Japanese Short Text Classification Based on CNN-BiLSTM-Attention
Due to the limited context information of the text, the traditional statistical feature-based method is difficult to effectively model the semantic relationship in the Japanese short text classification task, resulting in limited classification effect. To this end, this paper introduces the CNN-BiLS...
Saved in:
Published in | Procedia computer science Vol. 262; pp. 320 - 329 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Due to the limited context information of the text, the traditional statistical feature-based method is difficult to effectively model the semantic relationship in the Japanese short text classification task, resulting in limited classification effect. To this end, this paper introduces the CNN-BiLSTM-Attention fusion model, which aims to fully extract the local and global features in the short text and improve the classification accuracy. First, Convolutional Neural Networks (CNNs) are used to extract local n-gram features and identify phrase patterns. Then, the global context information of the text is modeled by Bidirectional Long Short-Term Memory (BiLSTM) to capture the influence of special structures such as auxiliary words and honorifics. Finally, the self-attention mechanism (Self-Attention) assigns weights to different words, so that the model focuses on the key information of classification and reduces the interference of grammatical vocabulary. In addition, Dropout regularization and Softmax classification layer are introduced to enhance the model’s robustness and capacity for adaptation. Experimental results show that the CNN-BiLSTM-Attention model achieves the best performance in all structures, and the overall WOSS (Word Order Sensitivity Score) score is higher than other models. In the SVO (Subject-Verb-Object) structure, the model reaches 0.94, which is 20.5% higher than CNN’s 0.78, indicating that it has a more accurate understanding of standard word order sentences. |
---|---|
AbstractList | Due to the limited context information of the text, the traditional statistical feature-based method is difficult to effectively model the semantic relationship in the Japanese short text classification task, resulting in limited classification effect. To this end, this paper introduces the CNN-BiLSTM-Attention fusion model, which aims to fully extract the local and global features in the short text and improve the classification accuracy. First, Convolutional Neural Networks (CNNs) are used to extract local n-gram features and identify phrase patterns. Then, the global context information of the text is modeled by Bidirectional Long Short-Term Memory (BiLSTM) to capture the influence of special structures such as auxiliary words and honorifics. Finally, the self-attention mechanism (Self-Attention) assigns weights to different words, so that the model focuses on the key information of classification and reduces the interference of grammatical vocabulary. In addition, Dropout regularization and Softmax classification layer are introduced to enhance the model’s robustness and capacity for adaptation. Experimental results show that the CNN-BiLSTM-Attention model achieves the best performance in all structures, and the overall WOSS (Word Order Sensitivity Score) score is higher than other models. In the SVO (Subject-Verb-Object) structure, the model reaches 0.94, which is 20.5% higher than CNN’s 0.78, indicating that it has a more accurate understanding of standard word order sentences. |
Author | Chen, Tianyang Xie, Zexian |
Author_xml | – sequence: 1 givenname: Tianyang surname: Chen fullname: Chen, Tianyang email: x2978043261@163.com organization: School of Japanese and International Studies, Beijing Foreign Studies University, Beijing 100089, China – sequence: 2 givenname: Zexian surname: Xie fullname: Xie, Zexian organization: School of Cyberspace Security, University of International Relations, Beijing, 100091, China |
