Enhanced Parkinson’s Diagnosis through Ensemble Learning with Stacking and Cross-Validation
Parkinson’s disease (PD) damage to the brain’s nerve cells. Detecting the initial symptoms, including tremors, muscular rigidity, decreased balance, and trouble walking, requires a prolonged time. The PD ranks among the leading causes of disability and death among neurological disorders, according t...
Saved in:
Published in | Procedia computer science Vol. 259; pp. 250 - 259 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Parkinson’s disease (PD) damage to the brain’s nerve cells. Detecting the initial symptoms, including tremors, muscular rigidity, decreased balance, and trouble walking, requires a prolonged time. The PD ranks among the leading causes of disability and death among neurological disorders, according to the “World Health Organization”. Insufficient evidence from blood tests and MRI scans to support early diagnosis makes it challenging for doctors to detect PD in its initial stages. An excellent early alert indicator and a predictor of PD is through speech. Predicting the onset of Parkinson’s disease using audio recordings of both healthy people and those with the condition is the subject of this research. Effective evaluation of individual and ensemble machine learning approaches for PD classification using quantitative acoustic measure data is carried out in this article. This paper implements several ML methods, including “Support Vector Machine”, “Random Forest”, “Gradient Boosting Classifier”, “K-Nearest Neighbor”, “Logistic Regression”, and “Decision Tree”. An ensemble model is utilized incorporating stacking and stacking with cross-validation methods. The model performance is assessed using four metrics: “Accuracy”, “Recall”, “Precision”, and “F1 score”. The models are analysed and compared, showing accuracy levels ranging from 70% to 82% using the PD dataset. The higher-performing models are selected for a stacking ensemble to enhance overall performance. The stacking ensemble approach achieved an accuracy of 92% and provides accurate recognition of the disease. Subsequently, a stacking cross-validation classifier is employed to all models, resulting in an improved accuracy of 95%. |
---|---|
AbstractList | Parkinson’s disease (PD) damage to the brain’s nerve cells. Detecting the initial symptoms, including tremors, muscular rigidity, decreased balance, and trouble walking, requires a prolonged time. The PD ranks among the leading causes of disability and death among neurological disorders, according to the “World Health Organization”. Insufficient evidence from blood tests and MRI scans to support early diagnosis makes it challenging for doctors to detect PD in its initial stages. An excellent early alert indicator and a predictor of PD is through speech. Predicting the onset of Parkinson’s disease using audio recordings of both healthy people and those with the condition is the subject of this research. Effective evaluation of individual and ensemble machine learning approaches for PD classification using quantitative acoustic measure data is carried out in this article. This paper implements several ML methods, including “Support Vector Machine”, “Random Forest”, “Gradient Boosting Classifier”, “K-Nearest Neighbor”, “Logistic Regression”, and “Decision Tree”. An ensemble model is utilized incorporating stacking and stacking with cross-validation methods. The model performance is assessed using four metrics: “Accuracy”, “Recall”, “Precision”, and “F1 score”. The models are analysed and compared, showing accuracy levels ranging from 70% to 82% using the PD dataset. The higher-performing models are selected for a stacking ensemble to enhance overall performance. The stacking ensemble approach achieved an accuracy of 92% and provides accurate recognition of the disease. Subsequently, a stacking cross-validation classifier is employed to all models, resulting in an improved accuracy of 95%. |
