/j.ress.2023.109768 10.3390/app12157366 10.1016/j.knosys.2020.106214 10.1109/JSEN.2022.3176059 10.1016/j.eswa.2023.119982 10.1109/JSEN.2022.3173924 10.1016/j.inffus.2023.01.020 10.1016/j.ins.2023.119496 10.1016/j.aei.2023.102206 10.1109/TIM.2021.3118090 10.1016/j.ymssp.2023.110755 10.1109/JSEN.2023.3274749 10.1016/j.engappai.2023.106756 10.1016/j.inffus.2021.07.018 10.1016/j.knosys.2022.110166 10.1016/j.ress.2023.109288 10.1007/s40799-019-00324-0 10.1109/JSEN.2022.3214286 |
ContentType | Journal Article |
Copyright | 2024 |
Copyright_xml | – notice: 2024 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ress.2024.109980 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-0836 |
ExternalDocumentID | 10_1016_j_ress_2024_109980 S0951832024000553 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1~. 1~5 29P 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN 9JO AABNK AACTN AAEDT AAEDW AAFJI AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABJNI ABMAC ABMMH ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV AKRWK AKYCK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOMHK ASPBG AVARZ AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PRBVW Q38 R2- RIG ROL RPZ SDF SDG SES SET SEW SPC SPCBC SSB SSO SST SSZ T5K TN5 WUQ XPP ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c215t-980edf130cf6419568364faad4a1ae087ca9a36fe9ac033d647a340c3a7fb2733 |
IEDL.DBID | .~1 |
ISSN | 0951-8320 |
IngestDate | Tue Jul 01 00:45:14 EDT 2025 Thu Apr 24 22:50:33 EDT 2025 Sat Apr 13 16:38:38 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning Graph neural networks Acoustic and vibration signals Multi-source information fusion Intelligent diagnosis |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c215t-980edf130cf6419568364faad4a1ae087ca9a36fe9ac033d647a340c3a7fb2733 |
ParticipantIDs | crossref_citationtrail_10_1016_j_ress_2024_109980 crossref_primary_10_1016_j_ress_2024_109980 elsevier_sciencedirect_doi_10_1016_j_ress_2024_109980 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2024 2024-05-00 |
PublicationDateYYYYMMDD | 2024-05-01 |
PublicationDate_xml | – month: 05 year: 2024 text: May 2024 |
PublicationDecade | 2020 |
PublicationTitle | Reliability engineering & system safety |
PublicationYear | 2024 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Si, Shi, Han, Chen, Zheng (b4) 2021; 22 Prasad, Kolluri, Kumar, Rajasekhar (b13) 2021 Hou, Yi, Jin, Gui, Sui, Zhang (b6) 2023 Meng, Geng, Han (b49) 2023; 236 Liao, Hu, Li, Du, Peng (b54) 2022; 246 Iqbal, Madan (b19) 2022; 10 Su, Jiang, Zhang, Feng, Cui, Qin (b28) 2023 Liu, Wang, Liang, Zhu, Qiu, Yin (b37) 2021; 21 Han, Xie, Pei (b30) 2023; 648 Wang, Ding, He, Li, Li, Tang (b10) 2023 Pacheco-Chérrez, Fortoul-Díaz, Cortés-Santacruz, Aloso-Valerdi, Ibarra-Zarate (b15) 2022; 139 Cui, Zhu, Feng, He, Chen (b29) 2023; 72 Zhang, Chen, Chen, He, Li, Zhou (b1) 2022; 239 Cao, Li, Zhang, Luo, Li, Huang (b21) 2023; 261 Ju, Li, Sharma, Zhang (b52) 2023 Xu, Wang, Li, Qian (b40) 2022; 12 Liang, Yu, Wang, Xu, Tian (b50) 2023; 57 Chen, Yao, Gui, Yang (b16) 2022; 22 Feng, Bao, Xu, Zhang, Hou, Steyskal (b42) 2023 Kumar, Gandhi, Tang, Sun, Xiang (b2) 2023 Lyu, Wu, Lai, Yang, Li, Zhou (b38) 2022; 35 Wang, Yu, Li, Shen, Yao (b53) 2023; 224 Dai, Wang, Wang, Liu (b9) 2022; 34 Hu, Wang, Gu (b47) 2020; 209 Zhong, Xiao, Wang, Wei, Zhang (b43) 2022; 77 Ma, Shen, Song, Xu (b17) 2023; 204 Kumar, Glowacz, Tang, Xiang (b32) 2023; 126 Qiu, Niu, Zhang (b39) 2023; 265 Xu, Xiao, Hao, Dong, Qiu, Peng (b45) 2023; 260 Lu, Cui, Hu, Yin (b25) 2023; 213 Liu, Wu, Teng, Liu, Lu, Ju (b23) 2021; 70 Meng, Li, Yin, Pan (b12) 2020; 156 Gunerkar, Jalan (b18) 2019; 43 Li, Zhou, Li, Sun, Yan, Chen (b41) 2022; 168 Sun, Gao, Shen, Liu, Liang, Du (b36) 2022; 19 Liang, Kintak, Ning, Tiwari, Nowaczyk, Kumar (b35) 2023 Shao, Lin, Zhang, Galar, Kumar (b24) 2021; 74 Bui, Cho, Yi (b33) 2022; 52 Yao, Zheng, Xiao, Zhang, Zhang, Gong (b46) 2023; 72 Goktas (b44) 2022; 22 Han, Liu, Yang, Jiang (b3) 2020; 97 Kumar, Kumar, Tang, Xiang (b5) 2024; 242 Xing, Yi, Lin, Zhou (b31) 2023 Song, Ma, Li, Xu (b14) 2022; 22 Qiang, Jieying, Junming, Ying, Shilei (b27) 2020; 16 Liu, Chen, Wei, Wang, Li (b48) 2022 Han, Li (b7) 2022; 226 Waikhom, Patgiri, Singh (b34) 2023; 53 Liu, Yan, Deng, Li, Ye, Fan (b55) 2021; 9 