An Efficient Method for Detecting Cyberbullying Using Supervised Machine Learning Techniques
The issue of cyberbullying is more worrisome on social media platforms. Individuals are taking advantage of the unrestricted ability to express themselves on social media platforms to engage in this undesirable conduct. Although there are methods available to address this issue, they are subject to...
Saved in:
Published in | Procedia computer science Vol. 258; pp. 1254 - 1261 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The issue of cyberbullying is more worrisome on social media platforms. Individuals are taking advantage of the unrestricted ability to express themselves on social media platforms to engage in this undesirable conduct. Although there are methods available to address this issue, they are subject to restrictions and may not employ optimal techniques. This research work aims to develop novel approaches to detect cyberbullying incidents automatically in real-time across various social media platforms, including tweets, comments, and messages. Using real-time Twitter data, including headlines, comments, and SMS messages from trending posts, we developed a labelling framework for cyberbullying research. We then analyzed this labeled dataset to explore the relationships between various traits associated with cyberbullying and cyber aggression, employing supervised machine learning (ML) and natural language processing (NLP) techniques. It is identified that linear support vector Classification (SVC) and stochastic gradient descent (SGD) classification algorithm are the most effective in classifying and predicting bullying messages in English language. The proposed solution is effective and rational, and it could offer a substantial contribution to the problem of detecting cyberbullying. |
---|---|
AbstractList | The issue of cyberbullying is more worrisome on social media platforms. Individuals are taking advantage of the unrestricted ability to express themselves on social media platforms to engage in this undesirable conduct. Although there are methods available to address this issue, they are subject to restrictions and may not employ optimal techniques. This research work aims to develop novel approaches to detect cyberbullying incidents automatically in real-time across various social media platforms, including tweets, comments, and messages. Using real-time Twitter data, including headlines, comments, and SMS messages from trending posts, we developed a labelling framework for cyberbullying research. We then analyzed this labeled dataset to explore the relationships between various traits associated with cyberbullying and cyber aggression, employing supervised machine learning (ML) and natural language processing (NLP) techniques. It is identified that linear support vector Classification (SVC) and stochastic gradient descent (SGD) classification algorithm are the most effective in classifying and predicting bullying messages in English language. The proposed solution is effective and rational, and it could offer a substantial contribution to the problem of detecting cyberbullying. |
Author | Joshi, Bineet Kumar Pant, Sangeeta Joshi, Bansidhar Kumar, Anuj Sharma, Hitesh Kumar |
Author_xml | – sequence: 1 givenname: Bansidhar surname: Joshi fullname: Joshi, Bansidhar organization: School of Computer Science Engineering & Applications, D Y Patil International University (DYPIU), Pune, India – sequence: 2 givenname: Bineet Kumar surname: Joshi fullname: Joshi, Bineet Kumar organization: ICFAI Tech School, The ICFAI University, Dehradun, India – sequence: 3 givenname: Sangeeta surname: Pant fullname: Pant, Sangeeta organization: Department of Applied Sciences, Symbiosis Institute of Technology, Symbiosis International (Deemed University) (SIU), Pune, India – sequence: 4 givenname: Anuj surname: Kumar fullname: Kumar, Anuj organization: School of Computer Science Engineering & Applications, D Y Patil International University (DYPIU), Pune, India – sequence: 5 givenname: Hitesh Kumar surname: Sharma fullname: Sharma, Hitesh Kumar organization: School of Computer Science, University of Petroleum & Energy Studies, Dehradun, India |