Author | Mishra, Ram Krishn Prasanna, M. Lakshmi Kumar, Chandan |
Author_xml | – sequence: 1 givenname: M. Lakshmi surname: Prasanna fullname: Prasanna, M. Lakshmi organization: Department of CSE, Amrita School of Computing, Amrita Vishwa Vidyapeetham, Amaravati, Andhra Pradesh, India – sequence: 2 givenname: Chandan surname: Kumar fullname: Kumar, Chandan email: k_chandan@av.amrita.edu organization: Department of CSE, Amrita School of Computing, Amrita Vishwa Vidyapeetham, Amaravati, Andhra Pradesh, India – sequence: 3 givenname: Ram Krishn surname: Mishra fullname: Mishra, Ram Krishn organization: Department of Computing, De Montfort University Kazakhstan, 050044, Almaty, Kazakhstan |
BookMark | eNp9kElOwzAUhi0EEqX0BGx8gQQ7rhN3wQKVMkiVQGLYIcvDS-MOdmUHEDuuwfU4CQllwYq3eYP0Pf36jtC-Dx4QOqEkp4SWp8t8G4NJeUEKnhOWs6LcQwMqqiojnEz2_8yHaJTSknTFhJjQaoCeZ75R3oDFdyqunE_Bf318Jnzh1MKH5BJumxheFg2e-QQbvQY8BxW98wv85toG37fKrPpNeYunMaSUPam1s6p1wR-jg1qtE4x--xA9Xs4eptfZ_PbqZno-z0xBeZlpKEypDS85q7hQVAMdQ820EJwzoRRUwoCmYIwdW2ZtOeluRa15MTbaCMWGiO3-mj5AhFpuo9uo-C4pkb0kuZQ_kmQvSRImO0kddbajoIv26iDKZBz0MlwE00ob3L_8N80bdpU |
Cites_doi | 10.3390/diagnostics12123067 10.1109/ICACITE53722.2022.9823509 10.1007/978-3-031-56703-2_18 10.1016/j.jneumeth.2020.109019 10.1007/s41109-020-00307-w 10.1186/s12864-019-6413-7 10.1016/j.arr.2022.101834 10.1109/Confluence60223.2024.10463480 10.1016/j.procs.2022.12.054 10.1212/01.WNL.0000140706.52798.BE 10.1016/j.procs.2023.01.007 10.1016/j.eswa.2022.118045 10.3390/diagnostics14020128 10.1109/ACCESS.2019.2932037 10.3233/JPD-230002 10.1016/j.ejmp.2019.12.022 10.1016/j.specom.2020.12.007 10.1109/CBMS.2015.34 10.1186/s12911-020-01250-7 10.52783/jes.2400 10.1109/GCWkshps58843.2023.10465182 10.1080/10255842.2022.2072683 10.1016/j.arr.2023.102013 10.1109/IC3.2019.8844941 10.1007/s11227-023-05458-y 10.1145/3441417.3441425 10.3390/electronics12132856 10.1038/nrg1831 10.1016/j.cmpb.2023.107495 |
ContentType | Journal Article |
Copyright | 2025 |
Copyright_xml | – notice: 2025 |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.procs.2025.03.326 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1877-0509 |
EndPage | 259 |
ExternalDocumentID | 10_1016_j_procs_2025_03_326 S1877050925010701 |
GroupedDBID | --K 0R~ 1B1 457 5VS 6I. 71M AAEDT AAEDW AAFTH AAIKJ AALRI AAQFI AAXUO AAYWO ABMAC ABWVN ACGFS ACRPL ACVFH ADBBV ADCNI ADEZE ADNMO ADVLN AEUPX AEXQZ AFPUW AFTJW AGHFR AIGII AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ E3Z EBS EJD EP3 FDB FNPLU HZ~ IXB KQ8 M41 M~E O-L O9- OK1 P2P RIG ROL SES SSZ AAYXX CITATION |
ID | FETCH-LOGICAL-c2156-be2c6bc5653758a1be14ef3b885538aae78ceb1eccd4d3dd69aae2fb524cbc8a3 |
IEDL.DBID | IXB |
ISSN | 1877-0509 |
IngestDate | Sun Jul 06 05:05:30 EDT 2025 Sat Jun 14 16:52:17 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Ensemble Models Parkinson’s disease Machine learning Random Forest Classifier |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2156-be2c6bc5653758a1be14ef3b885538aae78ceb1eccd4d3dd69aae2fb524cbc8a3 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1877050925010701 |