Chen, Li, Chen, Hai, Zhou, Chen (b11) 2023; 204 Zhang, Gao, Shi (b20) 2022; 33 Sun, Li, Jia, Feng, Liu (b26) 2023; 94 Kumar, Parkash, Tang, Xiang (b8) 2023; 58 He, Su, Zio, Peng, Fan, Yang (b51) 2023; 237 Hebda-Sobkowicz, Zimroz, Wyłomańska, Antoni (b22) 2022; 170 Waikhom (10.1016/j.ress.2024.109980_b34) 2023; 53 Su (10.1016/j.ress.2024.109980_b28) 2023 Ma (10.1016/j.ress.2024.109980_b17) 2023; 204 Pacheco-Chérrez (10.1016/j.ress.2024.109980_b15) 2022; 139 Liang (10.1016/j.ress.2024.109980_b35) 2023 Qiu (10.1016/j.ress.2024.109980_b39) 2023; 265 Liao (10.1016/j.ress.2024.109980_b54) 2022; 246 Kumar (10.1016/j.ress.2024.109980_b8) 2023; 58 Ju (10.1016/j.ress.2024.109980_b52) 2023 Liu (10.1016/j.ress.2024.109980_b55) 2021; 9 Song (10.1016/j.ress.2024.109980_b14) 2022; 22 Yao (10.1016/j.ress.2024.109980_b46) 2023; 72 Wang (10.1016/j.ress.2024.109980_b53) 2023; 224 Gunerkar (10.1016/j.ress.2024.109980_b18) 2019; 43 Han (10.1016/j.ress.2024.109980_b7) 2022; 226 Meng (10.1016/j.ress.2024.109980_b49) 2023; 236 Xu (10.1016/j.ress.2024.109980_b45) 2023; 260 Xing (10.1016/j.ress.2024.109980_b31) 2023 Xu (10.1016/j.ress.2024.109980_b40) 2022; 12 Han (10.1016/j.ress.2024.109980_b30) 2023; 648 Sun (10.1016/j.ress.2024.109980_b36) 2022; 19 Han (10.1016/j.ress.2024.109980_b3) 2020; 97 Liu (10.1016/j.ress.2024.109980_b37) 2021; 21 Cao (10.1016/j.ress.2024.109980_b21) 2023; 261 Bui (10.1016/j.ress.2024.109980_b33) 2022; 52 Iqbal (10.1016/j.ress.2024.109980_b19) 2022; 10 Liu (10.1016/j.ress.2024.109980_b23) 2021; 70 Meng (10.1016/j.ress.2024.109980_b12) 2020; 156 Feng (10.1016/j.ress.2024.109980_b42) 2023 Qiang (10.1016/j.ress.2024.109980_b27) 2020; 16 Hou (10.1016/j.ress.2024.109980_b6) 2023 Hu (10.1016/j.ress.2024.109980_b47) 2020; 209 He (10.1016/j.ress.2024.109980_b51) 2023; 237 Lyu (10.1016/j.ress.2024.109980_b38) 2022; 35 Lu (10.1016/j.ress.2024.109980_b25) 2023; 213 Liang (10.1016/j.ress.2024.109980_b50) 2023; 57 Li (10.1016/j.ress.2024.109980_b41) 2022; 168 Si (10.1016/j.ress.2024.109980_b4) 2021; 22 Kumar (10.1016/j.ress.2024.109980_b32) 2023; 126 Zhang (10.1016/j.ress.2024.109980_b1) 2022; 239 Chen (10.1016/j.ress.2024.109980_b11) 2023; 204 Shao (10.1016/j.ress.2024.109980_b24) 2021; 74 Zhong (10.1016/j.ress.2024.109980_b43) 2022; 77 Goktas (10.1016/j.ress.2024.109980_b44) 2022; 22 Kumar (10.1016/j.ress.2024.109980_b2) 2023 Kumar (10.1016/j.ress.2024.109980_b5) 2024; 242 Chen (10.1016/j.ress.2024.109980_b16) 2022; 22 Cui (10.1016/j.ress.2024.109980_b29) 2023; 72 Hebda-Sobkowicz (10.1016/j.ress.2024.109980_b22) 2022; 170 Prasad (10.1016/j.ress.2024.109980_b13) 2021 Sun (10.1016/j.ress.2024.109980_b26) 2023; 94 Wang (10.1016/j.ress.2024.109980_b10) 2023 Dai (10.1016/j.ress.2024.109980_b9) 2022; 34 Zhang (10.1016/j.ress.2024.109980_b20) 2022; 33 Liu (10.1016/j.ress.2024.109980_b48) 2022 |
References_xml | – volume: 204 year: 2023 ident: b17 article-title: A vibro-acoustic signals hybrid fusion model for blade crack detection publication-title: Mech Syst Signal Process – volume: 58 year: 2023 ident: b8 article-title: Intelligent framework for degradation monitoring, defect identification and estimation of remaining useful life (RUL) of bearing publication-title: Adv Eng Inform – volume: 72 start-page: 1 year: 2023 end-page: 13 ident: b29 article-title: Intelligent fault quantitative identification via the improved deep deterministic policy gradient (DDPG) algorithm accompanied with imbalanced sample publication-title: IEEE Trans Instrum Meas – volume: 265 year: 2023 ident: b39 article-title: Research on the multi-source causal feature selection method based on multiple causal relevance publication-title: Knowl-Based Syst – volume: 648 year: 2023 ident: b30 article-title: Semi-supervised adversarial discriminative learning approach for intelligent fault diagnosis of wind turbine publication-title: Inform Sci – volume: 22 start-page: 22344 year: 2022 end-page: 22355 ident: b16 article-title: Gear fault diagnosis under variable load conditions based on acoustic signals publication-title: IEEE Sens J – volume: 213 year: 2023 ident: b25 article-title: Multi-view and multi-level network for fault diagnosis accommodating feature transferability publication-title: Expert Syst Appl – volume: 70 start-page: 1 year: 2021 end-page: 12 ident: b23 