BookMark | eNp9kMtOAjEUhhuDiYg8gZu-wIy9TKczCxcE8ZJAXAg7k6a0p1KCHWwHEt7eGXHhyrM4l5z8f875rtEgNAEQuqUkp4SWd9t8HxuTckaYyEmRc1FfoCGtpMyIIPXgT3-FxiltSRe8qmoqh-h9EvDMOW88hBYvoN00Frsm4gdowbQ-fODpaQ1xfdjtTv20Sn1-O-whHn0CixfabHwAPAcdQ79bgtkE_3WAdIMund4lGP_WEVo9zpbT52z--vQyncwzw6ioM1YIKIUhVAjiSm41LSUUVFqQzhoiJVlDbbRmhFvJbcU0AypoVcvSatCCjxA_-5rYpBTBqX30nzqeFCWqZ6S26oeR6hkpUqiOUae6P6ugO-3oIarUUzBgfexeV7bx_-q_Afulc38 |
Cites_doi | 10.1109/ICACCS.2019.8728378 10.14569/IJACSA.2020.0110861 10.1109/ACCESS.2019.2918354 10.1109/ICICOS.2017.8276369 10.1109/ICESC48915.2020.9155700 10.1145/3607947.3608037 10.1109/TrustCom50675.2020.00103 10.1371/journal.pone.0203794 10.1007/978-981-10-3932-4_3 10.1109/ACCESS.2018.2806394 10.1007/978-3-319-27433-1_4 10.1109/ICPR.2016.7899672 |
ContentType | Journal Article |
Copyright | 2025 The Author(s) |
Copyright_xml | – notice: 2025 The Author(s) |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.procs.2025.04.359 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1877-0509 |
EndPage | 1261 |
ExternalDocumentID | 10_1016_j_procs_2025_04_359 S1877050925014619 |
GroupedDBID | --K 0R~ 1B1 457 5VS 6I. 71M AAEDT AAEDW AAFTH AAIKJ AALRI AAQFI AAXUO AAYWO ABMAC ABWVN ACGFS ACRPL ACVFH ADBBV ADCNI ADEZE ADNMO ADVLN AEUPX AEXQZ AFPUW AFTJW AGHFR AIGII AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ E3Z EBS EJD EP3 FDB FNPLU HZ~ IXB KQ8 M41 M~E O-L O9- OK1 P2P ROL SES SSZ AAYXX CITATION |
ID | FETCH-LOGICAL-c2159-245e65c01550f63da167e417de7fdc0770be9caa203d73d82a2e1518976daea53 |
IEDL.DBID | IXB |
ISSN | 1877-0509 |
IngestDate | Wed Aug 20 07:46:47 EDT 2025 Sat Aug 30 17:14:21 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Term Frequency-Inverse Data Frequency (TF-IDF) Machine Learning (ML) Cyberbullying Natural Language Processing (NLP) |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2159-245e65c01550f63da167e417de7fdc0770be9caa203d73d82a2e1518976daea53 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1877050925014619 |
PageCount | 8 |
ParticipantIDs | crossref_primary_10_1016_j_procs_2025_04_359 elsevier_sciencedirect_doi_10_1016_j_procs_2025_04_359 |
PublicationCentury | 2000 |
PublicationDate | 2025 2025-00-00 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – year: 2025 text: 2025 |
PublicationDecade | 2020 |
PublicationTitle | Procedia computer science |
PublicationYear | 2025 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Hosseinmardi H, Mattson SA, Rafiq RI, Han R, Lv Q, Mishra S. Detection of Cyberbullying Incidents on the Instagram Social Network. MobiSys 2015:2014. Hashir SA, Kashyap DR, Tripathi S, Joshi B. An Effective Approach for Image-Based Forgery Detection. Proceedings of the 2023 Fifteenth International Conference on Contemporary Computing 2023:396–401. Yadav J, Kumar D, Chauhan D. Cyberbullying Detection using Pre-Trained BERT Model. Proceedings of the International Conference on Electronics and Sustainable Communication Systems, ICESC 2020 2020:1096–100. Van Hee C, Jacobs G, Emmery C, DeSmet B, Lefever E, Verhoeven B, et al. Automatic detection of cyberbullying in social media text. PLoS One 2018;13:e0203794. Al-Garadi MA, Hussain MR, Khan N, Murtaza G, Nweke HF, Ali I, et al. Predicting Cyberbullying on Social Media in the Big Data Era Using Machine Learning Algorithms: Review of Literature and Open Challenges. IEEE Access 2019;7:70701–18. Abro S, Shaikh S, Ali Z, Khan S, Mujtaba G, Khand ZH. Automatic Hate Speech Detection using Machine Learning: A Comparative Study. International Journal of Advanced Computer Science and Applications 2020;11:484–91. . Gautam S, Rani K, Joshi B. Detecting