An Efficient Method for Detecting Cyberbullying Using Supervised Machine Learning Techniques

The issue of cyberbullying is more worrisome on social media platforms. Individuals are taking advantage of the unrestricted ability to express themselves on social media platforms to engage in this undesirable conduct. Although there are methods available to address this issue, they are subject to...

Full description

Saved in:
Bibliographic Details
Published inProcedia computer science Vol. 258; pp. 1254 - 1261
Main Authors Joshi, Bansidhar, Joshi, Bineet Kumar, Pant, Sangeeta, Kumar, Anuj, Sharma, Hitesh Kumar
Format Journal Article
LanguageEnglish
Published Elsevier B.V 2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The issue of cyberbullying is more worrisome on social media platforms. Individuals are taking advantage of the unrestricted ability to express themselves on social media platforms to engage in this undesirable conduct. Although there are methods available to address this issue, they are subject to restrictions and may not employ optimal techniques. This research work aims to develop novel approaches to detect cyberbullying incidents automatically in real-time across various social media platforms, including tweets, comments, and messages. Using real-time Twitter data, including headlines, comments, and SMS messages from trending posts, we developed a labelling framework for cyberbullying research. We then analyzed this labeled dataset to explore the relationships between various traits associated with cyberbullying and cyber aggression, employing supervised machine learning (ML) and natural language processing (NLP) techniques. It is identified that linear support vector Classification (SVC) and stochastic gradient descent (SGD) classification algorithm are the most effective in classifying and predicting bullying messages in English language. The proposed solution is effective and rational, and it could offer a substantial contribution to the problem of detecting cyberbullying.
AbstractList The issue of cyberbullying is more worrisome on social media platforms. Individuals are taking advantage of the unrestricted ability to express themselves on social media platforms to engage in this undesirable conduct. Although there are methods available to address this issue, they are subject to restrictions and may not employ optimal techniques. This research work aims to develop novel approaches to detect cyberbullying incidents automatically in real-time across various social media platforms, including tweets, comments, and messages. Using real-time Twitter data, including headlines, comments, and SMS messages from trending posts, we developed a labelling framework for cyberbullying research. We then analyzed this labeled dataset to explore the relationships between various traits associated with cyberbullying and cyber aggression, employing supervised machine learning (ML) and natural language processing (NLP) techniques. It is identified that linear support vector Classification (SVC) and stochastic gradient descent (SGD) classification algorithm are the most effective in classifying and predicting bullying messages in English language. The proposed solution is effective and rational, and it could offer a substantial contribution to the problem of detecting cyberbullying.
Author Joshi, Bineet Kumar
Pant, Sangeeta
Joshi, Bansidhar
Kumar, Anuj
Sharma, Hitesh Kumar
Author_xml – sequence: 1
  givenname: Bansidhar
  surname: Joshi
  fullname: Joshi, Bansidhar
  organization: School of Computer Science Engineering & Applications, D Y Patil International University (DYPIU), Pune, India
– sequence: 2
  givenname: Bineet Kumar
  surname: Joshi
  fullname: Joshi, Bineet Kumar
  organization: ICFAI Tech School, The ICFAI University, Dehradun, India
– sequence: 3
  givenname: Sangeeta
  surname: Pant
  fullname: Pant, Sangeeta
  organization: Department of Applied Sciences, Symbiosis Institute of Technology, Symbiosis International (Deemed University) (SIU), Pune, India
– sequence: 4
  givenname: Anuj
  surname: Kumar
  fullname: Kumar, Anuj
  organization: School of Computer Science Engineering & Applications, D Y Patil International University (DYPIU), Pune, India
– sequence: 5
  givenname: Hitesh Kumar
  surname: Sharma
  fullname: Sharma, Hitesh Kumar
  organization: School of Computer Science, University of Petroleum & Energy Studies, Dehradun, India
BookMark eNp9kMtOAjEUhhuDiYg8gZu-wIy9TKczCxcE8ZJAXAg7k6a0p1KCHWwHEt7eGXHhyrM4l5z8f875rtEgNAEQuqUkp4SWd9t8HxuTckaYyEmRc1FfoCGtpMyIIPXgT3-FxiltSRe8qmoqh-h9EvDMOW88hBYvoN00Frsm4gdowbQ-fODpaQ1xfdjtTv20Sn1-O-whHn0CixfabHwAPAcdQ79bgtkE_3WAdIMund4lGP_WEVo9zpbT52z--vQyncwzw6ioM1YIKIUhVAjiSm41LSUUVFqQzhoiJVlDbbRmhFvJbcU0AypoVcvSatCCjxA_-5rYpBTBqX30nzqeFCWqZ6S26oeR6hkpUqiOUae6P6ugO-3oIarUUzBgfexeV7bx_-q_Afulc38
Cites_doi 10.1109/ICACCS.2019.8728378
10.14569/IJACSA.2020.0110861
10.1109/ACCESS.2019.2918354
10.1109/ICICOS.2017.8276369
10.1109/ICESC48915.2020.9155700
10.1145/3607947.3608037
10.1109/TrustCom50675.2020.00103
10.1371/journal.pone.0203794
10.1007/978-981-10-3932-4_3
10.1109/ACCESS.2018.2806394
10.1007/978-3-319-27433-1_4
10.1109/ICPR.2016.7899672
ContentType Journal Article
Copyright 2025 The Author(s)
Copyright_xml – notice: 2025 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.procs.2025.04.359
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1877-0509
EndPage 1261
ExternalDocumentID 10_1016_j_procs_2025_04_359
S1877050925014619
GroupedDBID --K
0R~
1B1
457
5VS
6I.