article-title: A two-stage learning model for track-side acoustic bearing fault diagnosis publication-title: IEEE Trans Instrum Meas – start-page: 6314 year: 2023 end-page: 6341 ident: b52 article-title: Generalization in graph neural networks: Improved PAC-Bayesian bounds on graph diffusion publication-title: International conference on artificial intelligence and statistics – volume: 43 start-page: 635 year: 2019 end-page: 643 ident: b18 article-title: Classification of ball bearing faults using vibro-acoustic sensor data fusion publication-title: Exp Tech – volume: 53 start-page: 23166 year: 2023 end-page: 23178 ident: b34 article-title: Dynamic temporal position observant graph neural network for traffic forecasting publication-title: Appl Intell – volume: 156 year: 2020 ident: b12 article-title: Remaining useful life prediction of rolling bearing using fractal theory publication-title: Measurement – volume: 12 start-page: 7366 year: 2022 ident: b40 article-title: Fault diagnosis method based on time series in autonomous unmanned system publication-title: Appl Sci – volume: 242 year: 2024 ident: b5 article-title: A comprehensive study on developing an intelligent framework for identification and quantitative evaluation of the bearing defect size publication-title: Reliab Eng Syst Saf – volume: 260 year: 2023 ident: b45 article-title: Semi-supervised learning with pseudo-negative labels for image classification publication-title: Knowl-Based Syst – volume: 237 year: 2023 ident: b51 article-title: A systematic method of remaining useful life estimation based on physics-informed graph neural networks with multisensor data publication-title: Reliab Eng Syst Saf – start-page: 1 year: 2023 end-page: 16 ident: b42 article-title: Rotating machinery fault diagnosis based on feature extraction via an unsupervised graph neural network publication-title: Appl Intell – volume: 19 start-page: 382 year: 2022 end-page: 393 ident: b36 article-title: Separated graph neural networks for recommendation systems publication-title: IEEE Trans Ind Inf – year: 2021 ident: b13 article-title: Development of multi sensor fusion based DAQ for in-process TCMS: Experimental and empirical analysis publication-title: Proc Inst Mech Eng Part E: J Process Mech Eng – volume: 74 start-page: 65 year: 2021 end-page: 76 ident: b24 article-title: A novel approach of multisensory fusion to collaborative fault diagnosis in maintenance publication-title: Inf Fusion – volume: 94 start-page: 112 year: 2023 end-page: 125 ident: b26 article-title: Non-contact diagnosis for gearbox based on the fusion of multi-sensor heterogeneous data publication-title: Inf Fusion – volume: 16 year: 2020 ident: b27 article-title: Gearbox fault diagnosis using data fusion based on self-organizing map neural network publication-title: Int J Distrib Sens Netw – volume: 21 start-page: 25171 year: 2021 end-page: 25180 ident: b37 article-title: High-quality paths: Multi-view attention neural network with high-quality paths for top-N recommendation publication-title: IEEE Sens J – volume: 22 start-page: 13602 year: 2022 end-page: 13611 ident: b44 article-title: Evaluation and classification of double bar breakages through three-axes vibration sensor in induction motors publication-title: IEEE Sens J – start-page: 228 year: 2023 end-page: 242 ident: b6 article-title: Inter-shaft bearing fault diagnosis based on aero-engine system: A benchmarking dataset study publication-title: J Dyn Monit Diagn – volume: 33 year: 2022 ident: b20 article-title: Bearing fault diagnosis method based on multi-source heterogeneous information fusion publication-title: Meas Sci Technol – volume: 34 year: 2022 ident: b9 article-title: Element analysis and its application in rotating machinery fault diagnosis publication-title: Meas Sci Technol – year: 2023 ident: b28 article-title: Evidential deep learning-based adversarial network for universal cross-domain fault diagnosis of rotary machinery publication-title: IEEE Sens J – volume: 224 year: 2023 ident: b53 article-title: SR-HGN: Semantic-and relation-aware heterogeneous graph neural network publication-title: Expert Syst Appl – year: 2022 ident: b48 article-title: Braking sensor and actuator fault diagnosis with combined model-based and data-driven