phishing websites using rule-based classification algorithm: a comparison. Lecture Notes in Networks and Systems 2018;9:21–33. Noviantho, Isa SM, Ashianti L. Cyberbullying classification using text mining. Proceedings-2017 1st International Conference on Informatics and Computational Sciences, ICICoS 2017 2017;2018-January:241–5. Watanabe H, Bouazizi M, Ohtsuki T. Hate Speech on Twitter: A Pragmatic Approach to Collect Hateful and Offensive Expressions and Perform Hate Speech Detection. IEEE Access 2018;6:13825–35. Di Capua M, Di Nardo E, Petrosino A. Unsupervised cyber bullying detection in social networks. Proceedings-International Conference on Pattern Recognition 2016;0:432–7. Banerjee V, Telavane J, Gaikwad P, Vartak P. Detection of Cyberbullying Using Deep Neural Network. 2019 5th International Conference on Advanced Computing and Communication Systems, ICACCS 2019 2019:604–7. Gaydhani A, Doma V, Kendre S, Bhagwat L. Detecting Hate Speech and Offensive Language on Twitter using Machine Learning: An N-gram and TFIDF based Approach 2018. Ketsbaia L, Issac B, Chen X. Detection of hate tweets using machine learning and deep learning. Proceedings-2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications, TrustCom 2020 2020:751–8. 10.1016/j.procs.2025.04.359_bib5240 10.1016/j.procs.2025.04.359_bib5241 10.1016/j.procs.2025.04.359_bib5239 10.1016/j.procs.2025.04.359_bib5237 10.1016/j.procs.2025.04.359_bib5248 10.1016/j.procs.2025.04.359_bib5238 10.1016/j.procs.2025.04.359_bib5249 10.1016/j.procs.2025.04.359_bib5246 10.1016/j.procs.2025.04.359_bib5247 10.1016/j.procs.2025.04.359_bib5244 10.1016/j.procs.2025.04.359_bib5245 10.1016/j.procs.2025.04.359_bib5242 10.1016/j.procs.2025.04.359_bib5243 |
References_xml | – reference: Al-Garadi MA, Hussain MR, Khan N, Murtaza G, Nweke HF, Ali I, et al. Predicting Cyberbullying on Social Media in the Big Data Era Using Machine Learning Algorithms: Review of Literature and Open Challenges. IEEE Access 2019;7:70701–18. – reference: Ketsbaia L, Issac B, Chen X. Detection of hate tweets using machine learning and deep learning. Proceedings-2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications, TrustCom 2020 2020:751–8. – reference: Banerjee V, Telavane J, Gaikwad P, Vartak P. Detection of Cyberbullying Using Deep Neural Network. 2019 5th International Conference on Advanced Computing and Communication Systems, ICACCS 2019 2019:604–7. – reference: Yadav J, Kumar D, Chauhan D. Cyberbullying Detection using Pre-Trained BERT Model. Proceedings of the International Conference on Electronics and Sustainable Communication Systems, ICESC 2020 2020:1096–100. – reference: Hashir SA, Kashyap DR, Tripathi S, Joshi B. An Effective Approach for Image-Based Forgery Detection. Proceedings of the 2023 Fifteenth International Conference on Contemporary Computing 2023:396–401. – reference: . – reference: Di Capua M, Di Nardo E, Petrosino A. Unsupervised cyber bullying detection in social networks. Proceedings-International Conference on Pattern Recognition 2016;0:432–7. – reference: Noviantho, Isa SM, Ashianti L. Cyberbullying classification using text mining. Proceedings-2017 1st International Conference on Informatics and Computational Sciences, ICICoS 2017 2017;2018-January:241–5. – reference: Gaydhani A, Doma V, Kendre S, Bhagwat L. Detecting Hate Speech and Offensive Language on Twitter using Machine Learning: An N-gram and TFIDF based Approach 2018. – reference: Hosseinmardi H, Mattson SA, Rafiq RI, Han R, Lv Q, Mishra S. Detection of Cyberbullying Incidents on the Instagram Social Network. MobiSys 2015:2014. – reference: Gautam S, Rani K, Joshi B. Detecting phishing websites using rule-based classification algorithm: a comparison. Lecture Notes in Networks and Systems 2018;9:21–33. – reference: Watanabe H, Bouazizi M, Ohtsuki T. Hate Speech on Twitter: A Pragmatic Approach to Collect Hateful and Offensive