Japanese Short Text Classification Based on CNN-BiLSTM-Attention

Due to the limited context information of the text, the traditional statistical feature-based method is difficult to effectively model the semantic relationship in the Japanese short text classification task, resulting in limited classification effect. To this end, this paper introduces the CNN-BiLS...

Full description

Saved in:
Bibliographic Details
Published inProcedia computer science Vol. 262; pp. 320 - 329
Main Authors Chen, Tianyang, Xie, Zexian
Format Journal Article
LanguageEnglish
Published Elsevier B.V 2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Due to the limited context information of the text, the traditional statistical feature-based method is difficult to effectively model the semantic relationship in the Japanese short text classification task, resulting in limited classification effect. To this end, this paper introduces the CNN-BiLSTM-Attention fusion model, which aims to fully extract the local and global features in the short text and improve the classification accuracy. First, Convolutional Neural Networks (CNNs) are used to extract local n-gram features and identify phrase patterns. Then, the global context information of the text is modeled by Bidirectional Long Short-Term Memory (BiLSTM) to capture the influence of special structures such as auxiliary words and honorifics. Finally, the self-attention mechanism (Self-Attention) assigns weights to different words, so that the model focuses on the key information of classification and reduces the interference of grammatical vocabulary. In addition, Dropout regularization and Softmax classification layer are introduced to enhance the model’s robustness and capacity for adaptation. Experimental results show that the CNN-BiLSTM-Attention model achieves the best performance in all structures, and the overall WOSS (Word Order Sensitivity Score) score is higher than other models. In the SVO (Subject-Verb-Object) structure, the model reaches 0.94, which is 20.5% higher than CNN’s 0.78, indicating that it has a more accurate understanding of standard word order sentences.
AbstractList Due to the limited context information of the text, the traditional statistical feature-based method is difficult to effectively model the semantic relationship in the Japanese short text classification task, resulting in limited classification effect. To this end, this paper introduces the CNN-BiLSTM-Attention fusion model, which aims to fully extract the local and global features in the short text and improve the classification accuracy. First, Convolutional Neural Networks (CNNs) are used to extract local n-gram features and identify phrase patterns. Then, the global context information of the text is modeled by Bidirectional Long Short-Term Memory (BiLSTM) to capture the influence of special structures such as auxiliary words and honorifics. Finally, the self-attention mechanism (Self-Attention) assigns weights to different words, so that the model focuses on the key information of classification and reduces the interference of grammatical vocabulary. In addition, Dropout regularization and Softmax classification layer are introduced to enhance the model’s robustness and capacity for adaptation. Experimental results show that the CNN-BiLSTM-Attention model achieves the best performance in all structures, and the overall WOSS (Word Order Sensitivity Score) score is higher than other models. In the SVO (Subject-Verb-Object) structure, the model reaches 0.94, which is 20.5% higher than CNN’s 0.78, indicating that it has a more accurate understanding of standard word order sentences.
Author Chen, Tianyang
Xie, Zexian
Author_xml – sequence: 1
  givenname: Tianyang
  surname: Chen
  fullname: Chen, Tianyang
  email: x2978043261@163.com
  organization: School of Japanese and International Studies, Beijing Foreign Studies University, Beijing 100089, China
– sequence: 2
  givenname: Zexian
  surname: Xie
  fullname: Xie, Zexian
  organization: School of Cyberspace Security, University of International Relations, Beijing, 100091, China
BookMark eNp9UMtOwzAQtFCRKKVfwCU_kGA7dR0fkGgjngrl0HC2HHstHBUnsiMEf09COXBiNdLOajWj3TlHM995QOiS4Ixgsr5qsz50OmYUU5bhCeIEzUnBeYoZFrM__AwtY2zxWHlRCMLn6OZJ9cpDhGT_1oUhqeFzSMqDitFZp9XgOp9sVQSTjKTc7dKtq_b1c7oZBvDT9gKdWnWIsPztC_R6d1uXD2n1cv9YbqpUU8JEClgIo43QjNhmTQtGG8IsFw1VRDEozAoMt5BbRjUTzYoX49xoQ8angBqSL1B-9NWhizGAlX1w7yp8SYLllINs5U8OcspB4gliVF0fVTCe9uEgyKgdeA3GBdCDNJ37V_8Nk2lozQ
Cites_doi 10.1007/s12325-022-02397-7
10.1111/jwip.12285
10.3390/make5030059
10.1007/s11042-022-13937-2
10.1007/s11604-023-01413-2
10.1007/s00521-023-08629-3
10.1007/s11042-022-14112-3
10.1007/s11063-022-10990-8
10.1007/s10462-023-10393-8
10.1109/TETCI.2023.3301774
ContentType Journal Article
Copyright 2025
Copyright_xml – notice: 2025
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.procs.2025.05.059
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1877-0509
EndPage 329
ExternalDocumentID 10_1016_j_procs_2025_05_059
S1877050925019064
GroupedDBID --K
0R~
1B1
457
5VS
6I.
