Meteorological fault risk assessment of power grid based on improved association rules algorithm
In order to improve the evaluation effect of meteorological fault risk of power grid, a new method is proposed to deal with the fault risk of power grid under extreme weather conditions. This method combines the advantages of traditional association rules algorithm and makes specific improvements to...
Saved in:
Published in | Procedia computer science Vol. 262; pp. 1252 - 1258 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In order to improve the evaluation effect of meteorological fault risk of power grid, a new method is proposed to deal with the fault risk of power grid under extreme weather conditions. This method combines the advantages of traditional association rules algorithm and makes specific improvements to identify the potential association between power grid faults and meteorological conditions more accurately. Through the comprehensive analysis of historical meteorological data and power grid fault records, the key factors affecting the stable operation of power grid are dug out, and the corresponding risk assessment model is constructed. Experiments show that the risk assessment model based on improved association rules algorithm can accurately assess the fault risk of power grid under different meteorological conditions, and the improved algorithm is obviously better than the traditional Apriori algorithm in terms of running time, which can improve the accuracy and intelligence level of power grid meteorological fault risk assessment. |
---|---|
AbstractList | In order to improve the evaluation effect of meteorological fault risk of power grid, a new method is proposed to deal with the fault risk of power grid under extreme weather conditions. This method combines the advantages of traditional association rules algorithm and makes specific improvements to identify the potential association between power grid faults and meteorological conditions more accurately. Through the comprehensive analysis of historical meteorological data and power grid fault records, the key factors affecting the stable operation of power grid are dug out, and the corresponding risk assessment model is constructed. Experiments show that the risk assessment model based on improved association rules algorithm can accurately assess the fault risk of power grid under different meteorological conditions, and the improved algorithm is obviously better than the traditional Apriori algorithm in terms of running time, which can improve the accuracy and intelligence level of power grid meteorological fault risk assessment. |
Author | Li, Yuanchao Meng, Mingming Xia, Zongjie Zhang, Tao |
Author_xml | – sequence: 1 givenname: Yuanchao surname: Li fullname: Li, Yuanchao organization: Smart Distribution Network Department, State Grid Anhui Electric Power Co., Ltd. Tongling Power Supply Company, Tongling 244000, China – sequence: 2 givenname: Zongjie surname: Xia fullname: Xia, Zongjie email: shandianll2_112@163.com organization: Smart Distribution Network Department, State Grid Anhui Electric Power Co., Ltd. Tongling Power Supply Company, Tongling 244000, China – sequence: 3 givenname: Mingming surname: Meng fullname: Meng, Mingming organization: Smart Distribution Network Department, State Grid Anhui Electric Power Co., Ltd. Tongling Power Supply Company, Tongling 244000, China – sequence: 4 givenname: Tao surname: Zhang fullname: Zhang, Tao organization: Beijing SGITG-Accenture Information Technology Co., Ltd, Beijing 100031, China |
