Heterogeneous junctions of magnetic Ni core@binary dielectric shells toward high-efficiency microwave attenuation
•Ni@C@PEDOT spheres with multilayer heterogeneous interfaces are synthesized.•The spheres are constructed by magnetic Ni core and binary dielectric shells.•The multilayer heterogeneous interfaces trigger strong interfacial polarization.•The final absorption performance is sensitive to the dielectric...
Saved in:
Published in | Journal of materials science & technology Vol. 115; pp. 71 - 80 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
10.07.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 1005-0302 |
DOI | 10.1016/j.jmst.2021.10.035 |
Cover
Abstract | •Ni@C@PEDOT spheres with multilayer heterogeneous interfaces are synthesized.•The spheres are constructed by magnetic Ni core and binary dielectric shells.•The multilayer heterogeneous interfaces trigger strong interfacial polarization.•The final absorption performance is sensitive to the dielectric PEDOT layer.•A strong RL value of −72.4 dB and wide bandwidth of 6.4 GHz are achieved.
Metal-organic-frameworks (MOFs) derived carbon-based composites with balanced impedance matching and synergistic dielectric/magnetic loss are considered as promising microwave absorbers. With the aim to promote interfacial polarization, herein, heterogeneous junctions composed of magnetic Ni core and binary dielectric shells (C and PEDOT) are synthesized by annealing Ni-MOFs precursors and an in-situ polymerization strategy, forming Ni@C@PEDOT spheres with multilayer heterogeneous interfaces. The results indicate that the final absorption attenuation is sensitive to the thickness of the dielectric PEDOT layer, when the thickness of the PEDOT layer is 224 nm, an optimal reflection loss of -72.4 dB is achieved at 2 mm and the effective absorption bandwidth reaches 6.4 GHz with a thickness of only 1.85 mm, the excellent absorption attenuation is accredited to the promoted impedance matching, enhanced conduction loss as well as the synergistic interfacial polarization induced by magnetic core and binary dielectric shells. Meanwhile, this work offers a simple and significant strategy in preparation for ideal microwave absorbers by rational design of multilayer heterogeneous interfaces. |
---|---|
AbstractList | •Ni@C@PEDOT spheres with multilayer heterogeneous interfaces are synthesized.•The spheres are constructed by magnetic Ni core and binary dielectric shells.•The multilayer heterogeneous interfaces trigger strong interfacial polarization.•The final absorption performance is sensitive to the dielectric PEDOT layer.•A strong RL value of −72.4 dB and wide bandwidth of 6.4 GHz are achieved.
Metal-organic-frameworks (MOFs) derived carbon-based composites with balanced impedance matching and synergistic dielectric/magnetic loss are considered as promising microwave absorbers. With the aim to promote interfacial polarization, herein, heterogeneous junctions composed of magnetic Ni core and binary dielectric shells (C and PEDOT) are synthesized by annealing Ni-MOFs precursors and an in-situ polymerization strategy, forming Ni@C@PEDOT spheres with multilayer heterogeneous interfaces. The results indicate that the final absorption attenuation is sensitive to the thickness of the dielectric PEDOT layer, when the thickness of the PEDOT layer is 224 nm, an optimal reflection loss of -72.4 dB is achieved at 2 mm and the effective absorption bandwidth reaches 6.4 GHz with a thickness of only 1.85 mm, the excellent absorption attenuation is accredited to the promoted impedance matching, enhanced conduction loss as well as the synergistic interfacial polarization induced by magnetic core and binary dielectric shells. Meanwhile, this work offers a simple and significant strategy in preparation for ideal microwave absorbers by rational design of multilayer heterogeneous interfaces. |
Author | Wu, Qingqing Li, Fangyuan Wang, Jijun Liu, Panbo Yu, Songlin Li, Bingzhen Li, Yan Chen, Yuhua Zhou, Xiao |