pressure estimation methods publication-title: IEEE Trans Ind Electron – volume: 204 year: 2023 ident: b11 article-title: Filter bank property of direct fast iterative filtering and its applications publication-title: Mech Syst Signal Process – volume: 97 start-page: 269 year: 2020 end-page: 281 ident: b3 article-title: Deep transfer network with joint distribution adaptation: A new intelligent fault diagnosis framework for industry application publication-title: ISA Trans – volume: 57 year: 2023 ident: b50 article-title: Fault transfer diagnosis of rolling bearings across multiple working conditions via subdomain adaptation and improved vision transformer network publication-title: Adv Eng Inform – volume: 168 year: 2022 ident: b41 article-title: The emerging graph neural networks for intelligent fault diagnostics and prognostics: A guideline and a benchmark study publication-title: Mech Syst Signal Process – volume: 22 start-page: 510 year: 2021 end-page: 519 ident: b4 article-title: Learn generalized features via multi-source domain adaptation: Intelligent diagnosis under variable/constant machine conditions publication-title: IEEE Sens J – volume: 10 start-page: 1613 year: 2022 end-page: 1621 ident: b19 article-title: CNC machine-bearing fault detection based on convolutional neural network using vibration and acoustic signal publication-title: J Vib Eng Technol – volume: 239 year: 2022 ident: b1 article-title: A multi-module generative adversarial network augmented with adaptive decoupling strategy for intelligent fault diagnosis of machines with small sample publication-title: Knowl-Based Syst – volume: 226 year: 2022 ident: b7 article-title: Out-of-distribution detection-assisted trustworthy machinery fault diagnosis approach with uncertainty-aware deep ensembles publication-title: Reliab Eng Syst Saf – volume: 72 year: 2023 ident: b46 article-title: An intelligent fault diagnosis method for lithium-ion battery pack based on empirical mode decomposition and convolutional neural network publication-title: J Energy Storage – year: 2023 ident: b35 article-title: Semantics-aware dynamic graph convolutional network for traffic flow forecasting publication-title: IEEE Trans Veh Technol – volume: 52 start-page: 2763 year: 2022 end-page: 2774 ident: b33 article-title: Spatial-temporal graph neural network for traffic forecasting: An overview and open research issues publication-title: Appl Intell – volume: 126 year: 2023 ident: b32 article-title: Knowledge addition for improving the transfer learning from the laboratory to identify defects of hydraulic machinery publication-title: Eng Appl Artif Intell – volume: 261 year: 2023 ident: b21 article-title: Cross-attention-based multi-sensing signals fusion for penetration state monitoring during laser welding of aluminum alloy publication-title: Knowl-Based Syst – year: 2023 ident: b2 article-title: Latest innovations in the field of condition-based maintenance of rotatory machinery: A review publication-title: Meas Sci Technol – volume: 35 start-page: 4954 year: 2022 end-page: 4968 ident: b38 article-title: Knowledge enhanced graph neural networks for explainable recommendation publication-title: IEEE Trans Knowl Data Eng – volume: 236 year: 2023 ident: b49 article-title: Long short-term memory network with Bayesian optimization for health prognostics of lithium-ion batteries based on partial incremental capacity analysis publication-title: Reliab Eng Syst Saf – volume: 22 start-page: 12209 year: 2022 end-page: 12218 ident: b14 article-title: Data and decision level fusion-based crack detection for compressor blade using acoustic and vibration signal publication-title: IEEE Sens J – year: 2023 ident: b31 article-title: A novel periodic cyclic sparse network with entire domain adaptation for deep transfer fault diagnosis of rolling bearing publication-title: IEEE Sens J – volume: 9 start-page: 205 year: 2021 end-page: 234 ident: b55 article-title: Sampling methods for efficient training of graph convolutional networks: A survey publication-title: IEEE/CAA J Autom Sin – volume: 139 year: 2022 ident: b15 article-title: Bearing fault detection with vibration and acoustic signals: Comparison among different machine leaning classification methods publication-title: Eng Fail