PageCount | 10 |
ParticipantIDs | crossref_primary_10_1016_j_procs_2025_03_326 elsevier_sciencedirect_doi_10_1016_j_procs_2025_03_326 |
PublicationCentury | 2000 |
PublicationDate | 2025 2025-00-00 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – year: 2025 text: 2025 |
PublicationDecade | 2020 |
PublicationTitle | Procedia computer science |
PublicationYear | 2025 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | (1), 75-97. 519-528. Rehman, A., Saba, T., Mujahid, M., Alamri, F. S., & ElHakim, N. (2023). Parkinson’s disease detection using hybrid LSTM-GRU deep learning model. Kumar, C., Jha, S. K., Yadav, D. K., Prakash, S., & Prasad, M. (2024). A generalized approach to construct node probability table for Bayesian belief network using fuzzy logic. Srinivasu, P. N., Sirisha, U., Sandeep, K., Praveen, S. P., Maguluri, L. P., & Bikku, T. (2024). An Interpretable Approach with Explainable AI for Heart Stroke Prediction. (2), 128. (pp. 1335-1341). IEEE. (pp. 799-804). IEEE. 116480-116489. (7), 1240-1244. 249-261. Junaid, M., Ali, S., Eid, F., El-Sappagh, S., & Abuhmed, T. (2023). Explainable machine learning models based on multimodal time-series data for the early detection of Parkinson’s disease. Sasidharakurup, H., & Diwakar, S. (2020). Computational modelling of TNFα related pathways regulated by neuroinflammation, oxidative stress and insulin resistance in neurodegeneration. Younis Thanoun, M., & T. Yaseen, Mohammad. (2020, October). A comparative study of Parkinson disease diagnosis in machine learning. In Silva, A. B. R. L., de Oliveira, R. W. G., Diógenes, G. P., de Castro Aguiar, M. F., Sallem, C. C., Lima, M. P. P., ... & Dos Santos, J. C. C. (2023). Premotor, nonmotor and motor symptoms of Parkinson’s disease: a new clinical state of the art. Biswas, S. K., Nath Boruah, A., Saha, R., Raj, R. S., Chakraborty, M., & Bordoloi, M. (2023). Early detection of Parkinson disease using stacking ensemble method. 102013.. Gupta, R., Kumari, S., Senapati, A., Ambasta, R. K., & Kumar, P. (2023). New era of artificial intelligence and machine learning-based detection, diagnosis, and therapeutics in Parkinson’s disease. . (pp. 23-28). Reddy, N. S. S., Manoj, A. V. S., Reddy, V. P. M. S., Aadhithya, A., & Sowmya, V. (2023, December). Transfer Learning Approach for Differentiating Parkinson’s Syndromes Using Voice Recordings. In (13), 2856. Poorjam, A. H., Kavalekalam, M. S., Shi, L., Raykov, J. P., Jensen, J. R., Little, M. A., & Christensen, M. G. (2021). Automatic quality control and enhancement for voice-based remote Parkinson’s disease detection. Yang, Y., Wei, L., Hu, Y., Wu, Y., Hu, L., & Nie, S. (2021). Classification of Parkinson’s disease based on multi-modal features and stacking ensemble learning. Chicco, D., & Jurman, G. (2020). The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. Hossain, M. A., & Amenta, F. (2024). Machine learning-based classification of Parkinson’s disease patients using speech biomarkers. Karabayir, I., Goldman, S. M., Pappu, S., & Akbilgic, O. (2020). Gradient boosting for Parkinson’s disease diagnosis from voice recordings. Kumar, C., Das, S., Singha, S., Bhowmik, B. B., & Sarkar, J. L. (2023, December). loT in Health Sector: An optical sensor for detection of tuberculosis in suspected patients’ blood sample. In De Lau, L. M. L., Giesbergen, P. C. L. M., De Rijk, M. C., Hofman, A., Koudstaal, P. J., & Breteler, M. M. B. (2004). Incidence of parkinsonism and Parkinson disease in a general population: the Rotterdam Study. Farrer, M. J. (2006). Genetics of Parkinson disease: paradigm shifts and future prospects. (4s), 2300-2306. 