Author_xml | – sequence: 1 givenname: Jijun surname: Wang fullname: Wang, Jijun organization: Institute of Defense Engineering, Academy of Military Sciences, Beijing 100036, China – sequence: 2 givenname: Songlin surname: Yu fullname: Yu, Songlin organization: Institute of Defense Engineering, Academy of Military Sciences, Beijing 100036, China – sequence: 3 givenname: Qingqing surname: Wu fullname: Wu, Qingqing organization: Institute of Defense Engineering, Academy of Military Sciences, Beijing 100036, China – sequence: 4 givenname: Yan surname: Li fullname: Li, Yan organization: Institute of Defense Engineering, Academy of Military Sciences, Beijing 100036, China – sequence: 5 givenname: Fangyuan surname: Li fullname: Li, Fangyuan organization: Institute of Defense Engineering, Academy of Military Sciences, Beijing 100036, China – sequence: 6 givenname: Xiao surname: Zhou fullname: Zhou, Xiao organization: Institute of Defense Engineering, Academy of Military Sciences, Beijing 100036, China – sequence: 7 givenname: Yuhua surname: Chen fullname: Chen, Yuhua email: cyhcst@sina.com organization: Institute of Defense Engineering, Academy of Military Sciences, Beijing 100036, China – sequence: 8 givenname: Bingzhen surname: Li fullname: Li, Bingzhen email: tylerlibz@hotmail.com organization: Institute of Defense Engineering, Academy of Military Sciences, Beijing 100036, China – sequence: 9 givenname: Panbo surname: Liu fullname: Liu, Panbo email: liupanbo@nwpu.edu.cn organization: School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, China |
BookMark | eNp9kM1OAjEURrvARFBfwFVfYLDtUJhJXGiIignRja6b_tyBTmZabQuGt7cDrlywusm9OV_udyZo5LwDhG4pmVJC53fttO1jmjLCaF5MSclHaEwJ4QUpCbtEkxhbQsoFr6ox-l5BguA34MDvIm53TifrXcS-wb3cOEhW4zeLtQ_woKyT4YCNhQ50CvkSt9B1ESf_I4PBW7vZFtA0Vltw-oB7q0O-7AHLlMDt5BB9jS4a2UW4-ZtX6PP56WO5KtbvL6_Lx3WhGeWp4IQCN7KuaEM0Z2XNCcnRysxM3VBjKqVm81zKLAyruC4VI3OqF7UBpfiMqvIKVafc_EOMARqhbTp-kIK0naBEDLpEKwZdYtA17LKujLJ_6Fewfa5-Hro_QZBL7S0EEY8awNiQbQnj7Tn8F6fOjEY |
CitedBy_id | crossref_primary_10_1016_j_jmst_2022_11_021 crossref_primary_10_1016_j_ceramint_2023_08_304 crossref_primary_10_1016_j_jmst_2022_03_004 crossref_primary_10_1016_j_carbon_2024_119237 crossref_primary_10_1002_smll_202306990 crossref_primary_10_1016_j_colsurfa_2022_130483 crossref_primary_10_1007_s12274_022_4820_6 crossref_primary_10_1007_s40820_022_00841_5 crossref_primary_10_1016_j_mtphys_2023_101291 crossref_primary_10_1016_j_ceramint_2023_02_253 crossref_primary_10_1016_j_jmst_2022_05_016 crossref_primary_10_1016_j_carbon_2022_10_017 crossref_primary_10_1016_j_jmst_2023_07_065 crossref_primary_10_1002_pssa_202200152 crossref_primary_10_1007_s11664_023_10280_6 crossref_primary_10_1016_j_carbon_2024_119244 crossref_primary_10_1016_j_carbon_2022_10_089 crossref_primary_10_1016_j_carbon_2022_12_069 |
Cites_doi | 10.1016/j.cej.2019.02.193 10.1021/acsami.9b08525 10.1039/D0TA10942H 10.1016/j.jmst.2021.02.011 10.1016/j.carbon.2021.02.092 10.1016/j.carbon.2021.10.077 10.1039/D0NR03104F 10.1039/D1TC02136B 10.1016/j.carbon.2020.11.035 10.1007/s40820-021-00624-4 10.1016/j.jmst.2020.06.054 10.1016/j.carbon.2021.01.001 10.1016/j.jcis.2021.08.056 10.1111/jace.17389 10.1007/s12274-017-1758-1 10.1002/smll.201102245 10.1016/j.carbon.2020.10.039 10.1016/j.jcis.2021.07.050 10.1016/j.jmst.2020.08.059 10.1007/s12274-020-3208-8 10.1016/j.jmst.2020.03.029 10.1021/acsami.7b10067 10.1016/j.carbon.2021.03.042 10.1016/j.jmst.2020.04.048 10.1016/j.carbon.2020.12.077 10.1016/j.carbon.2019.09.041 10.1039/C5TA01457C 10.1039/C9TC00771G 10.1021/acsami.0c09202 10.1016/j.compositesb.2020.108119 10.1021/acssuschemeng.8b02089 10.1039/D0QI01237H 10.1002/adma.200306460 10.1016/j.jcis.2021.11.197 10.1016/j.carbon.2021.04.051 10.1016/j.scib.2020.02.009 10.1002/adma.201503149 10.1016/j.scib.2019.10.011 10.1016/j.matt.2021.02.022 10.1007/s42114-021-00307-z 10.1021/acsami.9b19281 10.1007/s40820-020-00432-2 10.1016/j.carbon.2020.06.015 10.1021/acsami.6b10886 |
