Meteorological fault risk assessment of power grid based on improved association rules algorithm

In order to improve the evaluation effect of meteorological fault risk of power grid, a new method is proposed to deal with the fault risk of power grid under extreme weather conditions. This method combines the advantages of traditional association rules algorithm and makes specific improvements to...

Full description

Saved in:
Bibliographic Details
Published inProcedia computer science Vol. 262; pp. 1252 - 1258
Main Authors Li, Yuanchao, Xia, Zongjie, Meng, Mingming, Zhang, Tao
Format Journal Article
LanguageEnglish
Published Elsevier B.V 2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In order to improve the evaluation effect of meteorological fault risk of power grid, a new method is proposed to deal with the fault risk of power grid under extreme weather conditions. This method combines the advantages of traditional association rules algorithm and makes specific improvements to identify the potential association between power grid faults and meteorological conditions more accurately. Through the comprehensive analysis of historical meteorological data and power grid fault records, the key factors affecting the stable operation of power grid are dug out, and the corresponding risk assessment model is constructed. Experiments show that the risk assessment model based on improved association rules algorithm can accurately assess the fault risk of power grid under different meteorological conditions, and the improved algorithm is obviously better than the traditional Apriori algorithm in terms of running time, which can improve the accuracy and intelligence level of power grid meteorological fault risk assessment.
AbstractList In order to improve the evaluation effect of meteorological fault risk of power grid, a new method is proposed to deal with the fault risk of power grid under extreme weather conditions. This method combines the advantages of traditional association rules algorithm and makes specific improvements to identify the potential association between power grid faults and meteorological conditions more accurately. Through the comprehensive analysis of historical meteorological data and power grid fault records, the key factors affecting the stable operation of power grid are dug out, and the corresponding risk assessment model is constructed. Experiments show that the risk assessment model based on improved association rules algorithm can accurately assess the fault risk of power grid under different meteorological conditions, and the improved algorithm is obviously better than the traditional Apriori algorithm in terms of running time, which can improve the accuracy and intelligence level of power grid meteorological fault risk assessment.
Author Li, Yuanchao
Meng, Mingming
Xia, Zongjie
Zhang, Tao
Author_xml – sequence: 1
  givenname: Yuanchao
  surname: Li
  fullname: Li, Yuanchao
  organization: Smart Distribution Network Department, State Grid Anhui Electric Power Co., Ltd. Tongling Power Supply Company, Tongling 244000, China
– sequence: 2
  givenname: Zongjie
  surname: Xia
  fullname: Xia, Zongjie
  email: shandianll2_112@163.com
  organization: Smart Distribution Network Department, State Grid Anhui Electric Power Co., Ltd. Tongling Power Supply Company, Tongling 244000, China
– sequence: 3
  givenname: Mingming
  surname: Meng
  fullname: Meng, Mingming
  organization: Smart Distribution Network Department, State Grid Anhui Electric Power Co., Ltd. Tongling Power Supply Company, Tongling 244000, China
– sequence: 4
  givenname: Tao
  surname: Zhang
  fullname: Zhang, Tao
  organization: Beijing SGITG-Accenture Information Technology Co., Ltd, Beijing 100031, China
BookMark eNp9kMtOwzAQRS1UJErpF7DxDyT4EcfpggWqeElFbGBtHHtcXJK4stMi_h6XsmDFbOZqNHfm6pyjyRAGQOiSkpISWl9tym0MJpWMMFESUdJanqApbaQsiCCLyR99huYpbUgu3jQLKqfo7QlGCDF0Ye2N7rDTu27E0acPrFOClHoYRhwc3oZPiHgdvcWtTmBxGLDv8-d91nk1GK9Hn4dx10HCuluH6Mf3_gKdOt0lmP_2GXq9u31ZPhSr5_vH5c2qMIwKWTAua1fVLSUL5lpBjWONZgwE04xro6uaWctlBTk6JVYIWWluwFhaV9IA5TPEj3dNDClFcGobfa_jl6JEHTipjfrhpA6cFBEqc8qu66MLcrS9h6iS8TAYsD6CGZUN_l__NxgEdbY
Cites_doi 10.1016/j.procs.2023.09.052
ContentType Journal Article
Copyright 2025 The Author(s)
Copyright_xml – notice: 2025 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.procs.2025.05.167
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1877-0509
EndPage 1258
ExternalDocumentID 10_1016_j_procs_2025_05_167
S1877050925020149
GroupedDBID --K
0R~
1B1
457
5VS
6I.