BookMark | eNp9UMtOwzAQtFCRKKVfwCU_kGA7dR0fkGgjngrl0HC2HHstHBUnsiMEf09COXBiNdLOajWj3TlHM995QOiS4Ixgsr5qsz50OmYUU5bhCeIEzUnBeYoZFrM__AwtY2zxWHlRCMLn6OZJ9cpDhGT_1oUhqeFzSMqDitFZp9XgOp9sVQSTjKTc7dKtq_b1c7oZBvDT9gKdWnWIsPztC_R6d1uXD2n1cv9YbqpUU8JEClgIo43QjNhmTQtGG8IsFw1VRDEozAoMt5BbRjUTzYoX49xoQ8angBqSL1B-9NWhizGAlX1w7yp8SYLllINs5U8OcspB4gliVF0fVTCe9uEgyKgdeA3GBdCDNJ37V_8Nk2lozQ |
Cites_doi | 10.1007/s12325-022-02397-7 10.1111/jwip.12285 10.3390/make5030059 10.1007/s11042-022-13937-2 10.1007/s11604-023-01413-2 10.1007/s00521-023-08629-3 10.1007/s11042-022-14112-3 10.1007/s11063-022-10990-8 10.1007/s10462-023-10393-8 10.1109/TETCI.2023.3301774 |
ContentType | Journal Article |
Copyright | 2025 |
Copyright_xml | – notice: 2025 |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.procs.2025.05.059 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1877-0509 |
EndPage | 329 |
ExternalDocumentID | 10_1016_j_procs_2025_05_059 S1877050925019064 |
GroupedDBID | --K 0R~ 1B1 457 5VS 6I. 71M AAEDT AAEDW AAFTH AAIKJ AALRI AAQFI AAXUO AAYWO ABMAC ABWVN ACGFS ACRPL ACVFH ADBBV ADCNI ADEZE ADNMO ADVLN AEUPX AEXQZ AFPUW AFTJW AGHFR AIGII AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ E3Z EBS EJD EP3 FDB FNPLU HZ~ IXB KQ8 M41 M~E O-L O9- OK1 P2P RIG ROL SES SSZ AAYXX CITATION |
ID | FETCH-LOGICAL-c2159-e099dcd9c51fb62852b15f79b2a1a5e8d4ed7fe3f52c59b478ed7bcd1025e2d13 |
IEDL.DBID | IXB |
ISSN | 1877-0509 |
IngestDate | Thu Jul 24 01:54:10 EDT 2025 Sat Aug 16 17:01:11 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | CNN-BiLSTM-Attention Self-Attention Mechanism Japanese Short Text Classification Local Feature Extraction Global Context Modeling |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2159-e099dcd9c51fb62852b15f79b2a1a5e8d4ed7fe3f52c59b478ed7bcd1025e2d13 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1877050925019064 |
PageCount | 10 |
ParticipantIDs | crossref_primary_10_1016_j_procs_2025_05_059 elsevier_sciencedirect_doi_10_1016_j_procs_2025_05_059 |
PublicationCentury | 2000 |
PublicationDate | 2025 2025-00-00 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – year: 2025 text: 2025 |
PublicationDecade | 2020 |
PublicationTitle | Procedia computer science |
PublicationYear | 2025 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Dermawan (bib8) 2024; 27 Kuzman, Mozetič, Ljubešić (bib11) 2023; 5 Yan, Huang, Jin (bib2) 2023; 8 Manias, Mavrogiorgou, Kiourtis (bib9) 2023; 35 Jain, Kashyap (bib6) 2023; 82 Araki, Matsumoto, Togo (bib10) 2023; 40 Doi, Takegawa, Yui (bib4) 2023; 41 Liu, Shi, Zhou (bib7) 2023; 10 Alyafeai, Al-shaibani, Ghaleb (bib5) 2023; 55 Duarte, Berton (bib1) 2023; 56 Ullah, Khan, Nawi (bib3) 2023; 82 Liu (10.1016/j.procs.2025.05.059_bib7) 2023; 10 Araki (10.1016/j.procs.2025.05.059_bib10) 2023; 40 Alyafeai (10.1016/j.procs.2025.05.059_bib5) 2023; 55 Duarte (10.1016/j.procs.2025.05.059_bib1) 2023; 56 Jain (10.1016/j.procs.2025.05.059_bib6) 2023; 82 Manias (10.1016/j.procs.2025.05.059_bib9) 2023; 35 Yan (10.1016/j.procs.2025.05.059_bib2) 2023; 8 Dermawan (10.1016/j.procs.2025.05.059_bib8) 2024; 27 Kuzman (10.1016/j.procs.2025.05.059_bib11) 2023; 5 Ullah (10.1016/j.procs.2025.05.059_bib3) 2023; 82 Doi (10.1016/j.procs.2025.05.059_bib4) 2023; 41 |