ContentType | Journal Article |
Copyright | 2022 |
Copyright_xml | – notice: 2022 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.jmst.2021.10.035 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EndPage | 80 |
ExternalDocumentID | 10_1016_j_jmst_2021_10_035 S100503022200038X |
GroupedDBID | --K --M -02 -0B -SB -S~ .~1 0R~ 1B1 1~. 4.4 457 5GY 5VR 5VS 5XA 5XC 8P~ 92M 9D9 9DB AABXZ AACTN AAEDT AAEDW AAEPC AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO ABJNI ABMAC ABXRA ACDAQ ACGFS ACRLP ADEZE AEBSH AEIPS AEKER AENEX AEZYN AFRZQ AFTJW AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AXJTR BKOJK BLXMC BNPGV CAJEB CCEZO CDRFL CHBEP CW9 DU5 EBS EFJIC FA0 FDB FIRID FNPLU FYGXN GBLVA J1W JUIAU KOM M41 MAGPM MO0 N9A O-L O9- OAUVE P-8 P-9 P2P PC. Q-- Q38 R-B ROL RT2 S.. SDF SES SPC SPCBC SSH SSM SSZ T5K T8R U1F U1G U5B U5L ~G- 92H 92I AAYWO AAYXX ABFNM ABXDB ACNNM ACVFH ADCNI AEUPX AFJKZ AFPUW AFUIB AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKYEP APXCP CITATION EJD HZ~ RIG TCJ TGT |
ID | FETCH-LOGICAL-c215t-501e5da981f0c5239500effbd4d9f1dd8bb46005d7d285c3b2061c79debb541b3 |
IEDL.DBID | AIKHN |
ISSN | 1005-0302 |
IngestDate | Thu Apr 24 23:06:35 EDT 2025 Tue Jul 01 02:20:06 EDT 2025 Sun Apr 06 06:53:11 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Conductive polymer Core-shell structure Microwave absorption Metal-organic-frameworks |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c215t-501e5da981f0c5239500effbd4d9f1dd8bb46005d7d285c3b2061c79debb541b3 |
PageCount | 10 |
ParticipantIDs | crossref_citationtrail_10_1016_j_jmst_2021_10_035 crossref_primary_10_1016_j_jmst_2021_10_035 elsevier_sciencedirect_doi_10_1016_j_jmst_2021_10_035 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-07-10 |
PublicationDateYYYYMMDD | 2022-07-10 |
PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-10 day: 10 |
PublicationDecade | 2020 |
PublicationTitle | Journal of materials science & technology |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Song, Liu, Liang, Ruan, Qiu, Ma, Guo, Gu (bib0056) 2021; 13 Gu, Cui, Zheng, Yu, Zhao, Ji (bib0002) 2021; 67 Wu, Zhao, Liu, Li, Chen, Chen, Wang, Guo (bib0036) 2021; 4 Wu, Xie, Wu, Shi, Sun, Dong (bib0054) 2021; 8 Che, Peng, Duan, Chen, Liang (bib0001) 2004; 16 Liu, Du, Xu, Liu, Wang, Zhao, Cui, Han (bib0040) 2019; 7 Yang, Zhang, Zou, Wu, Wu, Xie, Wei (bib0009) 2018; 39 Zhao, Cheng, Zhang, Zhang, Pei, Fan, Ji (bib0053) 2021; 173 Zhao, Xu, Wang, Fan, Liu, Lin, Xu, Han, Du (bib0005) 2020; 16 Chen, Zheng, Wang, Huang, Ji (bib0048) 2021; 174 Chen, Wang, Di, Lu, Wang, Ma, Ye (bib0032) 2022; 609 Yang, Jiang, Liu, Li, Hou, Li, Duan, Yan, Yang, Li (bib0028) 2021; 70 Wang, Zhou, Zeng, Chen, Luo, Fan, Li (bib0006) 2021; 175 Li, Fan, Xu, Ye, Xue, Li, Cheng (bib0045) 2020; 59 Liang, Man, Quan, Zheng, Gu, Zhang, Ji (bib0020) 2020; 12 Wang, Yu, Li, Zhang, Wang, Che (bib0039) 2020; 383 Tong, Liao, Liu, Ma, Bi, Huang, Ma, Qiao, Wu (bib0014) 2021; 179 Liu, Zhao, Yan, Huang, Li, Liu (bib0041) 2021; 178 Liu, Zhang, Yan, Huang, Xia, Guang (bib0008) 2019; 368 X.F. Liu, Y. Li, X. Sun, W.K. Tang, G. Deng, Y.J. Liu, Z.M. Song, Y.H. Yu, R.H. Yu, L.M. Dai, J.L. Shui, Matter 4 (2021) 1735–1747. Zhou, Li, Long, Luo, Wang (bib0003) 2020; 103 Zhao, Guo, Zhao, Deng, Shao, Fan, Bai, Zhang (bib0024) 2016; 8 Miao, Cao, Kong, Li, Wang, Chen (bib0034) 2020; 12 Zhang, Dong, Pan, Xiang, Zhu, Lu (bib0027) 2021; 177 Wu, Pei, Xing, Yu, You, Che (bib0015) 2019; 29 Cui, Wang, Di, Lu, Cheng, Wu, Gao (bib0013) 2022; 187 Zhao, Li, Zeng, Wang, Ding, Zhang, Che (bib0017) 2020; 16 Xu, Xia, Luo, Lu, Huang, Zhong, Zhang, Wen, Wu, Xiong, Wang (bib0016) 2020; 12 Zhang, Li, Qi, Gong, Xie, Deng, Zhong, Du (bib0046) 2021; 222 Cheng, Xie, Pan, Zhang, Zhang, Lin, Dong (bib0051) 2021; 9 Chen, Liang, Zheng, Gu, Pei, Fan, Ji (bib0052) 2021; 8 Zhang, Wang, Cao (bib0022) 2018; 11 Qiang, Du, Zhao, Wang, Tian, Li, Han, Xu (bib0035) 2015; 3 