BookMark | eNp9kMtOwzAQRS1UJErpF7DxDyT4EcfpggWqeElFbGBtHHtcXJK4stMi_h6XsmDFbOZqNHfm6pyjyRAGQOiSkpISWl9tym0MJpWMMFESUdJanqApbaQsiCCLyR99huYpbUgu3jQLKqfo7QlGCDF0Ye2N7rDTu27E0acPrFOClHoYRhwc3oZPiHgdvcWtTmBxGLDv8-d91nk1GK9Hn4dx10HCuluH6Mf3_gKdOt0lmP_2GXq9u31ZPhSr5_vH5c2qMIwKWTAua1fVLSUL5lpBjWONZgwE04xro6uaWctlBTk6JVYIWWluwFhaV9IA5TPEj3dNDClFcGobfa_jl6JEHTipjfrhpA6cFBEqc8qu66MLcrS9h6iS8TAYsD6CGZUN_l__NxgEdbY |
Cites_doi | 10.1016/j.procs.2023.09.052 |
ContentType | Journal Article |
Copyright | 2025 The Author(s) |
Copyright_xml | – notice: 2025 The Author(s) |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.procs.2025.05.167 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1877-0509 |
EndPage | 1258 |
ExternalDocumentID | 10_1016_j_procs_2025_05_167 S1877050925020149 |
GroupedDBID | --K 0R~ 1B1 457 5VS 6I. 71M AAEDT AAEDW AAFTH AAIKJ AALRI AAQFI AAXUO AAYWO ABMAC ABWVN ACGFS ACRPL ACVFH ADBBV ADCNI ADEZE ADNMO ADVLN AEUPX AEXQZ AFPUW AFTJW AGHFR AIGII AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ E3Z EBS EJD EP3 FDB FNPLU HZ~ IXB KQ8 M41 M~E O-L O9- OK1 P2P RIG ROL SES SSZ AAYXX CITATION |
ID | FETCH-LOGICAL-c2157-2376f46b1092fb51cf28a22e52a23aca462dd374e00310d5574a3cecd1647ce13 |
IEDL.DBID | IXB |
ISSN | 1877-0509 |
IngestDate | Thu Jul 24 01:54:11 EDT 2025 Sat Aug 16 17:01:12 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Apriori algorithm Improved association rule algorithm Risk level Meteorological fault Risk assessment |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2157-2376f46b1092fb51cf28a22e52a23aca462dd374e00310d5574a3cecd1647ce13 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1877050925020149 |
PageCount | 7 |
ParticipantIDs | crossref_primary_10_1016_j_procs_2025_05_167 elsevier_sciencedirect_doi_10_1016_j_procs_2025_05_167 |
PublicationCentury | 2000 |
PublicationDate | 2025 2025-00-00 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – year: 2025 text: 2025 |
PublicationDecade | 2020 |
PublicationTitle | Procedia computer science |
PublicationYear | 2025 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Wang (bib11) 2023; 224 Sun Tao, Li Yue, Wang Jin, et al. Heavy rain induced longnan grid geological disaster risk assessment and early warning method study [J]. Journal of meteorological drought, 2024, 42 (5): 813-823. The doi Jinhu, Junhui (bib4) 2024; 14 Wang Deyun, Zhang Ludan, Wu Qi, et al. Flood disaster risk assessment, based on machine learning algorithm in yichang, for example [J]. Journal of resources and environment in Yangtze river basin, 2023, 000 (8): 14. Fan (bib7) 2024; 6 Jian, Zhangmin, Dongliang (bib1) 2024; 52 Ya-Yue, Tian-Gui, Yue-Qing (bib5) 2024; 44 Wenguang, Peng, Yan (bib8) 2023; 35 ISSN. The 1006-7639-2024-05-0813. Zilong, Zhengyu (bib10) 2024; 44 Yang, Zhao, Zhang (bib6) 2024; 45 Youfei, Guoping, Binbin (bib9) 2024; 57 Jian (10.1016/j.procs.2025.05.167_bib1) 2024; 52 Zilong (10.1016/j.procs.2025.05.167_bib10) 2024; 44 Ya-Yue (10.1016/j.procs.2025.05.167_bib5) 2024; 44 Fan (10.1016/j.procs.2025.05.167_bib7) 2024; 6 Youfei (10.1016/j.procs.2025.05.167_bib9) 2024; 57 Wang (10.1016/j.procs.2025.05.167_bib11) 2023; 224 10.1016/j.procs.2025.05.167_bib2 10.1016/j.procs.2025.05.167_bib3 Yang (10.1016/j.procs.2025.05.167_bib6) 2024; 45 Jinhu (10.1016/j.procs.2025.05.167_bib4) 2024; 14 Wenguang (10.1016/j.procs.2025.05.167_bib8) 2023; 35 |