1-16. (1), 72. 107495. Salmanpour, M. R., Shamsaei, M., Saberi, A., Klyuzhin, I. S., Tang, J., Sossi, V., & Rahmim, A. (2020). Machine learning methods for optimal prediction of motor outcome in Parkinson’s disease. (pp. 213-226). Cham: Springer Nature Switzerland. (12), 3067. (pp. 171-176). Ieee. (pp. 1-4). IEEE. ul Haq, A., Li, J. P., Agbley, B. L. Y., Mawuli, C. B., Ali, Z., Nazir, S., & Din, S. U. (2022). A survey of deep learning techniques based Parkinson’s disease recognition methods employing clinical data. 101834. (4), 306-318. Kumar, C., & Singh, B. (2022). A Comparative Study of Machine Learning Regression Approach on Dental Caries Detection. 109019. (Preprint), 1-15.. 1-7. Johri, A., & Tripathi, A. (2019, August). Parkinson disease detection using deep neural networks. In 233-240. Pereira, C. R., Pereira, D. R., Da Silva, F. A., Hook, C., Weber, S. A., Pereira, L. A., & Papa, J. P. (2015, June). A step towards the automated diagnosis of parkinson’s disease: Analyzing handwriting movements. In Ali, L., Zhu, C., Golilarz, N. A., Javeed, A., Zhou, M., & Liu, Y. (2019). Reliable Parkinson’s disease detection by analyzing handwritten drawings: construction of an unbiased cascaded learning system based on feature selection and adaptive boosting model. 118045. Vardhan, H., Sd, S., Sriram, K., & Kakarla, Y. (2024, January). Disease Prediction Based on Symptoms Using Ensemble and Hybrid Machine Learning Models. In (pp. 62-67). IEEE. Govindu, A., & Palwe, S. (2023). Early detection of Parkinson’s disease using machine learning. Subramanian, K., Adesh, J. P., & Amutha, A. L. (2024). Identification of Parkinson’s Disease Using Stacking Classifier. Parkinson’s disease dataset, available at 1-13. Srinivasu, P. N., Shafi, J., Krishna, T. B., Sujatha, C. N., Praveen, S. P., & Ijaz, M. F. (2022). Using recurrent neural networks for predicting type-2 diabetes from genomic and tabular data. Joshi, D. D., Joshi, H. H., Panchal, B. Y., Goel, P., & Ganatra, A. (2022, April). A Parkinson disease classification using stacking ensemble machine learning methodology. In (5), 527-539.. 10.1016/j.procs.2025.03.326_bib27 10.1016/j.procs.2025.03.326_bib26 10.1016/j.procs.2025.03.326_bib29 10.1016/j.procs.2025.03.326_bib28 10.1016/j.procs.2025.03.326_bib6 10.1016/j.procs.2025.03.326_bib23 10.1016/j.procs.2025.03.326_bib7 10.1016/j.procs.2025.03.326_bib22 10.1016/j.procs.2025.03.326_bib4 10.1016/j.procs.2025.03.326_bib25 10.1016/j.procs.2025.03.326_bib5 10.1016/j.procs.2025.03.326_bib24 10.1016/j.procs.2025.03.326_bib8 10.1016/j.procs.2025.03.326_bib21 10.1016/j.procs.2025.03.326_bib9 10.1016/j.procs.2025.03.326_bib20 10.1016/j.procs.2025.03.326_bib2 10.1016/j.procs.2025.03.326_bib3 10.1016/j.procs.2025.03.326_bib1 10.1016/j.procs.2025.03.326_bib19 10.1016/j.procs.2025.03.326_bib16 10.1016/j.procs.2025.03.326_bib15 10.1016/j.procs.2025.03.326_bib18 10.1016/j.procs.2025.03.326_bib17 10.1016/j.procs.2025.03.326_bib12 10.1016/j.procs.2025.03.326_bib11 10.1016/j.procs.2025.03.326_bib14 10.1016/j.procs.2025.03.326_bib13 10.1016/j.procs.2025.03.326_bib30 10.1016/j.procs.2025.03.326_bib10 |