Anal – volume: 170 year: 2022 ident: b22 article-title: Infogram performance analysis and its enhancement for bearings diagnostics in presence of non-Gaussian noise publication-title: Mech Syst Signal Process – volume: 246 year: 2022 ident: b54 article-title: Deep linear graph attention model for attributed graph clustering publication-title: Knowl-Based Syst – volume: 77 start-page: 81 year: 2022 end-page: 89 ident: b43 article-title: PESA-Net: Permutation-equivariant split attention network for correspondence learning publication-title: Inf Fusion – year: 2023 ident: b10 article-title: Shift-invariant sparse filtering for bearing weak fault signal denoising publication-title: IEEE Sens J – volume: 209 year: 2020 ident: b47 article-title: Cross-domain intelligent fault classification of bearings based on tensor-aligned invariant subspace learning and two-dimensional convolutional neural networks publication-title: Knowl-Based Syst – volume: 21 start-page: 25171 issue: 22 year: 2021 ident: 10.1016/j.ress.2024.109980_b37 article-title: High-quality paths: Multi-view attention neural network with high-quality paths for top-N recommendation publication-title: IEEE Sens J doi: 10.1109/JSEN.2021.3086865 – year: 2022 ident: 10.1016/j.ress.2024.109980_b48 article-title: Braking sensor and actuator fault diagnosis with combined model-based and data-driven pressure estimation methods publication-title: IEEE Trans Ind Electron – volume: 168 year: 2022 ident: 10.1016/j.ress.2024.109980_b41 article-title: The emerging graph neural networks for intelligent fault diagnostics and prognostics: A guideline and a benchmark study publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2021.108653 – volume: 204 year: 2023 ident: 10.1016/j.ress.2024.109980_b17 article-title: A vibro-acoustic signals hybrid fusion model for blade crack detection publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2023.110815 – volume: 237 year: 2023 ident: 10.1016/j.ress.2024.109980_b51 article-title: A systematic method of remaining useful life estimation based on physics-informed graph neural networks with multisensor data publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2023.109333 – volume: 74 start-page: 65 year: 2021 ident: 10.1016/j.ress.2024.109980_b24 article-title: A novel approach of multisensory fusion to collaborative fault diagnosis in maintenance publication-title: Inf Fusion doi: 10.1016/j.inffus.2021.03.008 – year: 2021 ident: 10.1016/j.ress.2024.109980_b13 article-title: Development of multi sensor fusion based DAQ for in-process TCMS: Experimental and empirical analysis publication-title: Proc Inst Mech Eng Part E: J Process Mech Eng doi: 10.1177/09544089211058019 – volume: 57 year: 2023 ident: 10.1016/j.ress.2024.109980_b50 article-title: Fault transfer diagnosis of rolling bearings across multiple working conditions via subdomain adaptation and improved vision transformer network publication-title: Adv Eng Inform doi: 10.1016/j.aei.2023.102075 – volume: 33 issue: 7 year: 2022 ident: 10.1016/j.ress.2024.109980_b20 article-title: Bearing fault diagnosis method based on multi-source heterogeneous information fusion publication-title: Meas Sci Technol doi: 10.1088/1361-6501/ac5deb – volume: 19 start-page: 382 issue: 1 year: 2022 ident: 10.1016/j.ress.2024.109980_b36 article-title: Separated graph neural networks for recommendation systems publication-title: IEEE Trans Ind Inf doi: 10.1109/TII.2022.3194659 – volume: 261 year: 2023 ident: 10.1016/j.ress.2024.109980_b21 article-title: Cross-attention-based multi-sensing signals fusion for penetration state monitoring during laser welding of aluminum alloy publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2022.110212 – volume: 265 year: 2023 ident: 10.1016/j.ress.2024.109980_b39 article-title: Research on the multi-source causal feature selection method based on multiple causal relevance publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2023.110334 – volume: 72 year: 2023 ident: 10.1016/j.ress.2024.109980_b46 article-title: An intelligent fault diagnosis method for lithium-ion battery pack based on empirical mode decomposition and convolutional neural network publication-title: J Energy Storage doi: 10.1016/j.est.2023.108181 – volume: 10 start-page: 1613 issue: 