References_xml | – reference: Sun Tao, Li Yue, Wang Jin, et al. Heavy rain induced longnan grid geological disaster risk assessment and early warning method study [J]. Journal of meteorological drought, 2024, 42 (5): 813-823. The doi: – volume: 6 start-page: 217 year: 2024 end-page: 219 ident: bib7 article-title: Research on major agrometeorological disaster risk assessment techniques and their application in China [J] publication-title: Agricultural Science and Technology – volume: 52 start-page: 16 year: 2024 end-page: 26 ident: bib1 article-title: Short-term risk assessment of power grid with primary and secondary equipment coupling failures under disaster weather [J] publication-title: Power System Protection and Control – volume: 44 start-page: 137 year: 2024 end-page: 144 ident: bib5 article-title: Based on projection pursuit method of rainstorm disaster risk assessment in yunnan province [J] publication-title: Journal of plateau mountain weather research – volume: 57 start-page: 31 year: 2024 end-page: 34 ident: bib9 article-title: Analysis of power grid fault risk factors based on Association rule mining technology [J] publication-title: Journal of Wuhan University (Engineering) – volume: 224 start-page: 383 year: 2023 end-page: 388 ident: bib11 article-title: Meteorological hazard risk assessment of offshore wind power grids based on CVAR method[J] publication-title: Procedia Computer Science – volume: 14 start-page: 1397 year: 2024 end-page: 1409 ident: bib4 article-title: Yangtze river delta region rainstorm disaster risk evaluation based on ArcGIS study [J] publication-title: Journal of management and fuzzy – reference: Wang Deyun, Zhang Ludan, Wu Qi, et al. Flood disaster risk assessment, based on machine learning algorithm in yichang, for example [J]. Journal of resources and environment in Yangtze river basin, 2023, 000 (8): 14. – volume: 45 start-page: 798 year: 2024 end-page: 808 ident: bib6 article-title: Risk assessment of agrometeorological disasters in North China under warming environment III: Joint recurrence period analysis of duration and intensity of high temperature events in the Beijing-Tianjin-Hebei region [J] publication-title: China agricultural meteorology – volume: 35 start-page: 64 year: 2023 end-page: 69 ident: bib8 article-title: Meteorological disaster risk assessment in Lanzhou Marathon based on hierarchical model [J] publication-title: Journal of Gansu Sciences – volume: 44 start-page: 143 year: 2024 end-page: 147 ident: bib10 article-title: Meteorological risk assessment of power grid based on improved association rules mining [J] publication-title: Ship Electronic Engineering – reference: . ISSN. The 1006-7639-2024-05-0813. – ident: 10.1016/j.procs.2025.05.167_bib2 – volume: 35 start-page: 64 issue: 6 year: 2023 ident: 10.1016/j.procs.2025.05.167_bib8 article-title: Meteorological disaster risk assessment in Lanzhou Marathon based on hierarchical model [J] publication-title: Journal of Gansu Sciences – volume: 44 start-page: 143 issue: 2 year: 2024 ident: 10.1016/j.procs.2025.05.167_bib10 article-title: Meteorological risk assessment of power grid based on improved association rules mining [J] publication-title: Ship Electronic Engineering – volume: 52 start-page: 16 issue: 9 year: 2024 ident: 10.1016/j.procs.2025.05.167_bib1 article-title: Short-term risk assessment of power grid with primary and secondary equipment coupling failures under disaster weather [J] publication-title: Power System Protection and Control – volume: 57 start-page: 31 issue: 6 year: 2024 ident: 10.1016/j.procs.2025.05.167_bib9 article-title: Analysis of power grid fault risk factors based on Association rule mining technology [J] publication-title: Journal of Wuhan University (Engineering) – volume: 224 start-page: 383 year: 2023 ident: 10.1016/j.procs.2025.05.167_bib11 article-title: Meteorological hazard risk assessment of offshore wind power grids based on CVAR method[J] publication-title: Procedia Computer Science doi: 10.1016/j.procs.2023.09.052 – ident: 