References_xml | – reference: (pp. 213-226). Cham: Springer Nature Switzerland. – reference: (pp. 1-4). IEEE. – reference: Ali, L., Zhu, C., Golilarz, N. A., Javeed, A., Zhou, M., & Liu, Y. (2019). Reliable Parkinson’s disease detection by analyzing handwritten drawings: construction of an unbiased cascaded learning system based on feature selection and adaptive boosting model. – reference: (4), 306-318. – reference: De Lau, L. M. L., Giesbergen, P. C. L. M., De Rijk, M. C., Hofman, A., Koudstaal, P. J., & Breteler, M. M. B. (2004). Incidence of parkinsonism and Parkinson disease in a general population: the Rotterdam Study. – reference: , 107495. – reference: Sasidharakurup, H., & Diwakar, S. (2020). Computational modelling of TNFα related pathways regulated by neuroinflammation, oxidative stress and insulin resistance in neurodegeneration. – reference: Farrer, M. J. (2006). Genetics of Parkinson disease: paradigm shifts and future prospects. – reference: , 519-528. – reference: (12), 3067. – reference: Poorjam, A. H., Kavalekalam, M. S., Shi, L., Raykov, J. P., Jensen, J. R., Little, M. A., & Christensen, M. G. (2021). Automatic quality control and enhancement for voice-based remote Parkinson’s disease detection. – reference: Younis Thanoun, M., & T. Yaseen, Mohammad. (2020, October). A comparative study of Parkinson disease diagnosis in machine learning. In – reference: (pp. 799-804). IEEE. – reference: (pp. 1335-1341). IEEE. – reference: Junaid, M., Ali, S., Eid, F., El-Sappagh, S., & Abuhmed, T. (2023). Explainable machine learning models based on multimodal time-series data for the early detection of Parkinson’s disease. – reference: Srinivasu, P. N., Shafi, J., Krishna, T. B., Sujatha, C. N., Praveen, S. P., & Ijaz, M. F. (2022). Using recurrent neural networks for predicting type-2 diabetes from genomic and tabular data. – reference: (pp. 62-67). IEEE. – reference: Parkinson’s disease dataset, available at: – reference: (pp. 171-176). Ieee. – reference: (5), 527-539.. – reference: , 233-240. – reference: , 116480-116489. – reference: Yang, Y., Wei, L., Hu, Y., Wu, Y., Hu, L., & Nie, S. (2021). Classification of Parkinson’s disease based on multi-modal features and stacking ensemble learning. – reference: Johri, A., & Tripathi, A. (2019, August). Parkinson disease detection using deep neural networks. In – reference: Hossain, M. A., & Amenta, F. (2024). Machine learning-based classification of Parkinson’s disease patients using speech biomarkers. – reference: (1), 72. – reference: , 249-261. – reference: Joshi, D. D., Joshi, H. H., Panchal, B. Y., Goel, P., & Ganatra, A. (2022, April). A Parkinson disease classification using stacking ensemble machine learning methodology. In – reference: Rehman, A., Saba, T., Mujahid, M., Alamri, F. S., & ElHakim, N. (2023). Parkinson’s disease detection using hybrid LSTM-GRU deep learning model. – reference: (2), 128. – reference: , 109019. – reference: , 102013.. – reference: (pp. 23-28). – reference: Reddy, N. S. S., Manoj, A. V. S., Reddy, V. P. M. S., Aadhithya, A., & Sowmya, V. (2023, December). Transfer Learning Approach for Differentiating Parkinson’s Syndromes Using Voice Recordings. In – reference: Govindu, A., & Palwe, S. (2023). Early detection of Parkinson’s disease using machine learning. – reference: , 101834. – reference: Subramanian, K., Adesh, J. P., & Amutha, A. L. (2024). Identification of Parkinson’s Disease Using Stacking Classifier. – reference: Kumar, C., & Singh, B. (2022). A Comparative Study of Machine Learning Regression Approach on Dental Caries Detection. – reference: Silva, A. B. R. L., de Oliveira, R. W. G., Diógenes, G. P., de Castro Aguiar, M. F., Sallem, C. C., Lima, M. P. P., ... & Dos