71M
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAQFI
AAXUO
AAYWO
ABMAC
ABWVN
ACGFS
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADNMO
ADVLN
AEUPX
AEXQZ
AFPUW
AFTJW
AGHFR
AIGII
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
E3Z
EBS
EJD
EP3
FDB
FNPLU
HZ~
IXB
KQ8
M41
M~E
O-L
O9-
OK1
P2P
RIG
ROL
SES
SSZ
AAYXX
CITATION
ID FETCH-LOGICAL-c2157-2376f46b1092fb51cf28a22e52a23aca462dd374e00310d5574a3cecd1647ce13
IEDL.DBID IXB
ISSN 1877-0509
IngestDate Thu Jul 24 01:54:11 EDT 2025
Sat Aug 16 17:01:12 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Apriori algorithm
Improved association rule algorithm
Risk level
Meteorological fault
Risk assessment
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2157-2376f46b1092fb51cf28a22e52a23aca462dd374e00310d5574a3cecd1647ce13
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1877050925020149
PageCount 7
ParticipantIDs crossref_primary_10_1016_j_procs_2025_05_167
elsevier_sciencedirect_doi_10_1016_j_procs_2025_05_167
PublicationCentury 2000
PublicationDate 2025
2025-00-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 2025
PublicationDecade 2020
PublicationTitle Procedia computer science
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Wang (bib11) 2023; 224
Sun Tao, Li Yue, Wang Jin, et al. Heavy rain induced longnan grid geological disaster risk assessment and early warning method study [J]. Journal of meteorological drought, 2024, 42 (5): 813-823. The doi
Jinhu, Junhui (bib4) 2024; 14
Wang Deyun, Zhang Ludan, Wu Qi, et al. Flood disaster risk assessment, based on machine learning algorithm in yichang, for example [J]. Journal of resources and environment in Yangtze river basin, 2023, 000 (8): 14.
Fan (bib7) 2024; 6
Jian, Zhangmin, Dongliang (bib1) 2024; 52
Ya-Yue, Tian-Gui, Yue-Qing (bib5) 2024; 44
Wenguang, Peng, Yan (bib8) 2023; 35
ISSN. The 1006-7639-2024-05-0813.
Zilong, Zhengyu (bib10) 2024; 44
Yang, Zhao, Zhang (bib6) 2024; 45
Youfei, Guoping, Binbin (bib9) 2024; 57
Jian (10.1016/j.procs.2025.05.167_bib1) 2024; 52
Zilong (10.1016/j.procs.2025.05.167_bib10) 2024; 44
Ya-Yue (10.1016/j.procs.2025.05.167_bib5) 2024; 44
Fan (10.1016/j.procs.2025.05.167_bib7) 2024; 6
Youfei (10.1016/j.procs.2025.05.167_bib9) 2024; 57
Wang (10.1016/j.procs.2025.05.167_bib11) 2023; 224
10.1016/j.procs.2025.05.167_bib2
10.1016/j.procs.2025.05.167_bib3
Yang (10.1016/j.procs.2025.05.167_bib6) 2024; 45
Jinhu (10.1016/j.procs.2025.05.167_bib4) 2024; 14
Wenguang (10.1016/j.procs.2025.05.167_bib8) 2023; 35
References_xml – reference: Sun Tao, Li Yue, Wang Jin, et al. Heavy rain induced longnan grid geological disaster risk assessment and early warning method study [J]. Journal of meteorological drought, 2024, 42 (5): 813-823. The doi:
– volume: 6
  start-page: 217
  year: 2024
  end-page: 219
  ident: bib7
  article-title: Research on major agrometeorological disaster risk assessment techniques and their application in China [J]
  publication-title: Agricultural Science and Technology
– volume: 52
  start-page: 16
  year: 2024
  end-page: 26
  ident: bib1
  article-title: Short-term risk assessment of power grid with primary and secondary equipment coupling failures under disaster weather [J]
  publication-title: Power System Protection and Control
– volume: 44
  start-page: 137
  year: 2024
  end-page: 144
  ident: bib5
  article-title: Based on projection pursuit method of rainstorm disaster risk assessment in yunnan province [J]
  publication-title: Journal of plateau mountain weather research
– volume: 57
  start-page: 31
  year: 2024
  end-page: 34
  ident: bib9
  article-title: Analysis of power grid fault risk factors based on Association rule mining technology [J]
  publication-title: Journal of Wuhan University (Engineering)
– volume: 224
  start-page: 383
  year: 2023
  end-page: 388
  ident: bib11
  article-title: Meteorological hazard risk assessment of offshore wind power grids based on CVAR method[J]
  publication-title: Procedia Computer Science
– volume: 14
  start-page: 1397
  year: 2024
  end-page: 1409
  ident: bib4
  article-title: Yangtze river delta region rainstorm disaster risk evaluation based on ArcGIS study [J]
  publication-title: Journal of management and fuzzy
– reference: Wang Deyun, Zhang Ludan, Wu Qi, et al. Flood disaster risk assessment, based on machine learning algorithm in yichang, for example [J]. Journal of resources and environment in Yangtze river basin, 2023, 000 (8): 14.