Expressions and Perform Hate Speech Detection. IEEE Access 2018;6:13825–35. – reference: Abro S, Shaikh S, Ali Z, Khan S, Mujtaba G, Khand ZH. Automatic Hate Speech Detection using Machine Learning: A Comparative Study. International Journal of Advanced Computer Science and Applications 2020;11:484–91. – reference: Van Hee C, Jacobs G, Emmery C, DeSmet B, Lefever E, Verhoeven B, et al. Automatic detection of cyberbullying in social media text. PLoS One 2018;13:e0203794. – ident: 10.1016/j.procs.2025.04.359_bib5237 doi: 10.1109/ICACCS.2019.8728378 – ident: 10.1016/j.procs.2025.04.359_bib5245 doi: 10.14569/IJACSA.2020.0110861 – ident: 10.1016/j.procs.2025.04.359_bib5238 – ident: 10.1016/j.procs.2025.04.359_bib5239 doi: 10.1109/ACCESS.2019.2918354 – ident: 10.1016/j.procs.2025.04.359_bib5244 doi: 10.1109/ICICOS.2017.8276369 – ident: 10.1016/j.procs.2025.04.359_bib5240 doi: 10.1109/ICESC48915.2020.9155700 – ident: 10.1016/j.procs.2025.04.359_bib5249 doi: 10.1145/3607947.3608037 – ident: 10.1016/j.procs.2025.04.359_bib5243 doi: 10.1109/TrustCom50675.2020.00103 – ident: 10.1016/j.procs.2025.04.359_bib5242 doi: 10.1371/journal.pone.0203794 – ident: 10.1016/j.procs.2025.04.359_bib5241 doi: 10.1007/978-981-10-3932-4_3 – ident: 10.1016/j.procs.2025.04.359_bib5247 doi: 10.1109/ACCESS.2018.2806394 – ident: 10.1016/j.procs.2025.04.359_bib5246 doi: 10.1007/978-3-319-27433-1_4 – ident: 10.1016/j.procs.2025.04.359_bib5248 doi: 10.1109/ICPR.2016.7899672 |
SSID | ssj0000388917 |
Score | 2.3420877 |
Snippet | The issue of cyberbullying is more worrisome on social media platforms. Individuals are taking advantage of the unrestricted ability to express themselves on... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 1254 |
SubjectTerms | Cyberbullying Machine Learning (ML) Natural Language Processing (NLP) Term Frequency-Inverse Data Frequency (TF-IDF) |
Title | An Efficient Method for Detecting Cyberbullying Using Supervised Machine Learning Techniques |
URI | https://dx.doi.org/10.1016/j.procs.2025.04.359 |
Volume | 258 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvXjxLdZH2YNHQzfJ5nWstaVY6sG22IOw7GMilRKLbQ_-e3c2iSiIBy-BhOwSvmTnm-zMfEPINXBmlMwyL8iBexzsQTJlF56y_x5Mx7IMxYwf4uGM38-jeYP06loYTKusbH9p0521rq50KjQ7q8WiM_HTJEH1kgBDY7GT_gx56or45rdf-yyodpK5xrt4v4cDavEhl-aFPIGy3UGEkqchapb-RlDfSGdwQPYqb5F2ywc6JA0ojsh-3YmBVgvzmDx3C9p3YhCWQ-jYdYWm1h2ld4BBAktPtPehEMHlEuuaqMsUoJPtCk3FGgwdu6RKoJXe6gud1uKu6xMyG_SnvaFX9U3wtCVwDJhEEEfa_X3kcWikHyfA_cRAkhvNLGoKMi1lwEKThCYNZACW-FPrmRgJMgpPSbN4K-CMUM0y66No4Eb73E-ZYpmdL_cVlsTaaVvkpgZLrEp5DFHnjb0Kh61AbAXjwmLbInENqPjxloU14H8NPP_vwAuyi2flpsklaW7et3Bl3YiNapOd7ujxadR238snlOzHmg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqGGDhjShPD4xEdRLnNZbSqoWmS1upA5Ll2A4qqkJF24F_z52TIJAQA0uGRGdFX-L7zr7zd4TcGs50JpPE8XLDHW7gIlkGEy-DtQdToSxTMeko7E_54yyYNUinPguDZZWV7y99uvXW1Z1WhWZrOZ-3xm4cRahe4mFqLETpz22IBiLs3zCY3X9ttKDcSWI776KBgxa1-pCt80KiQN1uL0DNUx9FS39jqG-s0zsge1W4SNvlGx2ShimOyH7dioFWM_OYPLcL2rVqEEAiNLVtoSnEo_TBYJYA-Il2PjKEcLHAg03UlgrQ8WaJvmJlNE1tVaWhleDqC53U6q6rEzLtdSedvlM1TnAUMDhmTAITBsouP_LQ19INI8PdSJso14oBbJlJlJQe83Xk69iTngHmjyE00dLIwD8lW8VbYc4IVSyBIEUZrpXL3ZhlLIHxcjfDM7EwbJPc1WCJZamPIerCsVdhsRWIrWBcALZNEtaAih-fWYAH_8vw_L-GN2SnP0mHYjgYPV2QXXxS7qBckq31-8ZcQUyxzq7tP_MJYQrJFg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Efficient+Method+for+Detecting+Cyberbullying+Using+Supervised+Machine+Learning+Techniques&rft.jtitle=Procedia+computer+science&rft.au=Joshi%2C+Bansidhar&rft.au=Joshi%2C+Bineet+Kumar&rft.au=Pant%2C+Sangeeta&rft.au=Kumar%2C+Anuj&rft.date=2025&rft.pub=Elsevier+B.V&rft.issn=1877-0509&rft.eissn=1877-0509&rft.volume=258&rft.spage=1254&rft.epage=1261&rft_id=info:doi/10.1016%2Fj.procs.2025.04.359&rft.externalDocID=S1877050925014619 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-0509&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-0509&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-0509&client=summon |