5 year: 2022 ident: 10.1016/j.ress.2024.109980_b19 article-title: CNC machine-bearing fault detection based on convolutional neural network using vibration and acoustic signal publication-title: J Vib Eng Technol doi: 10.1007/s42417-022-00468-1 – volume: 16 issue: 5 year: 2020 ident: 10.1016/j.ress.2024.109980_b27 article-title: Gearbox fault diagnosis using data fusion based on self-organizing map neural network publication-title: Int J Distrib Sens Netw doi: 10.1177/1550147720923476 – volume: 239 year: 2022 ident: 10.1016/j.ress.2024.109980_b1 article-title: A multi-module generative adversarial network augmented with adaptive decoupling strategy for intelligent fault diagnosis of machines with small sample publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2021.107980 – volume: 226 year: 2022 ident: 10.1016/j.ress.2024.109980_b7 article-title: Out-of-distribution detection-assisted trustworthy machinery fault diagnosis approach with uncertainty-aware deep ensembles publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2022.108648 – volume: 213 year: 2023 ident: 10.1016/j.ress.2024.109980_b25 article-title: Multi-view and multi-level network for fault diagnosis accommodating feature transferability publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2022.119057 – year: 2023 ident: 10.1016/j.ress.2024.109980_b35 article-title: Semantics-aware dynamic graph convolutional network for traffic flow forecasting publication-title: IEEE Trans Veh Technol doi: 10.1109/TVT.2023.3239054 – volume: 9 start-page: 205 issue: 2 year: 2021 ident: 10.1016/j.ress.2024.109980_b55 article-title: Sampling methods for efficient training of graph convolutional networks: A survey publication-title: IEEE/CAA J Autom Sin doi: 10.1109/JAS.2021.1004311 – year: 2023 ident: 10.1016/j.ress.2024.109980_b2 article-title: Latest innovations in the field of condition-based maintenance of rotatory machinery: A review publication-title: Meas Sci Technol – volume: 170 year: 2022 ident: 10.1016/j.ress.2024.109980_b22 article-title: Infogram performance analysis and its enhancement for bearings diagnostics in presence of non-Gaussian noise publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2021.108764 – volume: 156 year: 2020 ident: 10.1016/j.ress.2024.109980_b12 article-title: Remaining useful life prediction of rolling bearing using fractal theory publication-title: Measurement doi: 10.1016/j.measurement.2020.107572 – volume: 139 year: 2022 ident: 10.1016/j.ress.2024.109980_b15 article-title: Bearing fault detection with vibration and acoustic signals: Comparison among different machine leaning classification methods publication-title: Eng Fail Anal doi: 10.1016/j.engfailanal.2022.106515 – volume: 53 start-page: 23166 issue: 20 year: 2023 ident: 10.1016/j.ress.2024.109980_b34 article-title: Dynamic temporal position observant graph neural network for traffic forecasting publication-title: Appl Intell doi: 10.1007/s10489-023-04737-8 – volume: 246 year: 2022 ident: 10.1016/j.ress.2024.109980_b54 article-title: Deep linear graph attention model for attributed graph clustering publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2022.108665 – volume: 97 start-page: 269 year: 2020 ident: 10.1016/j.ress.2024.109980_b3 article-title: Deep transfer network with joint distribution adaptation: A new intelligent fault diagnosis framework for industry application publication-title: ISA Trans doi: 10.1016/j.isatra.2019.08.012 – volume: 34 issue: 2 year: 2022 ident: 10.1016/j.ress.2024.109980_b9 article-title: Element analysis and its application in rotating machinery fault diagnosis publication-title: Meas Sci Technol doi: 10.1088/1361-6501/ac9cfa – volume: 22 start-page: 510 issue: 1 year: 2021 ident: 10.1016/j.ress.2024.109980_b4 article-title: Learn generalized features via multi-source domain adaptation: Intelligent diagnosis under variable/constant machine conditions publication-title: IEEE Sens J doi: 10.1109/JSEN.2021.3126864 – year: 2023 ident: 10.1016/j.ress.2024.109980_b10 article-title: Shift-invariant sparse filtering for bearing weak fault signal denoising publication-title: IEEE Sens J – volume: 52 start-page: 2763 issue: 3 year: 2022 ident: 10.1016/j.ress.2024.109980_b33 article-title: Spatial-temporal graph neural network