Liu, Du, Xu, Wang, Wang, Cui, Zhao, Han (bib0030) 2021; 9 Zhao, Cheng, Zhang, Yu, Zheng, Zhou, Zhou, Zhang, Ji (bib0031) 2020; 196 Xiang, Huang, Song, Deng, Zhang, Zhu, Batalu, Tutunaru, Lu (bib0037) 2020; 167 Cui, Liang, Chen, Gu, Ji, Du (bib0055) 2020; 156 Wang, Li, Han, Xu, Cui, Zhao, Liu, Wang, Du (bib0019) 2020; 387 Liao, Ma, Bi, Tong, Chung, Li, Ma, Gao, Cao, Sun, Zhong (bib0011) 2022; 606 Zhang, Xiong, Cheng, Chai, Liu, Ba, Ullah, Zheng, Yan, Cao (bib0012) 2020; 65 Wang, Meng, Li, Li, Chen, Luo, Zhou (bib0021) 2018; 6 Yin, Liu, Wei, Li, Nie, Yu, Shui (bib0042) 2017; 9 Liu, Gao, Zhang, Huang, You, Che (bib0044) 2021; 31 Guo, Jian, Zhang, Mu, Yin, Xie, Mahmood, Dou, Che, Deng (bib0025) 2020; 384 Quan, Gu, Sheng, Lv, Mao, Liu, Huang, Tian, Ji (bib0043) 2021; 14 Wang, Shi, Zhang, Zhang, Gu (bib0007) 2020; 52 Liang, Qiu, Song, Shi, Kong, Gu (bib0050) 2020; 65 Liu, Gao, Wang, Huang, Wang, Luo (bib0038) 2019; 11 Gao, Zhang, Wang, Han, Huang, Liu (bib0029) 2021; 88 Wang, Liu, Cui, Hu, Han, Du (bib0010) 2021; 54 Liu, Gao, Wang, Huang, He, Huang, Luo (bib0033) 2020; 381 Gu, Tan, Chen, Zhang, Zhao, Yu, Ji (bib0049) 2020; 12 Bi, Ma, Liao, Tong, Chen, Wang, Ma, Wu (bib0023) 2022; 605 Pan, Yu, Xiang, Liu, Deng, Cui, Shi, Li, Lu (bib0018) 2021; 172 Liu, Cao, Bi, Liang, Yuan, She, Yang, Che (bib0004) 2016; 28 Liu, Che, Chen, Zhang, Xia, Wu, Wang (bib0026) 2012; 8 Cui (10.1016/j.jmst.2021.10.035_bib0013) 2022; 187 Gao (10.1016/j.jmst.2021.10.035_bib0029) 2021; 88 Zhao (10.1016/j.jmst.2021.10.035_bib0024) 2016; 8 Yang (10.1016/j.jmst.2021.10.035_bib0009) 2018; 39 Liao (10.1016/j.jmst.2021.10.035_bib0011) 2022; 606 Wu (10.1016/j.jmst.2021.10.035_bib0036) 2021; 4 Gu (10.1016/j.jmst.2021.10.035_bib0049) 2020; 12 Liu (10.1016/j.jmst.2021.10.035_bib0044) 2021; 31 Zhao (10.1016/j.jmst.2021.10.035_bib0017) 2020; 16 Tong (10.1016/j.jmst.2021.10.035_bib0014) 2021; 179 Liu (10.1016/j.jmst.2021.10.035_bib0030) 2021; 9 Cheng (10.1016/j.jmst.2021.10.035_bib0051) 2021; 9 Liu (10.1016/j.jmst.2021.10.035_bib0041) 2021; 178 Zhang (10.1016/j.jmst.2021.10.035_bib0046) 2021; 222 Wu (10.1016/j.jmst.2021.10.035_bib0015) 2019; 29 Zhao (10.1016/j.jmst.2021.10.035_bib0031) 2020; 196 Song (10.1016/j.jmst.2021.10.035_bib0056) 2021; 13 Zhao (10.1016/j.jmst.2021.10.035_bib0053) 2021; 173 Wang (10.1016/j.jmst.2021.10.035_bib0019) 2020; 387 Pan (10.1016/j.jmst.2021.10.035_bib0018) 2021; 172 Gu (10.1016/j.jmst.2021.10.035_bib0002) 2021; 67 Cui (10.1016/j.jmst.2021.10.035_bib0055) 2020; 156 Zhang (10.1016/j.jmst.2021.10.035_bib0027) 2021; 177 Wang (10.1016/j.jmst.2021.10.035_bib0007) 2020; 52 Zhang (10.1016/j.jmst.2021.10.035_bib0022) 2018; 11 Liang (10.1016/j.jmst.2021.10.035_bib0050) 2020; 65 Liu (10.1016/j.jmst.2021.10.035_bib0040) 2019; 7 Zhao (10.1016/j.jmst.2021.10.035_bib0005) 2020; 16 Liu (10.1016/j.jmst.2021.10.035_bib0004) 2016; 28 Zhang (10.1016/j.jmst.2021.10.035_bib0012) 2020; 65 Guo (10.1016/j.jmst.2021.10.035_bib0025) 2020; 384 Yin (10.1016/j.jmst.2021.10.035_bib0042) 2017; 9 Wang (10.1016/j.jmst.2021.10.035_bib0010) 2021; 54 Liu (10.1016/j.jmst.2021.10.035_bib0026) 2012; 8 Liu (10.1016/j.jmst.2021.10.035_bib0038) 2019; 11 Qiang (10.1016/j.jmst.2021.10.035_bib0035) 2015; 3 Xiang (10.1016/j.jmst.2021.10.035_bib0037) 2020; 167 10.1016/j.jmst.2021.10.035_bib0047 Chen (10.1016/j.jmst.2021.10.035_bib0052) 2021; 8 Zhou (10.1016/j.jmst.2021.10.035_bib0003) 2020; 103 Miao (10.1016/j.jmst.2021.10.035_bib0034) 2020; 12 Bi (10.1016/j.jmst.2021.10.035_bib0023) 2022; 605 Yang (10.1016/j.jmst.2021.10.035_bib0028) 2021; 70 Xu (10.1016/j.jmst.2021.10.035_bib0016) 2020; 12 Liu (10.1016/j.jmst.2021.10.035_bib0008) 2019; 368 Li (10.1016/j.jmst.2021.10.035_bib0045) 2020; 59 Chen (10.1016/j.jmst.2021.10.035_bib0048) 2021; 174 Wang (10.1016/j.jmst.2021.10.035_bib0021) 2018; 6 Wang (10.1016/j.jmst.2021.10.035_bib0039) 2020; 383 Chen (10.1016/j.jmst.2021.10.035_bib0032) 2022; 609 Liu (10.1016/j.jmst.2021.10.035_bib0033) 2020; 381 Che (10.1016/j.jmst.2021.10.035_bib0001) 2004; 16 Wang (10.1016/j.jmst.2021.10.035_bib0006) 2021; 175 Wu (10.1016/j.jmst.2021.10.035_bib0054) 2021; 8 Quan (10.1016/j.jmst.2021.10.035_bib0043) 2021; 14 Liang (10.1016/j.jmst.2021.10.035_bib0020) 2020; 12 |