71M
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAQFI
AAXUO
AAYWO
ABMAC
ABWVN
ACGFS
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADNMO
ADVLN
AEUPX
AEXQZ
AFPUW
AFTJW
AGHFR
AIGII
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
E3Z
EBS
EJD
EP3
FDB
FNPLU
HZ~
IXB
KQ8
M41
M~E
O-L
O9-
OK1
P2P
RIG
ROL
SES
SSZ
AAYXX
CITATION
ID FETCH-LOGICAL-c2159-e099dcd9c51fb62852b15f79b2a1a5e8d4ed7fe3f52c59b478ed7bcd1025e2d13
IEDL.DBID IXB
ISSN 1877-0509
IngestDate Thu Jul 24 01:54:10 EDT 2025
Sat Aug 16 17:01:11 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords CNN-BiLSTM-Attention
Self-Attention Mechanism
Japanese Short Text Classification
Local Feature Extraction
Global Context Modeling
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2159-e099dcd9c51fb62852b15f79b2a1a5e8d4ed7fe3f52c59b478ed7bcd1025e2d13
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1877050925019064
PageCount 10
ParticipantIDs crossref_primary_10_1016_j_procs_2025_05_059
elsevier_sciencedirect_doi_10_1016_j_procs_2025_05_059
PublicationCentury 2000
PublicationDate 2025
2025-00-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 2025
PublicationDecade 2020
PublicationTitle Procedia computer science
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Dermawan (bib8) 2024; 27
Kuzman, Mozetič, Ljubešić (bib11) 2023; 5
Yan, Huang, Jin (bib2) 2023; 8
Manias, Mavrogiorgou, Kiourtis (bib9) 2023; 35
Jain, Kashyap (bib6) 2023; 82
Araki, Matsumoto, Togo (bib10) 2023; 40
Doi, Takegawa, Yui (bib4) 2023; 41
Liu, Shi, Zhou (bib7) 2023; 10
Alyafeai, Al-shaibani, Ghaleb (bib5) 2023; 55
Duarte, Berton (bib1) 2023; 56
Ullah, Khan, Nawi (bib3) 2023; 82
Liu (10.1016/j.procs.2025.05.059_bib7) 2023; 10
Araki (10.1016/j.procs.2025.05.059_bib10) 2023; 40
Alyafeai (10.1016/j.procs.2025.05.059_bib5) 2023; 55
Duarte (10.1016/j.procs.2025.05.059_bib1) 2023; 56
Jain (10.1016/j.procs.2025.05.059_bib6) 2023; 82
Manias (10.1016/j.procs.2025.05.059_bib9) 2023; 35
Yan (10.1016/j.procs.2025.05.059_bib2) 2023; 8
Dermawan (10.1016/j.procs.2025.05.059_bib8) 2024; 27
Kuzman (10.1016/j.procs.2025.05.059_bib11) 2023; 5
Ullah (10.1016/j.procs.2025.05.059_bib3) 2023; 82
Doi (10.1016/j.procs.2025.05.059_bib4) 2023; 41
References_xml – volume: 82
  start-page: 8137
  year: 2023
  end-page: 8193
  ident: bib3
  article-title: Review on sentiment analysis for text classification techniques from 2010 to 2021[J]
  publication-title: Multimedia Tools and Applications
– volume: 10
  start-page: 1
  year: 2023
  end-page: 9
  ident: bib7
  article-title: Emotion classification for short texts: an improved multi-label method[J]
  publication-title: Humanities and Social Sciences Communications
– volume: 55
  start-page: 2911
  year: 2023
  end-page: 2933
  ident: bib5
  article-title: Evaluating various tokenizers for Arabic text classification[J]
  publication-title: Neural Processing Letters
– volume: 41
  start-page: 900
  year: 2023
  end-page: 908
  ident: bib4
  article-title: Deep learning-based detection of patients with bone metastasis from Japanese radiology reports[J]
  publication-title: Japanese Journal of Radiology
– volume: 35
  start-page: 21415
  year: 2023
  end-page: 21431
  ident: bib9
  article-title: Multilingual text categorization and sentiment analysis: a comparative analysis of the utilization of multilingual approaches for classifying twitter data[J]
  publication-title: Neural Computing and Applications
– volume: 40
  start-page: 934
  year: 2023
  end-page: 950
  ident: bib10
  article-title: Developement artificial intelligence models for extracting oncologic outcomes from japanese electronic health records[J]