References_xml | – volume: 82 start-page: 8137 year: 2023 end-page: 8193 ident: bib3 article-title: Review on sentiment analysis for text classification techniques from 2010 to 2021[J] publication-title: Multimedia Tools and Applications – volume: 10 start-page: 1 year: 2023 end-page: 9 ident: bib7 article-title: Emotion classification for short texts: an improved multi-label method[J] publication-title: Humanities and Social Sciences Communications – volume: 55 start-page: 2911 year: 2023 end-page: 2933 ident: bib5 article-title: Evaluating various tokenizers for Arabic text classification[J] publication-title: Neural Processing Letters – volume: 41 start-page: 900 year: 2023 end-page: 908 ident: bib4 article-title: Deep learning-based detection of patients with bone metastasis from Japanese radiology reports[J] publication-title: Japanese Journal of Radiology – volume: 35 start-page: 21415 year: 2023 end-page: 21431 ident: bib9 article-title: Multilingual text categorization and sentiment analysis: a comparative analysis of the utilization of multilingual approaches for classifying twitter data[J] publication-title: Neural Computing and Applications – volume: 40 start-page: 934 year: 2023 end-page: 950 ident: bib10 article-title: Developement artificial intelligence models for extracting oncologic outcomes from japanese electronic health records[J] publication-title: Advances in Therapy – volume: 56 start-page: 9401 year: 2023 end-page: 9469 ident: bib1 article-title: A review of semi-supervised learning for text classification[J] publication-title: Artificial intelligence review – volume: 5 start-page: 1149 year: 2023 end-page: 1175 ident: bib11 article-title: Automatic genre identification for robust enrichment of massive text collections: Investigation of classification methods in the era of large language models[J] publication-title: Machine Learning and Knowledge Extraction – volume: 8 start-page: 350 year: 2023 end-page: 363 ident: bib2 article-title: Neural architecture search via multi-hashing embedding and graph tensor networks for multilingual text classification[J] publication-title: IEEE Transactions on Emerging Topics in Computational Intelligence – volume: 82 start-page: 16839 year: 2023 end-page: 16859 ident: bib6 article-title: Ensemble hybrid model for Hindi COVID-19 text classification with metaheuristic optimization algorithm[J] publication-title: Multimedia Tools and Applications – volume: 27 start-page: 44 year: 2024 end-page: 68 ident: bib8 article-title: Text and data mining exceptions in the development of generative AI models: What the EU member states could learn from the Japanese “nonenjoyment” purposes?[J] publication-title: The Journal of World Intellectual Property – volume: 40 start-page: 934 issue: 3 year: 2023 ident: 10.1016/j.procs.2025.05.059_bib10 article-title: Developement artificial intelligence models for extracting oncologic outcomes from japanese electronic health records[J] publication-title: Advances in Therapy doi: 10.1007/s12325-022-02397-7 – volume: 27 start-page: 44 issue: 1 year: 2024 ident: 10.1016/j.procs.2025.05.059_bib8 article-title: Text and data mining exceptions in the development of generative AI models: What the EU member states could learn from the Japanese “nonenjoyment” purposes?[J] publication-title: The Journal of World Intellectual Property doi: 10.1111/jwip.12285 – volume: 5 start-page: 1149 issue: 3 year: 2023 ident: 10.1016/j.procs.2025.05.059_bib11 article-title: Automatic genre identification for robust enrichment of massive text collections: Investigation of classification methods in the era of large language models[J] publication-title: Machine Learning and Knowledge Extraction doi: 10.3390/make5030059 – volume: 82 start-page: 16839 issue: 11 year: 2023 ident: 10.1016/j.procs.2025.05.059_bib6 article-title: Ensemble hybrid model for Hindi COVID-19 text classification with metaheuristic optimization algorithm[J] publication-title: Multimedia Tools and Applications doi: 10.1007/s11042-022-13937-2 – volume: 10 start-page: 1 issue: 1 year: 2023 ident: 10.1016/j.procs.2025.05.059_bib7 article-title: Emotion classification for short texts: an improved multi-label method[J] publication-title: Humanities and Social Sciences Communications – volume: 41 start-page: 900 issue: 8 year: 2023 ident: 10.1016/j.procs.2025.05.059_bib4 article-title: Deep learning-based detection of patients with bone metastasis from Japanese radiology