– volume: 45
  start-page: 798
  year: 2024
  end-page: 808
  ident: bib6
  article-title: Risk assessment of agrometeorological disasters in North China under warming environment III: Joint recurrence period analysis of duration and intensity of high temperature events in the Beijing-Tianjin-Hebei region [J]
  publication-title: China agricultural meteorology
– volume: 35
  start-page: 64
  year: 2023
  end-page: 69
  ident: bib8
  article-title: Meteorological disaster risk assessment in Lanzhou Marathon based on hierarchical model [J]
  publication-title: Journal of Gansu Sciences
– volume: 44
  start-page: 143
  year: 2024
  end-page: 147
  ident: bib10
  article-title: Meteorological risk assessment of power grid based on improved association rules mining [J]
  publication-title: Ship Electronic Engineering
– reference: . ISSN. The 1006-7639-2024-05-0813.
– ident: 10.1016/j.procs.2025.05.167_bib2
– volume: 35
  start-page: 64
  issue: 6
  year: 2023
  ident: 10.1016/j.procs.2025.05.167_bib8
  article-title: Meteorological disaster risk assessment in Lanzhou Marathon based on hierarchical model [J]
  publication-title: Journal of Gansu Sciences
– volume: 44
  start-page: 143
  issue: 2
  year: 2024
  ident: 10.1016/j.procs.2025.05.167_bib10
  article-title: Meteorological risk assessment of power grid based on improved association rules mining [J]
  publication-title: Ship Electronic Engineering
– volume: 52
  start-page: 16
  issue: 9
  year: 2024
  ident: 10.1016/j.procs.2025.05.167_bib1
  article-title: Short-term risk assessment of power grid with primary and secondary equipment coupling failures under disaster weather [J]
  publication-title: Power System Protection and Control
– volume: 57
  start-page: 31
  issue: 6
  year: 2024
  ident: 10.1016/j.procs.2025.05.167_bib9
  article-title: Analysis of power grid fault risk factors based on Association rule mining technology [J]
  publication-title: Journal of Wuhan University (Engineering)
– volume: 224
  start-page: 383
  year: 2023
  ident: 10.1016/j.procs.2025.05.167_bib11
  article-title: Meteorological hazard risk assessment of offshore wind power grids based on CVAR method[J]
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2023.09.052
– ident: 10.1016/j.procs.2025.05.167_bib3
– volume: 6
  start-page: 217
  year: 2024
  ident: 10.1016/j.procs.2025.05.167_bib7
  article-title: Research on major agrometeorological disaster risk assessment techniques and their application in China [J]
  publication-title: Agricultural Science and Technology
– volume: 44
  start-page: 137
  issue: 3
  year: 2024
  ident: 10.1016/j.procs.2025.05.167_bib5
  article-title: Based on projection pursuit method of rainstorm disaster risk assessment in yunnan province [J]
  publication-title: Journal of plateau mountain weather research
– volume: 14
  start-page: 1397
  issue: 3
  year: 2024
  ident: 10.1016/j.procs.2025.05.167_bib4