References_xml | – volume: 368 start-page: 285 year: 2019 end-page: 298 ident: bib0008 publication-title: Chem. Eng. J. – volume: 167 start-page: 364 year: 2020 end-page: 377 ident: bib0037 publication-title: Carbon – volume: 177 start-page: 332 year: 2021 end-page: 343 ident: bib0027 publication-title: Carbon – volume: 4 start-page: 707 year: 2021 end-page: 715 ident: bib0036 publication-title: Adv. Compos. Hybrid Mater. – volume: 381 year: 2020 ident: bib0033 publication-title: Chem. Eng. J. – volume: 59 start-page: 164 year: 2020 end-page: 172 ident: bib0045 publication-title: J. Mater. Sci. Technol. – volume: 16 year: 2020 ident: bib0017 publication-title: Small – volume: 178 start-page: 273 year: 2021 end-page: 284 ident: bib0041 publication-title: Carbon – reference: X.F. Liu, Y. Li, X. Sun, W.K. Tang, G. Deng, Y.J. Liu, Z.M. Song, Y.H. Yu, R.H. Yu, L.M. Dai, J.L. Shui, Matter 4 (2021) 1735–1747. – volume: 31 year: 2021 ident: bib0044 publication-title: Adv. Funct. Mater. – volume: 88 start-page: 56 year: 2021 end-page: 65 ident: bib0029 publication-title: J. Mater. Sci. Technol. – volume: 196 year: 2020 ident: bib0031 publication-title: Compos. Pt. B-Eng. – volume: 3 start-page: 13426 year: 2015 end-page: 13434 ident: bib0035 publication-title: J. Mater. Chem. A – volume: 8 start-page: 28917 year: 2016 end-page: 28925 ident: bib0024 publication-title: ACS Appl. Mater. Interfaces – volume: 103 start-page: 6822 year: 2020 end-page: 6832 ident: bib0003 publication-title: J. Am. Ceram. Soc. – volume: 65 start-page: 616 year: 2020 end-page: 622 ident: bib0050 publication-title: Sci. Bull. – volume: 156 start-page: 49 year: 2020 end-page: 57 ident: bib0055 publication-title: Carbon – volume: 12 start-page: 28727 year: 2020 end-page: 28737 ident: bib0049 publication-title: ACS Appl. Mater. Interfaces – volume: 605 start-page: 483 year: 2022 end-page: 492 ident: bib0023 publication-title: J. Colloid Interface Sci. – volume: 16 start-page: 401 year: 2004 end-page: 405 ident: bib0001 publication-title: Adv. Mater. – volume: 11 start-page: 1426 year: 2018 end-page: 1436 ident: bib0022 publication-title: Nano Res. – volume: 609 start-page: 224 year: 2022 end-page: 234 ident: bib0032 publication-title: J. Colloid Interface Sci. – volume: 9 start-page: 30850 year: 2017 end-page: 30861 ident: bib0042 publication-title: ACS Appl. Mater. Interfaces – volume: 8 start-page: 1214 year: 2012 end-page: 1221 ident: bib0026 publication-title: Small – volume: 606 start-page: 709 year: 2022 end-page: 718 ident: bib0011 publication-title: J. Colloid Interface Sci. – volume: 222 year: 2021 ident: bib0046 publication-title: Compos. Pt. B-Eng. – volume: 172 start-page: 506 year: 2021 end-page: 515 ident: bib0018 publication-title: Carbon – volume: 7 start-page: 5037 year: 2019 end-page: 5046 ident: bib0040 publication-title: J. Mater. Chem. C – volume: 179 start-page: 646 year: 2021 end-page: 654 ident: bib0014 publication-title: Carbon – volume: 8 year: 2021 ident: bib0054 publication-title: Adv. Mater. Interfaces – volume: 175 start-page: 233 year: 2021 end-page: 242 ident: bib0006 publication-title: Carbon – volume: 6 start-page: 11801 year: 2018 end-page: 11810 ident: bib0021 publication-title: ACS Sustain. Chem. Eng. – volume: 54 year: 2021 ident: bib0010 publication-title: J. Phys. D-Appl. Phys. – volume: 8 start-page: 758 year: 2021 end-page: 765 ident: bib0052 publication-title: Inorg. Chem. Front. – volume: 174 start-page: 509 year: 2021 end-page: 517 ident: bib0048 publication-title: Carbon – volume: 16 year: 2020 ident: bib0005 publication-title: Small – volume: 187 start-page: 404 year: 2022 end-page: 414 ident: bib0013 publication-title: Carbon – volume: 11 start-page: 25624 