Santos, J. C. C. (2023). Premotor, nonmotor and motor symptoms of Parkinson’s disease: a new clinical state of the art. – reference: , 118045. – reference: (1), 75-97. – reference: Kumar, C., Das, S., Singha, S., Bhowmik, B. B., & Sarkar, J. L. (2023, December). loT in Health Sector: An optical sensor for detection of tuberculosis in suspected patients’ blood sample. In – reference: Gupta, R., Kumari, S., Senapati, A., Ambasta, R. K., & Kumar, P. (2023). New era of artificial intelligence and machine learning-based detection, diagnosis, and therapeutics in Parkinson’s disease. – reference: Chicco, D., & Jurman, G. (2020). The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. – reference: Salmanpour, M. R., Shamsaei, M., Saberi, A., Klyuzhin, I. S., Tang, J., Sossi, V., & Rahmim, A. (2020). Machine learning methods for optimal prediction of motor outcome in Parkinson’s disease. – reference: (13), 2856. – reference: ul Haq, A., Li, J. P., Agbley, B. L. Y., Mawuli, C. B., Ali, Z., Nazir, S., & Din, S. U. (2022). A survey of deep learning techniques based Parkinson’s disease recognition methods employing clinical data. – reference: Biswas, S. K., Nath Boruah, A., Saha, R., Raj, R. S., Chakraborty, M., & Bordoloi, M. (2023). Early detection of Parkinson disease using stacking ensemble method. – reference: Srinivasu, P. N., Sirisha, U., Sandeep, K., Praveen, S. P., Maguluri, L. P., & Bikku, T. (2024). An Interpretable Approach with Explainable AI for Heart Stroke Prediction. – reference: Vardhan, H., Sd, S., Sriram, K., & Kakarla, Y. (2024, January). Disease Prediction Based on Symptoms Using Ensemble and Hybrid Machine Learning Models. In – reference: (4s), 2300-2306. – reference: (7), 1240-1244. – reference: . – reference: , 1-7. – reference: , (Preprint), 1-15.. – reference: Kumar, C., Jha, S. K., Yadav, D. K., Prakash, S., & Prasad, M. (2024). A generalized approach to construct node probability table for Bayesian belief network using fuzzy logic. – reference: Karabayir, I., Goldman, S. M., Pappu, S., & Akbilgic, O. (2020). Gradient boosting for Parkinson’s disease diagnosis from voice recordings. – reference: , 1-16. – reference: Pereira, C. R., Pereira, D. R., Da Silva, F. A., Hook, C., Weber, S. A., Pereira, L. A., & Papa, J. P. (2015, June). A step towards the automated diagnosis of parkinson’s disease: Analyzing handwriting movements. In – reference: , 1-13. – ident: 10.1016/j.procs.2025.03.326_bib23 doi: 10.3390/diagnostics12123067 – ident: 10.1016/j.procs.2025.03.326_bib30 doi: 10.1109/ICACITE53722.2022.9823509 – ident: 10.1016/j.procs.2025.03.326_bib12 doi: 10.1007/978-3-031-56703-2_18 – ident: 10.1016/j.procs.2025.03.326_bib21 doi: 10.1016/j.jneumeth.2020.109019 – ident: 10.1016/j.procs.2025.03.326_bib2 doi: 10.1007/s41109-020-00307-w – ident: 10.1016/j.procs.2025.03.326_bib24 doi: 10.1186/s12864-019-6413-7 – ident: 10.1016/j.procs.2025.03.326_bib4 doi: 10.1016/j.arr.2022.101834 – ident: 10.1016/j.procs.2025.03.326_bib10 doi: 10.1109/Confluence60223.2024.10463480 – ident: 10.1016/j.procs.2025.03.326_bib11 doi: 10.1016/j.procs.2022.12.054 – ident: 10.1016/j.procs.2025.03.326_bib6 doi: 10.1212/01.WNL.0000140706.52798.BE – ident: 10.1016/j.procs.2025.03.326_bib19 doi: 10.1016/j.procs.2023.01.007 – ident: 10.1016/j.procs.2025.03.326_bib22 doi: 10.1016/j.eswa.2022.118045 – ident: 10.1016/j.procs.2025.03.326_bib25 doi: 10.3390/diagnostics14020128 – ident: 10.1016/j.procs.2025.03.326_bib16 doi: 10.1109/ACCESS.2019.2932037 – ident: 10.1016/j.procs.2025.03.326_bib26 