10.1016/j.procs.2025.05.167_bib3 – volume: 6 start-page: 217 year: 2024 ident: 10.1016/j.procs.2025.05.167_bib7 article-title: Research on major agrometeorological disaster risk assessment techniques and their application in China [J] publication-title: Agricultural Science and Technology – volume: 44 start-page: 137 issue: 3 year: 2024 ident: 10.1016/j.procs.2025.05.167_bib5 article-title: Based on projection pursuit method of rainstorm disaster risk assessment in yunnan province [J] publication-title: Journal of plateau mountain weather research – volume: 14 start-page: 1397 issue: 3 year: 2024 ident: 10.1016/j.procs.2025.05.167_bib4 article-title: Yangtze river delta region rainstorm disaster risk evaluation based on ArcGIS study [J] publication-title: Journal of management and fuzzy – volume: 45 start-page: 798 issue: 7 year: 2024 ident: 10.1016/j.procs.2025.05.167_bib6 article-title: Risk assessment of agrometeorological disasters in North China under warming environment III: Joint recurrence period analysis of duration and intensity of high temperature events in the Beijing-Tianjin-Hebei region [J] publication-title: China agricultural meteorology |
SSID | ssj0000388917 |
Score | 2.3420908 |
Snippet | In order to improve the evaluation effect of meteorological fault risk of power grid, a new method is proposed to deal with the fault risk of power grid under... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 1252 |
SubjectTerms | Apriori algorithm Improved association rule algorithm Meteorological fault Risk assessment Risk level |
Title | Meteorological fault risk assessment of power grid based on improved association rules algorithm |
URI | https://dx.doi.org/10.1016/j.procs.2025.05.167 |
Volume | 262 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELWqsrDwjfisPDASFTt24o6loqqoYAAqugXHHyWoJFVI_z8-NykgIQa2JMpJ0bN972I9v0PoIgqp5iIkgZHUBEz0ZNCTVgSRFlJxx4mx9WqL-2g0YbdTPm2hQXMWBmSVde5f5XSfresn3RrN7iLLuo9ExDG4lzgSp1DouzwcMuEP8U2v1_ss4HbS84134f0AAhrzIS_zAp4A227KwcGT-H7zvxDUN9IZ7qCtulrE_dUH7aKWyffQdtOJAdcLcx-93LnatyibRIatXM4rDLJxLNfWm7iweAFN0fCszDQG_tK4yHHm9xXctfwaKlwu5-YDy_msKLPq9f0ATYY3T4NRUPdOCJQj8TgAsYtlUUocPjblRFkqJKWGU0lDqSSLqNZhzIz3BtWcx0yGyigN_mLKkPAQtfMiN0cI81QaZon7L4H21DYSTMWWWUXcAkspF8fosgEsWawsMpJGO_aWeHwTwDe54onD9xhFDajJj5FOXBL_K_Dkv4GnaBPuVhsnZ6hdlUtz7kqJKu2gjf744Xnc8XPmE6JuyYU |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB1BOcCFHbHjA9yIShw7SQ8cWNWyXQCpN-M4dgkqTRVaIb6LH8TjJiwS4oDUW5TIkfUymTe2nt8A7IYBTXkc-J6WVHssbkivIU3shWksFbecGBmntrgJm_fsos3bE_BenYVBWWWZ-0c53WXr8k69RLPez7L6rR9HEbqXWBKnWOiXyspL_fZq120vh61T-5H3KD0_uztpemVrAU9Zjos81IIYFia-HW4S7itDY0mp5lTSQCrJQpqmQcS0s85MOY-YDJRWKdpvKe0H9r2TMGWrjwizQat9_Lmxg_YqDdfpFyfo4QwrtyOnK0NiQp9wytEy1HcN7n9hxG8sdz4Ps2V5So5GCCzAhO4twlzV-oGUmWAJHq5tsZ0XVeYkRg67A4I6dSI_vT5Jbkgfu7CRTpGlBAkzJXmPZG4jw17Lr9ggxbCrX4jsdvIiGzw-L8P9WBBdgVov7-lVIDyRmhnfLoSwH7YJY6Yiw4zy7R-dUB6vwX4FmOiPPDlEJVZ7Eg5fgfiKAy4svmsQVqCKH6ElLGv8NXD9vwN3YLp5d30lrlo3lxswg09GuzabUBsUQ71l65hBsu3ihsDDuAP1A0VrA7s |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Meteorological+fault+risk+assessment+of+power+grid+based+on+improved+association+rules+algorithm&rft.jtitle=Procedia+computer+science&rft.au=Li%2C+Yuanchao&rft.au=Xia%2C+Zongjie&rft.au=Meng%2C+Mingming&rft.au=Zhang%2C+Tao&rft.date=2025&rft.issn=1877-0509&rft.eissn=1877-0509&rft.volume=262&rft.spage=1252&rft.epage=1258&rft_id=info:doi/10.1016%2Fj.procs.2025.05.167&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_procs_2025_05_167 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-0509&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-0509&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-0509&client=summon |