for traffic forecasting: An overview and open research issues publication-title: Appl Intell doi: 10.1007/s10489-021-02587-w – year: 2023 ident: 10.1016/j.ress.2024.109980_b28 article-title: Evidential deep learning-based adversarial network for universal cross-domain fault diagnosis of rotary machinery publication-title: IEEE Sens J doi: 10.1109/JSEN.2023.3303893 – start-page: 6314 year: 2023 ident: 10.1016/j.ress.2024.109980_b52 article-title: Generalization in graph neural networks: Improved PAC-Bayesian bounds on graph diffusion – volume: 242 year: 2024 ident: 10.1016/j.ress.2024.109980_b5 article-title: A comprehensive study on developing an intelligent framework for identification and quantitative evaluation of the bearing defect size publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2023.109768 – volume: 12 start-page: 7366 issue: 15 year: 2022 ident: 10.1016/j.ress.2024.109980_b40 article-title: Fault diagnosis method based on time series in autonomous unmanned system publication-title: Appl Sci doi: 10.3390/app12157366 – volume: 209 year: 2020 ident: 10.1016/j.ress.2024.109980_b47 article-title: Cross-domain intelligent fault classification of bearings based on tensor-aligned invariant subspace learning and two-dimensional convolutional neural networks publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2020.106214 – volume: 22 start-page: 13602 issue: 13 year: 2022 ident: 10.1016/j.ress.2024.109980_b44 article-title: Evaluation and classification of double bar breakages through three-axes vibration sensor in induction motors publication-title: IEEE Sens J doi: 10.1109/JSEN.2022.3176059 – volume: 72 start-page: 1 year: 2023 ident: 10.1016/j.ress.2024.109980_b29 article-title: Intelligent fault quantitative identification via the improved deep deterministic policy gradient (DDPG) algorithm accompanied with imbalanced sample publication-title: IEEE Trans Instrum Meas – volume: 224 year: 2023 ident: 10.1016/j.ress.2024.109980_b53 article-title: SR-HGN: Semantic-and relation-aware heterogeneous graph neural network publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2023.119982 – volume: 22 start-page: 12209 issue: 12 year: 2022 ident: 10.1016/j.ress.2024.109980_b14 article-title: Data and decision level fusion-based crack detection for compressor blade using acoustic and vibration signal publication-title: IEEE Sens J doi: 10.1109/JSEN.2022.3173924 – volume: 94 start-page: 112 year: 2023 ident: 10.1016/j.ress.2024.109980_b26 article-title: Non-contact diagnosis for gearbox based on the fusion of multi-sensor heterogeneous data publication-title: Inf Fusion doi: 10.1016/j.inffus.2023.01.020 – volume: 648 year: 2023 ident: 10.1016/j.ress.2024.109980_b30 article-title: Semi-supervised adversarial discriminative learning approach for intelligent fault diagnosis of wind turbine publication-title: Inform Sci doi: 10.1016/j.ins.2023.119496 – volume: 58 year: 2023 ident: 10.1016/j.ress.2024.109980_b8 article-title: Intelligent framework for degradation monitoring, defect identification and estimation of remaining useful life (RUL) of bearing publication-title: Adv Eng Inform doi: 10.1016/j.aei.2023.102206 – volume: 70 start-page: 1 year: 2021 ident: 10.1016/j.ress.2024.109980_b23 article-title: A two-stage learning model for track-side acoustic bearing fault diagnosis publication-title: IEEE Trans Instrum Meas doi: 10.1109/TIM.2021.3118090 – volume: 35 start-page: 4954 issue: 5 year: 2022 ident: 10.1016/j.ress.2024.109980_b38 article-title: Knowledge enhanced graph neural networks for explainable recommendation publication-title: IEEE Trans Knowl Data Eng – volume: 204 year: 2023 ident: 10.1016/j.ress.2024.109980_b11 article-title: Filter bank property of direct fast iterative filtering and its applications publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2023.110755 – year: 2023 ident: 10.1016/j.ress.2024.109980_b31 article-title: A novel periodic cyclic sparse network with entire domain adaptation for deep transfer fault diagnosis of rolling bearing publication-title: IEEE Sens J doi: 10.1109/JSEN.2023.3274749 – volume: 126 year: 2023 ident: 10.1016/j.ress.2024.109980_b32 article-title: Knowledge addition for improving the transfer learning from the laboratory to identify defects of