year: 2019 end-page: 25635 ident: bib0038 publication-title: ACS Appl. Mater. Interfaces – volume: 29 year: 2019 ident: bib0015 publication-title: Adv. Funct. Mater. – volume: 383 year: 2020 ident: bib0039 publication-title: Chem. Eng. J. – volume: 39 year: 2018 ident: bib0009 publication-title: Macromol. Rapid Commun. – volume: 384 year: 2020 ident: bib0025 publication-title: Chem. Eng. J. – volume: 9 start-page: 9158 year: 2021 end-page: 9168 ident: bib0051 publication-title: J. Mater. Chem. C – volume: 173 start-page: 501 year: 2021 end-page: 511 ident: bib0053 publication-title: Carbon – volume: 12 start-page: 102 year: 2020 ident: bib0020 publication-title: Nano-Micro Lett. – volume: 9 start-page: 5086 year: 2021 end-page: 5096 ident: bib0030 publication-title: J. Mater. Chem. A – volume: 12 start-page: 20775 year: 2020 end-page: 20784 ident: bib0016 publication-title: ACS Appl. Mater. Interfaces – volume: 28 start-page: 486 year: 2016 end-page: 490 ident: bib0004 publication-title: Adv. Mater. – volume: 67 start-page: 265 year: 2021 end-page: 272 ident: bib0002 publication-title: J. Mater. Sci. Technol. – volume: 70 start-page: 214 year: 2021 end-page: 223 ident: bib0028 publication-title: J. Mater. Sci. Technol. – volume: 52 start-page: 119 year: 2020 end-page: 126 ident: bib0007 publication-title: J. Mater. Sci. Technol. – volume: 14 start-page: 1495 year: 2021 end-page: 1501 ident: bib0043 publication-title: Nano Res. – volume: 387 year: 2020 ident: bib0019 publication-title: Chem. Eng. J. – volume: 13 start-page: 91 year: 2021 ident: bib0056 publication-title: Nano-Micro Lett. – volume: 65 start-page: 138 year: 2020 end-page: 146 ident: bib0012 publication-title: Sci. Bull. – volume: 12 start-page: 13311 year: 2020 end-page: 13315 ident: bib0034 publication-title: Nanoscale – volume: 368 start-page: 285 year: 2019 ident: 10.1016/j.jmst.2021.10.035_bib0008 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.02.193 – volume: 16 year: 2020 ident: 10.1016/j.jmst.2021.10.035_bib0017 publication-title: Small – volume: 11 start-page: 25624 year: 2019 ident: 10.1016/j.jmst.2021.10.035_bib0038 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b08525 – volume: 9 start-page: 5086 year: 2021 ident: 10.1016/j.jmst.2021.10.035_bib0030 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA10942H – volume: 387 year: 2020 ident: 10.1016/j.jmst.2021.10.035_bib0019 publication-title: Chem. Eng. J. – volume: 88 start-page: 56 year: 2021 ident: 10.1016/j.jmst.2021.10.035_bib0029 publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2021.02.011 – volume: 177 start-page: 332 year: 2021 ident: 10.1016/j.jmst.2021.10.035_bib0027 publication-title: Carbon doi: 10.1016/j.carbon.2021.02.092 – volume: 187 start-page: 404 year: 2022 ident: 10.1016/j.jmst.2021.10.035_bib0013 publication-title: Carbon doi: 10.1016/j.carbon.2021.10.077 – volume: 12 start-page: 13311 year: 2020 ident: 10.1016/j.jmst.2021.10.035_bib0034 publication-title: Nanoscale doi: 10.1039/D0NR03104F – volume: 9 start-page: 9158 year: 2021 ident: 10.1016/j.jmst.2021.10.035_bib0051 publication-title: J. Mater. Chem. C doi: 10.1039/D1TC02136B – volume: 173 start-page: 501 year: 2021 ident: 10.1016/j.jmst.2021.10.035_bib0053 publication-title: Carbon doi: 10.1016/j.carbon.2020.11.035 – volume: 13 start-page: 91 year: 2021 ident: 10.1016/j.jmst.2021.10.035_bib0056 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-021-00624-4 – volume: 31 year: 2021 ident: 10.1016/j.jmst.2021.10.035_bib0044 publication-title: Adv. Funct. Mater. – volume: 67 start-page: 265 year: 2021 ident: 10.1016/j.jmst.2021.10.035_bib0002 publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2020.06.054 – volume: 175 start-page: 233 year: 2021 ident: 10.1016/j.jmst.2021.10.035_bib0006 publication-title: Carbon doi: 10.1016/j.carbon.2021.01.001 – volume: 606 start-page: 709 year: 2022 ident: 10.1016/j.jmst.2021.10.035_bib0011 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2021.08.056 – volume: 29 year: 2019 ident: 10.1016/j.jmst.2021.10.035_bib0015 publication-title: Adv. Funct. Mater. – volume: 103 start-page: 6822 year: 2020 ident: 10.1016/j.jmst.2021.10.035_bib0003 publication-title: J. Am. Ceram. Soc. doi: 10.1111/jace.17389 – volume: 11 start-page: 1426 year: 2018 ident: 10.1016/j.jmst.2021.10.035_bib0022 publication-title: Nano Res. doi: 10.1007/s12274-017-1758-1 – volume: 8 start-page: 1214 year: 2012 ident: 10.1016/j.jmst.2021.10.035_bib0026 publication-title: Small doi: 10.1002/smll.201102245 – volume: 172 start-page: 506 year: 2021 ident: 10.1016/j.jmst.2021.10.035_bib0018 publication-title: Carbon doi: 10.1016/j.carbon.2020.10.039 – volume: 605 start-page: 483 year: 2022 ident: 10.1016/j.jmst.2021.10.035_bib0023 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2021.07.050 – volume: 70 start-page: 214 year: 2021 ident: 10.1016/j.jmst.2021.10.035_bib0028 publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2020.08.059 – volume: 14 start-page: 1495 year: 2021 ident: 10.1016/j.jmst.2021.10.035_bib0043 publication-title: Nano Res. doi: 10.1007/s12274-020-3208-8 – volume: 52 start-page: 119 year: 2020 ident: 10.1016/j.jmst.2021.10.035_bib0007 publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2020.03.029 – volume: 54 year: 2021 ident: 10.1016/j.jmst.2021.10.035_bib0010 publication-title: J. Phys. D-Appl. Phys. – volume: 9 start-page: 30850 year: 2017 ident: 10.1016/j.jmst.2021.10.035_bib0042 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b10067 – volume: 178 start-page: 273 year: 2021 ident: 10.1016/j.jmst.2021.10.035_bib0041 publication-title: Carbon doi: 10.1016/j.carbon.2021.03.042 – volume: 59 start-page: 164 year: 2020 ident: 10.1016/j.jmst.2021.10.035_bib0045 publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2020.04.048 – volume: 174 start-page: 509 year: 2021 ident: 10.1016/j.jmst.2021.10.035_bib0048 publication-title: Carbon doi: 10.1016/j.carbon.2020.12.077 – volume: 156 start-page: 49 year: 2020 ident: 10.1016/j.jmst.2021.10.035_bib0055 publication-title: Carbon doi: 10.1016/j.carbon.2019.09.041 – volume: 3 start-page: 13426 year: 2015 ident: 10.1016/j.jmst.2021.10.035_bib0035 publication-title: J. Mater. Chem. A doi: 10.1039/C5TA01457C – volume: 7 start-page: 5037 year: 2019 ident: 10.1016/j.jmst.2021.10.035_bib0040 publication-title: J. Mater. Chem. C doi: 10.1039/C9TC00771G – volume: 12 start-page: 28727 year: 2020 ident: 10.1016/j.jmst.2021.10.035_bib0049 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c09202 – volume: 196 year: 2020 ident: 10.1016/j.jmst.2021.10.035_bib0031 publication-title: Compos. Pt. B-Eng. doi: 10.1016/j.compositesb.2020.108119 – volume: 383 year: 2020 ident: 10.1016/j.jmst.2021.10.035_bib0039 publication-title: Chem. Eng. J. – volume: 222 year: 2021 ident: 10.1016/j.jmst.2021.10.035_bib0046 publication-title: Compos. Pt. B-Eng. – volume: 6 start-page: 11801 year: 2018 ident: 10.1016/j.jmst.2021.10.035_bib0021 publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.8b02089 – volume: 8 start-page: 758 year: 2021 ident: 10.1016/j.jmst.2021.10.035_bib0052 publication-title: Inorg. Chem. Front. doi: 10.1039/D0QI01237H – volume: 8 year: 2021 ident: 10.1016/j.jmst.2021.10.035_bib0054 publication-title: Adv. Mater. Interfaces – volume: 16 start-page: 401 year: 2004 ident: 10.1016/j.jmst.2021.10.035_bib0001 publication-title: Adv. Mater. doi: 10.1002/adma.200306460 – volume: 609 start-page: 224 year: 2022 ident: 10.1016/j.jmst.2021.10.035_bib0032 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2021.11.197 – volume: 179 start-page: 646 year: 2021 ident: 10.1016/j.jmst.2021.10.035_bib0014 publication-title: Carbon doi: 10.1016/j.carbon.2021.04.051 – volume: 65 start-page: 616 year: 2020 ident: 10.1016/j.jmst.2021.10.035_bib0050 publication-title: Sci. Bull. doi: 10.1016/j.scib.2020.02.009 – volume: 28 start-page: 486 year: 2016 ident: 10.1016/j.jmst.2021.10.035_bib0004 