71M
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAQFI
AAXUO
AAYWO
ABMAC
ABWVN
ACGFS
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADNMO
ADVLN
AEUPX
AEXQZ
AFPUW
AFTJW
AGHFR
AIGII
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
E3Z
EBS
EJD
EP3
FDB
FNPLU
HZ~
IXB
KQ8
M41
M~E
O-L
O9-
OK1
P2P
ROL
SES
SSZ
AAYXX
CITATION
ID FETCH-LOGICAL-c2159-245e65c01550f63da167e417de7fdc0770be9caa203d73d82a2e1518976daea53
IEDL.DBID IXB
ISSN 1877-0509
IngestDate Wed Aug 20 07:46:47 EDT 2025
Sat Aug 30 17:14:21 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Term Frequency-Inverse Data Frequency (TF-IDF)
Machine Learning (ML)
Cyberbullying
Natural Language Processing (NLP)
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2159-245e65c01550f63da167e417de7fdc0770be9caa203d73d82a2e1518976daea53
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1877050925014619
PageCount 8
ParticipantIDs crossref_primary_10_1016_j_procs_2025_04_359
elsevier_sciencedirect_doi_10_1016_j_procs_2025_04_359
PublicationCentury 2000
PublicationDate 2025
2025-00-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 2025
PublicationDecade 2020
PublicationTitle Procedia computer science
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Hosseinmardi H, Mattson SA, Rafiq RI, Han R, Lv Q, Mishra S. Detection of Cyberbullying Incidents on the Instagram Social Network. MobiSys 2015:2014.
Hashir SA, Kashyap DR, Tripathi S, Joshi B. An Effective Approach for Image-Based Forgery Detection. Proceedings of the 2023 Fifteenth International Conference on Contemporary Computing 2023:396–401.
Yadav J, Kumar D, Chauhan D. Cyberbullying Detection using Pre-Trained BERT Model. Proceedings of the International Conference on Electronics and Sustainable Communication Systems, ICESC 2020 2020:1096–100.
Van Hee C, Jacobs G, Emmery C, DeSmet B, Lefever E, Verhoeven B, et al. Automatic detection of cyberbullying in social media text. PLoS One 2018;13:e0203794.
Al-Garadi MA, Hussain MR, Khan N, Murtaza G, Nweke HF, Ali I, et al. Predicting Cyberbullying on Social Media in the Big Data Era Using Machine Learning Algorithms: Review of Literature and Open Challenges. IEEE Access 2019;7:70701–18.
Abro S, Shaikh S, Ali Z, Khan S, Mujtaba G, Khand ZH. Automatic Hate Speech Detection using Machine Learning: A Comparative Study. International Journal of Advanced Computer Science and Applications 2020;11:484–91.
.
Gautam S, Rani K, Joshi B. Detecting phishing websites using rule-based classification algorithm: a comparison. Lecture Notes in Networks and Systems 2018;9:21–33.
Noviantho, Isa SM, Ashianti L. Cyberbullying classification using text mining. Proceedings-2017 1st International Conference on Informatics and Computational Sciences, ICICoS 2017 2017;2018-January:241–5.
Watanabe H, Bouazizi M, Ohtsuki T. Hate Speech on Twitter: A Pragmatic Approach to Collect Hateful and Offensive Expressions and Perform Hate Speech Detection. IEEE Access 2018;6:13825–35.
Di Capua M, Di Nardo E, Petrosino A. Unsupervised cyber bullying detection in social networks. Proceedings-International Conference on Pattern Recognition 2016;0:432–7.
Banerjee V, Telavane J, Gaikwad P, Vartak P. Detection of Cyberbullying Using Deep Neural Network. 2019 5th International Conference on Advanced Computing and Communication Systems, ICACCS 2019 2019:604–7.