  publication-title: Advances in Therapy
– volume: 56
  start-page: 9401
  year: 2023
  end-page: 9469
  ident: bib1
  article-title: A review of semi-supervised learning for text classification[J]
  publication-title: Artificial intelligence review
– volume: 5
  start-page: 1149
  year: 2023
  end-page: 1175
  ident: bib11
  article-title: Automatic genre identification for robust enrichment of massive text collections: Investigation of classification methods in the era of large language models[J]
  publication-title: Machine Learning and Knowledge Extraction
– volume: 8
  start-page: 350
  year: 2023
  end-page: 363
  ident: bib2
  article-title: Neural architecture search via multi-hashing embedding and graph tensor networks for multilingual text classification[J]
  publication-title: IEEE Transactions on Emerging Topics in Computational Intelligence
– volume: 82
  start-page: 16839
  year: 2023
  end-page: 16859
  ident: bib6
  article-title: Ensemble hybrid model for Hindi COVID-19 text classification with metaheuristic optimization algorithm[J]
  publication-title: Multimedia Tools and Applications
– volume: 27
  start-page: 44
  year: 2024
  end-page: 68
  ident: bib8
  article-title: Text and data mining exceptions in the development of generative AI models: What the EU member states could learn from the Japanese “nonenjoyment” purposes?[J]
  publication-title: The Journal of World Intellectual Property
– volume: 40
  start-page: 934
  issue: 3
  year: 2023
  ident: 10.1016/j.procs.2025.05.059_bib10
  article-title: Developement artificial intelligence models for extracting oncologic outcomes from japanese electronic health records[J]
  publication-title: Advances in Therapy
  doi: 10.1007/s12325-022-02397-7
– volume: 27
  start-page: 44
  issue: 1
  year: 2024
  ident: 10.1016/j.procs.2025.05.059_bib8
  article-title: Text and data mining exceptions in the development of generative AI models: What the EU member states could learn from the Japanese “nonenjoyment” purposes?[J]
  publication-title: The Journal of World Intellectual Property
  doi: 10.1111/jwip.12285
– volume: 5
  start-page: 1149
  issue: 3
  year: 2023
  ident: 10.1016/j.procs.2025.05.059_bib11
  article-title: Automatic genre identification for robust enrichment of massive text collections: Investigation of classification methods in the era of large language models[J]
  publication-title: Machine Learning and Knowledge Extraction
  doi: 10.3390/make5030059
– volume: 82
  start-page: 16839
  issue: 11
  year: 2023
  ident: 10.1016/j.procs.2025.05.059_bib6
  article-title: Ensemble hybrid model for Hindi COVID-19 text classification with metaheuristic optimization algorithm[J]
  publication-title: Multimedia Tools and Applications
  doi: 10.1007/s11042-022-13937-2
– volume: 10
  start-page: 1
  issue: 1
  year: 2023
  ident: 10.1016/j.procs.2025.05.059_bib7
  article-title: Emotion classification for short texts: an improved multi-label method[J]
  publication-title: Humanities and Social Sciences Communications
– volume: 41
  start-page: 900
  issue: 8
  year: 2023
  ident: 10.1016/j.procs.2025.05.059_bib4
  article-title: Deep learning-based detection of patients with bone metastasis from Japanese radiology reports[J]
  publication-title: Japanese Journal of Radiology
  doi: 10.1007/s11604-023-01413-2
– volume: 35
  start-page: 21415
  issue: 29
  year: 2023
  ident: 10.1016/j.procs.2025.05.059_bib9
  article-title: Multilingual text categorization and sentiment analysis: a comparative analysis of the utilization of multilingual approaches for classifying twitter data[J]