hydraulic machinery publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2023.106756 – start-page: 1 year: 2023 ident: 10.1016/j.ress.2024.109980_b42 article-title: Rotating machinery fault diagnosis based on feature extraction via an unsupervised graph neural network publication-title: Appl Intell – volume: 77 start-page: 81 year: 2022 ident: 10.1016/j.ress.2024.109980_b43 article-title: PESA-Net: Permutation-equivariant split attention network for correspondence learning publication-title: Inf Fusion doi: 10.1016/j.inffus.2021.07.018 – volume: 260 year: 2023 ident: 10.1016/j.ress.2024.109980_b45 article-title: Semi-supervised learning with pseudo-negative labels for image classification publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2022.110166 – volume: 236 year: 2023 ident: 10.1016/j.ress.2024.109980_b49 article-title: Long short-term memory network with Bayesian optimization for health prognostics of lithium-ion batteries based on partial incremental capacity analysis publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2023.109288 – start-page: 228 year: 2023 ident: 10.1016/j.ress.2024.109980_b6 article-title: Inter-shaft bearing fault diagnosis based on aero-engine system: A benchmarking dataset study publication-title: J Dyn Monit Diagn – volume: 43 start-page: 635 year: 2019 ident: 10.1016/j.ress.2024.109980_b18 article-title: Classification of ball bearing faults using vibro-acoustic sensor data fusion publication-title: Exp Tech doi: 10.1007/s40799-019-00324-0 – volume: 22 start-page: 22344 issue: 23 year: 2022 ident: 10.1016/j.ress.2024.109980_b16 article-title: Gear fault diagnosis under variable load conditions based on acoustic signals publication-title: IEEE Sens J doi: 10.1109/JSEN.2022.3214286 |
SSID | ssj0004957 |
Score | 2.4654334 |
Snippet | Effective condition monitoring and fault diagnosis of rolling bearings, integral components of rotating machinery, are crucial for ensuring equipment... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 109980 |
SubjectTerms | Acoustic and vibration signals Deep learning Graph neural networks Intelligent diagnosis Multi-source information fusion |
Title | Multi-sensor fusion fault diagnosis method of wind turbine bearing based on adaptive convergent viewable neural networks |
URI | https://dx.doi.org/10.1016/j.ress.2024.109980 |
Volume | 245 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIryqDywobRJ7cTJWFVUBUQXqNQtuji2VITSqg_BxG_nLk6gSIiBMY5tOeeT7y7-7jvGrjFITkBjpKqSJPMkJMrLjJGeAalisL71Dd3oPo6j0UTeT8Npgw3qXBiCVVZnvzvTy9O6aulW0uwuZrPuEzkHMZX_luR4hMT4Sex1qNOdj2-YBwYAqi4nT72rxBmH8aKItkMzEKtSQtSQvxmnLYMzPGD7lafI-24xh6xhiiO2t8UfeMzey_RZb4Wh6HzJ7Yb-fHEL2MhzB6GbrbirEc3nlr9h_M3RxGAwbHiGKo6TcDJj-LbgkMOCzj5eAtEpJ3PN6d6Acqs40V7iYgoHGl-dsMnw9nkw8qpSCp5Gm7728NtMbtFeaRvJMkVQRNIC5BICMH6sNCQgImto44TII6lASF8LUDZDD0ecsmYxL8wZ46ENtAyVCE0PZIxry-IIAhvEupf5QvVaLKhlmOqKZ5zKXbymNaDsJSW5pyT31Mm9xW6-xiwcy8afvcN6a9IfupKiGfhj3Pk_x12wXXpyMMdL1lwvN-YKXZF11i51rc12-ncPo_EnpB7gZA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB2V9gAcEKsoqw_cUGhSO9sRIVBKlwsgcYsmiS0VobTqIvh8ZuqERUIcuMYZyxlbs8Tz3gBcUJIcY06ZahjHmaMwDp1Ma-VoVGGExjWu5hvd4ShIntT9s__cgJsaC8NllZXttzZ9Za2rJ51Km53peNx54OAg4vbfigMPX65Bi9mpVBNa171-MvqCR8aW8JM7yrNAhZ2xZV6c1F7xJEysFDM75G_-6ZvPuduGrSpYFNd2PTvQ0OUubH6jENyD9xWC1plTNjqZCbPkn1_CID0Uha2iG8-FbRMtJka8UQouyMtQPqxFRqecJhHsyWi0FFjglM2fWNWiMyxzIfjqgOFVgpkvaTGlrRuf78PT3e3jTeJU3RScnNz6wqFv04Uhl5WbQK1QgjJQBrFQ6KF2ozDHGGVgNO-dlEWgQpTKzSWGJqMgRx5As5yU-hCEb7xc-aH0dRdVRGvLogA940V5N3Nl2G2DV-swzSuqce548ZrWNWUvKes9Zb2nVu9tuPyUmVqijT_f9uutSX8cl5Q8wR9yR_-UO4f15HE4SAe9Uf8YNnjEVj2eQHMxW-pTikwW2Vl18j4AWMbjFQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-sensor+fusion+fault+diagnosis+method+of+wind+turbine+bearing+based+on+adaptive+convergent+viewable+neural+networks&rft.jtitle=Reliability+engineering+%26+system+safety&rft.au=Li%2C+Xinming&rft.au=Wang%2C+Yanxue&rft.au=Yao%2C+Jiachi&rft.au=Li%2C+Meng&rft.date=2024-05-01&rft.pub=Elsevier+Ltd&rft.issn=0951-8320&rft.eissn=1879-0836&rft.volume=245&rft_id=info:doi/10.1016%2Fj.ress.2024.109980&rft.externalDocID=S0951832024000553 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-8320&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-8320&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-8320&client=summon |