Gaydhani A, Doma V, Kendre S, Bhagwat L. Detecting Hate Speech and Offensive Language on Twitter using Machine Learning: An N-gram and TFIDF based Approach 2018.
Ketsbaia L, Issac B, Chen X. Detection of hate tweets using machine learning and deep learning. Proceedings-2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications, TrustCom 2020 2020:751–8.
10.1016/j.procs.2025.04.359_bib5240
10.1016/j.procs.2025.04.359_bib5241
10.1016/j.procs.2025.04.359_bib5239
10.1016/j.procs.2025.04.359_bib5237
10.1016/j.procs.2025.04.359_bib5248
10.1016/j.procs.2025.04.359_bib5238
10.1016/j.procs.2025.04.359_bib5249
10.1016/j.procs.2025.04.359_bib5246
10.1016/j.procs.2025.04.359_bib5247
10.1016/j.procs.2025.04.359_bib5244
10.1016/j.procs.2025.04.359_bib5245
10.1016/j.procs.2025.04.359_bib5242
10.1016/j.procs.2025.04.359_bib5243
References_xml – reference: Al-Garadi MA, Hussain MR, Khan N, Murtaza G, Nweke HF, Ali I, et al. Predicting Cyberbullying on Social Media in the Big Data Era Using Machine Learning Algorithms: Review of Literature and Open Challenges. IEEE Access 2019;7:70701–18.
– reference: Ketsbaia L, Issac B, Chen X. Detection of hate tweets using machine learning and deep learning. Proceedings-2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications, TrustCom 2020 2020:751–8.
– reference: Banerjee V, Telavane J, Gaikwad P, Vartak P. Detection of Cyberbullying Using Deep Neural Network. 2019 5th International Conference on Advanced Computing and Communication Systems, ICACCS 2019 2019:604–7.
– reference: Yadav J, Kumar D, Chauhan D. Cyberbullying Detection using Pre-Trained BERT Model. Proceedings of the International Conference on Electronics and Sustainable Communication Systems, ICESC 2020 2020:1096–100.
– reference: Hashir SA, Kashyap DR, Tripathi S, Joshi B. An Effective Approach for Image-Based Forgery Detection. Proceedings of the 2023 Fifteenth International Conference on Contemporary Computing 2023:396–401.
– reference: .
– reference: Di Capua M, Di Nardo E, Petrosino A. Unsupervised cyber bullying detection in social networks. Proceedings-International Conference on Pattern Recognition 2016;0:432–7.
– reference: Noviantho, Isa SM, Ashianti L. Cyberbullying classification using text mining. Proceedings-2017 1st International Conference on Informatics and Computational Sciences, ICICoS 2017 2017;2018-January:241–5.
– reference: Gaydhani A, Doma V, Kendre S, Bhagwat L. Detecting Hate Speech and Offensive Language on Twitter using Machine Learning: An N-gram and TFIDF based Approach 2018.
– reference: Hosseinmardi H, Mattson SA, Rafiq RI, Han R, Lv Q, Mishra S. Detection of Cyberbullying Incidents on the Instagram Social Network. MobiSys 2015:2014.
– reference: Gautam S, Rani K, Joshi B. Detecting phishing websites using rule-based classification algorithm: a comparison. Lecture Notes in Networks and Systems 2018;9:21–33.
– reference: Watanabe H, Bouazizi M, Ohtsuki T. Hate Speech on Twitter: A Pragmatic Approach to Collect Hateful and Offensive Expressions and Perform Hate Speech Detection. IEEE Access 2018;6:13825–35.
– reference: Abro S, Shaikh S, Ali Z, Khan S, Mujtaba G, Khand ZH. Automatic Hate Speech Detection using Machine Learning: A Comparative Study. International Journal of Advanced Computer Science and Applications 2020;11:484–91.
– reference: Van Hee C, Jacobs G, Emmery C, DeSmet B, Lefever E, Verhoeven B, et al. Automatic detection of cyberbullying in social media text. PLoS One 2018;13:e0203794.