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-023-08629-3
– volume: 82
  start-page: 8137
  issue: 6
  year: 2023
  ident: 10.1016/j.procs.2025.05.059_bib3
  article-title: Review on sentiment analysis for text classification techniques from 2010 to 2021[J]
  publication-title: Multimedia Tools and Applications
  doi: 10.1007/s11042-022-14112-3
– volume: 55
  start-page: 2911
  issue: 3
  year: 2023
  ident: 10.1016/j.procs.2025.05.059_bib5
  article-title: Evaluating various tokenizers for Arabic text classification[J]
  publication-title: Neural Processing Letters
  doi: 10.1007/s11063-022-10990-8
– volume: 56
  start-page: 9401
  issue: 9
  year: 2023
  ident: 10.1016/j.procs.2025.05.059_bib1
  article-title: A review of semi-supervised learning for text classification[J]
  publication-title: Artificial intelligence review
  doi: 10.1007/s10462-023-10393-8
– volume: 8
  start-page: 350
  issue: 1
  year: 2023
  ident: 10.1016/j.procs.2025.05.059_bib2
  article-title: Neural architecture search via multi-hashing embedding and graph tensor networks for multilingual text classification[J]
  publication-title: IEEE Transactions on Emerging Topics in Computational Intelligence
  doi: 10.1109/TETCI.2023.3301774
SSID ssj0000388917
Score 2.342104
Snippet Due to the limited context information of the text, the traditional statistical feature-based method is difficult to effectively model the semantic...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 320
SubjectTerms CNN-BiLSTM-Attention
Global Context Modeling
Japanese Short Text Classification
Local Feature Extraction
Self-Attention Mechanism
Title Japanese Short Text Classification Based on CNN-BiLSTM-Attention
URI https://dx.doi.org/10.1016/j.procs.2025.05.059
Volume 262
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqsrDwRjwrD4xYxUmcxBttRVW1tANtRTerfokyhAqF_8-dkyCQEANShjjyRdE5ue-zc_6OkBsPjG1tecJQa5wlsbEsNyZlhqP4m4ZZdigGM52lo2UyXolViwyavTCYVlnH_iqmh2hdX-nW3uxuN5vunOdZhuolAOKAailqgsZJHjbxrfpf6yyodiJD4V3sz9CgER8KaV6IEyjbHYmg4Imapb8B1DfQGR6QvZot0l71QIek5Yojst9UYqD1h3lM7seAeVhLks5fgE_TBYRcGupdYiZQcD7tA15ZCieD2Yz1N4_zxZT1yrJKdzwhy-HDYjBidW0EZgCkJXPA7Kyx0gjuNW6DjDQXPpM6WvO1cLlNnM28i72IjJA6yXJoa2OBTwgXWR6fknbxVrgzQrWBe3mDf2CBG0mnrfYpN04bGEVn5Dm5bRyitpUEhmpyw15V8J9C_6k7PKB72jhN_RhJBUH6L8OL_xpekl1sVQsjV6Rdvn-4a6AKpe6Qnd7k6XnSCe_EJ9revXo
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwELVKOcCFHbHjA9ywStI4ywGJtlB1zaWp1Jupl4hyKBUEIb6LH2TGSRBIiAMSUg5ZLWs8mvfsjN8QcpYCY5tqx2OoNc68utIsVMpnykHxNwmzbFsMZhj7nbHXm_BJhbyXe2EwrbKI_XlMt9G6uFMrrFlbzGa1kRMGAaqXAIgDqvlekVnZN2-vMG97vurewCCfu277Nml1WFFagCnAuIgZIEZa6UhxJ5W4i9CVDk-DSLpTZ8pNqD2jg9TUU-4qHkkvCOFaKg1wzI2rnTq0u0SWgX0EGA26k-bnwg7Kq0S20i92kGEPS7Ujm1eGwIQ64S63kqEokvoTIn5BufYGWSvoKW3kFtgkFTPfIutl6QdaRIJtct0DkMXilXR0DwSeJhDjqS2wialHdrRpEwBSUzhpxTFrzgajZMgaWZbnV-6Q8b9YbJdU549zs0eoVNBWqvCXL5CxyEgtU99RRipwG6OifXJRGkQscs0NUSajPQhrP4H2E5d4wOt-aTTxzXUEoMJvHx789cNTstJJhgMx6Mb9Q7KKT_JVmSNSzZ5ezDHwlEyeWL-g5O6_HfEDxUT55w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Japanese+Short+Text+Classification+Based+on+CNN-BiLSTM-Attention&rft.jtitle=Procedia+computer+science&rft.au=Chen%2C+Tianyang&rft.au=Xie%2C+Zexian&rft.date=2025&rft.issn=1877-0509&rft.eissn=1877-0509&rft.volume=262&rft.spage=320&rft.epage=329&rft_id=info:doi/10.1016%2Fj.procs.2025.05.059&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_procs_2025_05_059
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-0509&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-0509&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-0509&client=summon