publication-title: Adv. Mater. doi: 10.1002/adma.201503149 – volume: 65 start-page: 138 year: 2020 ident: 10.1016/j.jmst.2021.10.035_bib0012 publication-title: Sci. Bull. doi: 10.1016/j.scib.2019.10.011 – ident: 10.1016/j.jmst.2021.10.035_bib0047 doi: 10.1016/j.matt.2021.02.022 – volume: 39 year: 2018 ident: 10.1016/j.jmst.2021.10.035_bib0009 publication-title: Macromol. Rapid Commun. – volume: 4 start-page: 707 year: 2021 ident: 10.1016/j.jmst.2021.10.035_bib0036 publication-title: Adv. Compos. Hybrid Mater. doi: 10.1007/s42114-021-00307-z – volume: 12 start-page: 20775 year: 2020 ident: 10.1016/j.jmst.2021.10.035_bib0016 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b19281 – volume: 12 start-page: 102 year: 2020 ident: 10.1016/j.jmst.2021.10.035_bib0020 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-020-00432-2 – volume: 384 year: 2020 ident: 10.1016/j.jmst.2021.10.035_bib0025 publication-title: Chem. Eng. J. – volume: 167 start-page: 364 year: 2020 ident: 10.1016/j.jmst.2021.10.035_bib0037 publication-title: Carbon doi: 10.1016/j.carbon.2020.06.015 – volume: 381 year: 2020 ident: 10.1016/j.jmst.2021.10.035_bib0033 publication-title: Chem. Eng. J. – volume: 8 start-page: 28917 year: 2016 ident: 10.1016/j.jmst.2021.10.035_bib0024 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b10886 – volume: 16 year: 2020 ident: 10.1016/j.jmst.2021.10.035_bib0005 publication-title: Small |
SSID | ssj0037588 |
Score | 2.3840618 |
Snippet | •Ni@C@PEDOT spheres with multilayer heterogeneous interfaces are synthesized.•The spheres are constructed by magnetic Ni core and binary dielectric shells.•The... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 71 |
SubjectTerms | Conductive polymer Core-shell structure Metal-organic-frameworks Microwave absorption |
Title | Heterogeneous junctions of magnetic Ni core@binary dielectric shells toward high-efficiency microwave attenuation |
URI | https://dx.doi.org/10.1016/j.jmst.2021.10.035 |
Volume | 115 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ7wuOjB-Iygkj14M4Vu2y3tTUI0qJGLknBruo8aiBQU1Ju_3Zk-FBPDweu2u2lmJ_NIv-8bgPNQYJrQSlo8MIHlxcrFOChsS4YqVjrWvukSG_l-6A9G3u1YjCvQL7kwBKssYn8e07NoXax0Cmt2FpNJ54FnWibUsGT_t8ZVqDtu6Isa1Hs3d4NhGZBdLIlzRhzh1FwC9DR_YF7T2ZIglQ5vE8grm_r2R35ayznXu7BTFIusl3_PHlRMug_baxKCB_AyIDzLHN3AYA_PppimMk9i84TN4qeUOIpsOGGkVnkpM_It05N8-A0-WRIOdMlWGXiWkXaxZTJRCWJkshmh9T7id8NIhTPNVcEPYXR99dgfWMUYBUthPl9ZwuZG6DgMeGIr7DtDYdt4lNSeDhOudSClh2WP0F3tBEK50sEcr7qhNlIKj0v3CGrpPDXHwJTC_sokvkmk8hI8U-NleiQQkzh4u34DeGm8SBUa4zTq4jkqwWTTiAwekcFpDQ3egIvvPYtcYWPj26K8k-iXn0SYAjbsa_5z3wlsOUR4IClN-xRqq9c3c4ZlyEq2oNr-5K3C2b4AutfguA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JT8JAFH5BOKgH4xrBbQ7eTKXbQHuTGEmR5SIk3JrOUgORgoL6932vi2JiOHiddibNm5e3pN_3PYBrn2OaUFIYlqc9w42kg3GQm4bwZSRVpBq6SWzk_qARjNzHMR-X4L7gwhCsMo_9WUxPo3W-Us-tWV9MJvUnK9UyoYYl_b813oKKy7HbK0Ol1ekGgyIgO1gSZ4w4wqk5BOip_cC8prMlQSpt65ZAXunUtz_y01rOae_DXl4sslb2PQdQ0skh7K5JCB7Ba0B4ljm6gcYenk0xTaWexOYxm0XPCXEU2WDCSK3yTqTkW6Ym2fAbfLIkHOiSrVLwLCPtYkOnohLEyGQzQut9Rh-akQpnkqmCH8Oo_TC8D4x8jIIhMZ-vDG5amqvI96zYlNh3-tw08SihXOXHllKeEC6WPVw1le1x6Qgbc7xs-koLwV1LOCdQTuaJPgUmJfZXOm7oWEg3xjMVXqZLAjGxjbfbqIJVGC-UucY4jbp4CQsw2TQkg4dkcFpDg1fh5nvPIlPY2Pg2L-4k_OUnIaaADftq_9x3BdvBsN8Le51B9wx2bCI_kKymeQ7l1du7vsCSZCUuc5f7Ah_k4qc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heterogeneous+junctions+of+magnetic+Ni+core%40binary+dielectric+shells+toward+high-efficiency+microwave+attenuation&rft.jtitle=Journal+of+materials+science+%26+technology&rft.au=Wang%2C+Jijun&rft.au=Yu%2C+Songlin&rft.au=Wu%2C+Qingqing&rft.au=Li%2C+Yan&rft.date=2022-07-10&rft.issn=1005-0302&rft.volume=115&rft.spage=71&rft.epage=80&rft_id=info:doi/10.1016%2Fj.jmst.2021.10.035&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jmst_2021_10_035 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1005-0302&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1005-0302&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1005-0302&client=summon |