– ident: 10.1016/j.procs.2025.04.359_bib5237
  doi: 10.1109/ICACCS.2019.8728378
– ident: 10.1016/j.procs.2025.04.359_bib5245
  doi: 10.14569/IJACSA.2020.0110861
– ident: 10.1016/j.procs.2025.04.359_bib5238
– ident: 10.1016/j.procs.2025.04.359_bib5239
  doi: 10.1109/ACCESS.2019.2918354
– ident: 10.1016/j.procs.2025.04.359_bib5244
  doi: 10.1109/ICICOS.2017.8276369
– ident: 10.1016/j.procs.2025.04.359_bib5240
  doi: 10.1109/ICESC48915.2020.9155700
– ident: 10.1016/j.procs.2025.04.359_bib5249
  doi: 10.1145/3607947.3608037
– ident: 10.1016/j.procs.2025.04.359_bib5243
  doi: 10.1109/TrustCom50675.2020.00103
– ident: 10.1016/j.procs.2025.04.359_bib5242
  doi: 10.1371/journal.pone.0203794
– ident: 10.1016/j.procs.2025.04.359_bib5241
  doi: 10.1007/978-981-10-3932-4_3
– ident: 10.1016/j.procs.2025.04.359_bib5247
  doi: 10.1109/ACCESS.2018.2806394
– ident: 10.1016/j.procs.2025.04.359_bib5246
  doi: 10.1007/978-3-319-27433-1_4
– ident: 10.1016/j.procs.2025.04.359_bib5248
  doi: 10.1109/ICPR.2016.7899672
SSID ssj0000388917
Score 2.3420877
Snippet The issue of cyberbullying is more worrisome on social media platforms. Individuals are taking advantage of the unrestricted ability to express themselves on...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 1254
SubjectTerms Cyberbullying
Machine Learning (ML)
Natural Language Processing (NLP)
Term Frequency-Inverse Data Frequency (TF-IDF)
Title An Efficient Method for Detecting Cyberbullying Using Supervised Machine Learning Techniques
URI https://dx.doi.org/10.1016/j.procs.2025.04.359
Volume 258
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvXjxLdZH2YNHQzfJ5nWstaVY6sG22IOw7GMilRKLbQ_-e3c2iSiIBy-BhOwSvmTnm-zMfEPINXBmlMwyL8iBexzsQTJlF56y_x5Mx7IMxYwf4uGM38-jeYP06loYTKusbH9p0521rq50KjQ7q8WiM_HTJEH1kgBDY7GT_gx56or45rdf-yyodpK5xrt4v4cDavEhl-aFPIGy3UGEkqchapb-RlDfSGdwQPYqb5F2ywc6JA0ojsh-3YmBVgvzmDx3C9p3YhCWQ-jYdYWm1h2ld4BBAktPtPehEMHlEuuaqMsUoJPtCk3FGgwdu6RKoJXe6gud1uKu6xMyG_SnvaFX9U3wtCVwDJhEEEfa_X3kcWikHyfA_cRAkhvNLGoKMi1lwEKThCYNZACW-FPrmRgJMgpPSbN4K-CMUM0y66No4Eb73E-ZYpmdL_cVlsTaaVvkpgZLrEp5DFHnjb0Kh61AbAXjwmLbInENqPjxloU14H8NPP_vwAuyi2flpsklaW7et3Bl3YiNapOd7ujxadR238snlOzHmg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqGGDhjShPD4xEdRLnNZbSqoWmS1upA5Ll2A4qqkJF24F_z52TIJAQA0uGRGdFX-L7zr7zd4TcGs50JpPE8XLDHW7gIlkGEy-DtQdToSxTMeko7E_54yyYNUinPguDZZWV7y99uvXW1Z1WhWZrOZ-3xm4cRahe4mFqLETpz22IBiLs3zCY3X9ttKDcSWI776KBgxa1-pCt80KiQN1uL0DNUx9FS39jqG-s0zsge1W4SNvlGx2ShimOyH7dioFWM_OYPLcL2rVqEEAiNLVtoSnEo_TBYJYA-Il2PjKEcLHAg03UlgrQ8WaJvmJlNE1tVaWhleDqC53U6q6rEzLtdSedvlM1TnAUMDhmTAITBsouP_LQ19INI8PdSJso14oBbJlJlJQe83Xk69iTngHmjyE00dLIwD8lW8VbYc4IVSyBIEUZrpXL3ZhlLIHxcjfDM7EwbJPc1WCJZamPIerCsVdhsRWIrWBcALZNEtaAih-fWYAH_8vw_L-GN2SnP0mHYjgYPV2QXXxS7qBckq31-8ZcQUyxzq7tP_MJYQrJFg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Efficient+Method+for+Detecting+Cyberbullying+Using+Supervised+Machine+Learning+Techniques&rft.jtitle=Procedia+computer+science&rft.au=Joshi%2C+Bansidhar&rft.au=Joshi%2C+Bineet+Kumar&rft.au=Pant%2C+Sangeeta&rft.au=Kumar%2C+Anuj&rft.date=2025&rft.pub=Elsevier+B.V&rft.issn=1877-0509&rft.eissn=1877-0509&rft.volume=258&rft.spage=1254&rft.epage=1261&rft_id=info:doi/10.1016%2Fj.procs.2025.04.359&rft.externalDocID=S1877050925014619
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-0509&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-0509&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-0509&client=summon