doi: 10.3233/JPD-230002 – ident: 10.1016/j.procs.2025.03.326_bib7 doi: 10.1016/j.ejmp.2019.12.022 – ident: 10.1016/j.procs.2025.03.326_bib13 doi: 10.1016/j.specom.2020.12.007 – ident: 10.1016/j.procs.2025.03.326_bib15 doi: 10.1109/CBMS.2015.34 – ident: 10.1016/j.procs.2025.03.326_bib17 doi: 10.1186/s12911-020-01250-7 – ident: 10.1016/j.procs.2025.03.326_bib27 doi: 10.52783/jes.2400 – ident: 10.1016/j.procs.2025.03.326_bib8 doi: 10.1109/GCWkshps58843.2023.10465182 – ident: 10.1016/j.procs.2025.03.326_bib28 doi: 10.1080/10255842.2022.2072683 – ident: 10.1016/j.procs.2025.03.326_bib1 doi: 10.1016/j.arr.2023.102013 – ident: 10.1016/j.procs.2025.03.326_bib14 doi: 10.1109/IC3.2019.8844941 – ident: 10.1016/j.procs.2025.03.326_bib9 doi: 10.1007/s11227-023-05458-y – ident: 10.1016/j.procs.2025.03.326_bib20 – ident: 10.1016/j.procs.2025.03.326_bib29 doi: 10.1145/3441417.3441425 – ident: 10.1016/j.procs.2025.03.326_bib5 doi: 10.3390/electronics12132856 – ident: 10.1016/j.procs.2025.03.326_bib3 doi: 10.1038/nrg1831 – ident: 10.1016/j.procs.2025.03.326_bib18 doi: 10.1016/j.cmpb.2023.107495 |
SSID | ssj0000388917 |
Score | 2.341906 |
Snippet | Parkinson’s disease (PD) damage to the brain’s nerve cells. Detecting the initial symptoms, including tremors, muscular rigidity, decreased balance, and... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 250 |
SubjectTerms | Ensemble Models Machine learning Parkinson’s disease Random Forest Classifier |
Title | Enhanced Parkinson’s Diagnosis through Ensemble Learning with Stacking and Cross-Validation |
URI | https://dx.doi.org/10.1016/j.procs.2025.03.326 |
Volume | 259 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqsrDwRpRH5YERq03sJM5YSquKCgag0AVZfhWKIFS07PwN_h6_BJ_jIJAQA2OsnGSdnXvlvu8QOpTKZJLzlMgJTQlT3BCpc0kSaa3MaNZWMaCRz87TwYidjpNxDXUrLAy0VQbbX9p0b63DSitoszWbTluXEc8yYC9xTtzlMB7DRRn3IL7x8VedBdhOcj94F94nIFCRD_k2L_ATQNsdJ0B2SoFk4TcH9c3p9NfQSogWcafc0Dqq2WIDrVaTGHD4MDfRba-497_yMaCYPaDr4-19jk_KRrrpHId5PLhXzO2TerQ4EKveYajEYhdzaiiaY1kY3IWNkWsXoZcDl7bQqN-76g5IGJxAtPPgKVE21qnSLlajLh2QkbIRsxOqOE-cfZPSZlw7G-1OzzBDjUlztxZPVBIzrTSXdBvVi-fC7iAcRXQSa8OjSOeszay0ic4k0OhRTV1y1UBHlbbErOTHEFXj2IPwyhWgXNGmwim3gdJKo-LHMQtnwf8S3P2v4B5ahqeyarKP6ouXV3vg4oiFaqKlzvDiZtj0F-YT9qnLaQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqMsDCG1GeHhix2sRJ7IxQWrXQdqFFXZDlV6EIQkXLzt_g7_FL8CUOAgkxsDo6yTond58vd9-H0IlUhknOEyInNCGR4oZInUoSS2slo6yhQphG7g-Szii6HMfjCmqWszDQVuljfxHT82jtV-rem_XZdFq_DjhjwF7ikri7w8AM15JDAwz0G7rj869CC9CdpLnyLhgQsCjZh_I-L0gUwNsdxsB2SoFl4bcM9S3rtNfRqoeL-KzY0Qaq2GwTrZVSDNh_mVvotpXd5__yMYwx5xNdH2_vc3xRdNJN59gL8uBWNrdP6tFiz6x6h6EUix3o1FA1xzIzuAkbIzcOoheKS9to1G4Nmx3ilROIdik8IcqGOlHagTXq7gMyUDaI7IQqzmMX4KS0jGsXpN3xmchQY5LUrYUTFYeRVppLuoOq2XNmdxEOAjoJteFBoNOoEVlpY80k8OhRTd3tqoZOS2-JWUGQIcrOsQeRO1eAc0WDCufcGkpKj4of5yxcCP_LcO-_hsdouTPs90SvO7jaRyvwpCihHKDq4uXVHjpQsVBH-UvzCdLzzOU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+Parkinson%E2%80%99s+Diagnosis+through+Ensemble+Learning+with+Stacking+and+Cross-Validation&rft.jtitle=Procedia+computer+science&rft.au=Prasanna%2C+M.+Lakshmi&rft.au=Kumar%2C+Chandan&rft.au=Mishra%2C+Ram+Krishn&rft.date=2025&rft.pub=Elsevier+B.V&rft.issn=1877-0509&rft.eissn=1877-0509&rft.volume=259&rft.spage=250&rft.epage=259&rft_id=info:doi/10.1016%2Fj.procs.2025.03.326&rft.externalDocID=S1877050925010701 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-0509&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-0509&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-0509&client=summon |