reports[J] publication-title: Japanese Journal of Radiology doi: 10.1007/s11604-023-01413-2 – volume: 35 start-page: 21415 issue: 29 year: 2023 ident: 10.1016/j.procs.2025.05.059_bib9 article-title: Multilingual text categorization and sentiment analysis: a comparative analysis of the utilization of multilingual approaches for classifying twitter data[J] publication-title: Neural Computing and Applications doi: 10.1007/s00521-023-08629-3 – volume: 82 start-page: 8137 issue: 6 year: 2023 ident: 10.1016/j.procs.2025.05.059_bib3 article-title: Review on sentiment analysis for text classification techniques from 2010 to 2021[J] publication-title: Multimedia Tools and Applications doi: 10.1007/s11042-022-14112-3 – volume: 55 start-page: 2911 issue: 3 year: 2023 ident: 10.1016/j.procs.2025.05.059_bib5 article-title: Evaluating various tokenizers for Arabic text classification[J] publication-title: Neural Processing Letters doi: 10.1007/s11063-022-10990-8 – volume: 56 start-page: 9401 issue: 9 year: 2023 ident: 10.1016/j.procs.2025.05.059_bib1 article-title: A review of semi-supervised learning for text classification[J] publication-title: Artificial intelligence review doi: 10.1007/s10462-023-10393-8 – volume: 8 start-page: 350 issue: 1 year: 2023 ident: 10.1016/j.procs.2025.05.059_bib2 article-title: Neural architecture search via multi-hashing embedding and graph tensor networks for multilingual text classification[J] publication-title: IEEE Transactions on Emerging Topics in Computational Intelligence doi: 10.1109/TETCI.2023.3301774 |
SSID | ssj0000388917 |
Score | 2.342104 |
Snippet | Due to the limited context information of the text, the traditional statistical feature-based method is difficult to effectively model the semantic... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 320 |
SubjectTerms | CNN-BiLSTM-Attention Global Context Modeling Japanese Short Text Classification Local Feature Extraction Self-Attention Mechanism |
Title | Japanese Short Text Classification Based on CNN-BiLSTM-Attention |
URI | https://dx.doi.org/10.1016/j.procs.2025.05.059 |
Volume | 262 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqsrDwRjwrD4xYxUmcxBttRVW1tANtRTerfokyhAqF_8-dkyCQEANShjjyRdE5ue-zc_6OkBsPjG1tecJQa5wlsbEsNyZlhqP4m4ZZdigGM52lo2UyXolViwyavTCYVlnH_iqmh2hdX-nW3uxuN5vunOdZhuolAOKAailqgsZJHjbxrfpf6yyodiJD4V3sz9CgER8KaV6IEyjbHYmg4Imapb8B1DfQGR6QvZot0l71QIek5Yojst9UYqD1h3lM7seAeVhLks5fgE_TBYRcGupdYiZQcD7tA15ZCieD2Yz1N4_zxZT1yrJKdzwhy-HDYjBidW0EZgCkJXPA7Kyx0gjuNW6DjDQXPpM6WvO1cLlNnM28i72IjJA6yXJoa2OBTwgXWR6fknbxVrgzQrWBe3mDf2CBG0mnrfYpN04bGEVn5Dm5bRyitpUEhmpyw15V8J9C_6k7PKB72jhN_RhJBUH6L8OL_xpekl1sVQsjV6Rdvn-4a6AKpe6Qnd7k6XnSCe_EJ9revXo |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwELVKOcCFHbHjA9ywStI4ywGJtlB1zaWp1Jupl4hyKBUEIb6LH2TGSRBIiAMSUg5ZLWs8mvfsjN8QcpYCY5tqx2OoNc68utIsVMpnykHxNwmzbFsMZhj7nbHXm_BJhbyXe2EwrbKI_XlMt9G6uFMrrFlbzGa1kRMGAaqXAIgDqvlekVnZN2-vMG97vurewCCfu277Nml1WFFagCnAuIgZIEZa6UhxJ5W4i9CVDk-DSLpTZ8pNqD2jg9TUU-4qHkkvCOFaKg1wzI2rnTq0u0SWgX0EGA26k-bnwg7Kq0S20i92kGEPS7Ujm1eGwIQ64S63kqEokvoTIn5BufYGWSvoKW3kFtgkFTPfIutl6QdaRIJtct0DkMXilXR0DwSeJhDjqS2wialHdrRpEwBSUzhpxTFrzgajZMgaWZbnV-6Q8b9YbJdU549zs0eoVNBWqvCXL5CxyEgtU99RRipwG6OifXJRGkQscs0NUSajPQhrP4H2E5d4wOt-aTTxzXUEoMJvHx789cNTstJJhgMx6Mb9Q7KKT_JVmSNSzZ5ezDHwlEyeWL-g5O6_HfEDxUT55w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Japanese+Short+Text+Classification+Based+on+CNN-BiLSTM-Attention&rft.jtitle=Procedia+computer+science&rft.au=Chen%2C+Tianyang&rft.au=Xie%2C+Zexian&rft.date=2025&rft.issn=1877-0509&rft.eissn=1877-0509&rft.volume=262&rft.spage=320&rft.epage=329&rft_id=info:doi/10.1016%2Fj.procs.2025.05.059&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_procs_2025_05_059 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-0509&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-0509&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-0509&client=summon |