  article-title: Yangtze river delta region rainstorm disaster risk evaluation based on ArcGIS study [J]
  publication-title: Journal of management and fuzzy
– volume: 45
  start-page: 798
  issue: 7
  year: 2024
  ident: 10.1016/j.procs.2025.05.167_bib6
  article-title: Risk assessment of agrometeorological disasters in North China under warming environment III: Joint recurrence period analysis of duration and intensity of high temperature events in the Beijing-Tianjin-Hebei region [J]
  publication-title: China agricultural meteorology
SSID ssj0000388917
Score 2.3420908
Snippet In order to improve the evaluation effect of meteorological fault risk of power grid, a new method is proposed to deal with the fault risk of power grid under...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 1252
SubjectTerms Apriori algorithm
Improved association rule algorithm
Meteorological fault
Risk assessment
Risk level
Title Meteorological fault risk assessment of power grid based on improved association rules algorithm
URI https://dx.doi.org/10.1016/j.procs.2025.05.167
Volume 262
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELWqsrDwjfisPDASFTt24o6loqqoYAAqugXHHyWoJFVI_z8-NykgIQa2JMpJ0bN972I9v0PoIgqp5iIkgZHUBEz0ZNCTVgSRFlJxx4mx9WqL-2g0YbdTPm2hQXMWBmSVde5f5XSfresn3RrN7iLLuo9ExDG4lzgSp1DouzwcMuEP8U2v1_ss4HbS84134f0AAhrzIS_zAp4A227KwcGT-H7zvxDUN9IZ7qCtulrE_dUH7aKWyffQdtOJAdcLcx-93LnatyibRIatXM4rDLJxLNfWm7iweAFN0fCszDQG_tK4yHHm9xXctfwaKlwu5-YDy_msKLPq9f0ATYY3T4NRUPdOCJQj8TgAsYtlUUocPjblRFkqJKWGU0lDqSSLqNZhzIz3BtWcx0yGyigN_mLKkPAQtfMiN0cI81QaZon7L4H21DYSTMWWWUXcAkspF8fosgEsWawsMpJGO_aWeHwTwDe54onD9xhFDajJj5FOXBL_K_Dkv4GnaBPuVhsnZ6hdlUtz7kqJKu2gjf744Xnc8XPmE6JuyYU
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB1BOcCFHbHjA9yIShw7SQ8cWNWyXQCpN-M4dgkqTRVaIb6LH8TjJiwS4oDUW5TIkfUymTe2nt8A7IYBTXkc-J6WVHssbkivIU3shWksFbecGBmntrgJm_fsos3bE_BenYVBWWWZ-0c53WXr8k69RLPez7L6rR9HEbqXWBKnWOiXyspL_fZq120vh61T-5H3KD0_uztpemVrAU9Zjos81IIYFia-HW4S7itDY0mp5lTSQCrJQpqmQcS0s85MOY-YDJRWKdpvKe0H9r2TMGWrjwizQat9_Lmxg_YqDdfpFyfo4QwrtyOnK0NiQp9wytEy1HcN7n9hxG8sdz4Ps2V5So5GCCzAhO4twlzV-oGUmWAJHq5tsZ0XVeYkRg67A4I6dSI_vT5Jbkgfu7CRTpGlBAkzJXmPZG4jw17Lr9ggxbCrX4jsdvIiGzw-L8P9WBBdgVov7-lVIDyRmhnfLoSwH7YJY6Yiw4zy7R-dUB6vwX4FmOiPPDlEJVZ7Eg5fgfiKAy4svmsQVqCKH6ElLGv8NXD9vwN3YLp5d30lrlo3lxswg09GuzabUBsUQ71l65hBsu3ihsDDuAP1A0VrA7s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Meteorological+fault+risk+assessment+of+power+grid+based+on+improved+association+rules+algorithm&rft.jtitle=Procedia+computer+science&rft.au=Li%2C+Yuanchao&rft.au=Xia%2C+Zongjie&rft.au=Meng%2C+Mingming&rft.au=Zhang%2C+Tao&rft.date=2025&rft.issn=1877-0509&rft.eissn=1877-0509&rft.volume=262&rft.spage=1252&rft.epage=1258&rft_id=info:doi/10.1016%2Fj.procs.2025.05.167&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_procs_2025_05_167
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-0509&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-0509&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-0509&client=summon