Enhanced Parkinson’s Diagnosis through Ensemble Learning with Stacking and Cross-Validation

Parkinson’s disease (PD) damage to the brain’s nerve cells. Detecting the initial symptoms, including tremors, muscular rigidity, decreased balance, and trouble walking, requires a prolonged time. The PD ranks among the leading causes of disability and death among neurological disorders, according t...

Full description

Saved in:
Bibliographic Details
Published inProcedia computer science Vol. 259; pp. 250 - 259
Main Authors Prasanna, M. Lakshmi, Kumar, Chandan, Mishra, Ram Krishn
Format Journal Article
LanguageEnglish
Published Elsevier B.V 2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Parkinson’s disease (PD) damage to the brain’s nerve cells. Detecting the initial symptoms, including tremors, muscular rigidity, decreased balance, and trouble walking, requires a prolonged time. The PD ranks among the leading causes of disability and death among neurological disorders, according to the “World Health Organization”. Insufficient evidence from blood tests and MRI scans to support early diagnosis makes it challenging for doctors to detect PD in its initial stages. An excellent early alert indicator and a predictor of PD is through speech. Predicting the onset of Parkinson’s disease using audio recordings of both healthy people and those with the condition is the subject of this research. Effective evaluation of individual and ensemble machine learning approaches for PD classification using quantitative acoustic measure data is carried out in this article. This paper implements several ML methods, including “Support Vector Machine”, “Random Forest”, “Gradient Boosting Classifier”, “K-Nearest Neighbor”, “Logistic Regression”, and “Decision Tree”. An ensemble model is utilized incorporating stacking and stacking with cross-validation methods. The model performance is assessed using four metrics: “Accuracy”, “Recall”, “Precision”, and “F1 score”. The models are analysed and compared, showing accuracy levels ranging from 70% to 82% using the PD dataset. The higher-performing models are selected for a stacking ensemble to enhance overall performance. The stacking ensemble approach achieved an accuracy of 92% and provides accurate recognition of the disease. Subsequently, a stacking cross-validation classifier is employed to all models, resulting in an improved accuracy of 95%.
AbstractList Parkinson’s disease (PD) damage to the brain’s nerve cells. Detecting the initial symptoms, including tremors, muscular rigidity, decreased balance, and trouble walking, requires a prolonged time. The PD ranks among the leading causes of disability and death among neurological disorders, according to the “World Health Organization”. Insufficient evidence from blood tests and MRI scans to support early diagnosis makes it challenging for doctors to detect PD in its initial stages. An excellent early alert indicator and a predictor of PD is through speech. Predicting the onset of Parkinson’s disease using audio recordings of both healthy people and those with the condition is the subject of this research. Effective evaluation of individual and ensemble machine learning approaches for PD classification using quantitative acoustic measure data is carried out in this article. This paper implements several ML methods, including “Support Vector Machine”, “Random Forest”, “Gradient Boosting Classifier”, “K-Nearest Neighbor”, “Logistic Regression”, and “Decision Tree”. An ensemble model is utilized incorporating stacking and stacking with cross-validation methods. The model performance is assessed using four metrics: “Accuracy”, “Recall”, “Precision”, and “F1 score”. The models are analysed and compared, showing accuracy levels ranging from 70% to 82% using the PD dataset. The higher-performing models are selected for a stacking ensemble to enhance overall performance. The stacking ensemble approach achieved an accuracy of 92% and provides accurate recognition of the disease. Subsequently, a stacking cross-validation classifier is employed to all models, resulting in an improved accuracy of 95%.
Author Mishra, Ram Krishn
Prasanna, M. Lakshmi
Kumar, Chandan
Author_xml – sequence: 1
  givenname: M. Lakshmi
  surname: Prasanna
  fullname: Prasanna, M. Lakshmi
  organization: Department of CSE, Amrita School of Computing, Amrita Vishwa Vidyapeetham, Amaravati, Andhra Pradesh, India
– sequence: 2
  givenname: Chandan
  surname: Kumar
  fullname: Kumar, Chandan
  email: k_chandan@av.amrita.edu
  organization: Department of CSE, Amrita School of Computing, Amrita Vishwa Vidyapeetham, Amaravati, Andhra Pradesh, India
– sequence: 3
  givenname: Ram Krishn
  surname: Mishra
  fullname: Mishra, Ram Krishn
  organization: Department of Computing, De Montfort University Kazakhstan, 050044, Almaty, Kazakhstan
BookMark eNp9kElOwzAUhi0EEqX0BGx8gQQ7rhN3wQKVMkiVQGLYIcvDS-MOdmUHEDuuwfU4CQllwYq3eYP0Pf36jtC-Dx4QOqEkp4SWp8t8G4NJeUEKnhOWs6LcQwMqqiojnEz2_8yHaJTSknTFhJjQaoCeZ75R3oDFdyqunE_Bf318Jnzh1MKH5BJumxheFg2e-QQbvQY8BxW98wv85toG37fKrPpNeYunMaSUPam1s6p1wR-jg1qtE4x--xA9Xs4eptfZ_PbqZno-z0xBeZlpKEypDS85q7hQVAMdQ820EJwzoRRUwoCmYIwdW2ZtOeluRa15MTbaCMWGiO3-mj5AhFpuo9uo-C4pkb0kuZQ_kmQvSRImO0kddbajoIv26iDKZBz0MlwE00ob3L_8N80bdpU
Cites_doi 10.3390/diagnostics12123067
10.1109/ICACITE53722.2022.9823509
10.1007/978-3-031-56703-2_18
10.1016/j.jneumeth.2020.109019
10.1007/s41109-020-00307-w
10.1186/s12864-019-6413-7
10.1016/j.arr.2022.101834
10.1109/Confluence60223.2024.10463480
10.1016/j.procs.2022.12.054
10.1212/01.WNL.0000140706.52798.BE
10.1016/j.procs.2023.01.007
10.1016/j.eswa.2022.118045
10.3390/diagnostics14020128
10.1109/ACCESS.2019.2932037
10.3233/JPD-230002
10.1016/j.ejmp.2019.12.022
10.1016/j.specom.2020.12.007
10.1109/CBMS.2015.34
10.1186/s12911-020-01250-7
10.52783/jes.2400
10.1109/GCWkshps58843.2023.10465182
10.1080/10255842.2022.2072683
10.1016/j.arr.2023.102013
10.1109/IC3.2019.8844941
10.1007/s11227-023-05458-y
10.1145/3441417.3441425
10.3390/electronics12132856
10.1038/nrg1831
10.1016/j.cmpb.2023.107495
ContentType Journal Article
Copyright 2025
Copyright_xml – notice: 2025
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.procs.2025.03.326
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1877-0509
EndPage 259
ExternalDocumentID 10_1016_j_procs_2025_03_326
S1877050925010701
GroupedDBID --K
0R~
1B1
457
5VS
6I.
71M
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAQFI
AAXUO
AAYWO
ABMAC
ABWVN
ACGFS
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADNMO
ADVLN
AEUPX
AEXQZ
AFPUW
AFTJW
AGHFR
AIGII
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
E3Z
EBS
EJD
EP3
FDB
FNPLU
HZ~
IXB
KQ8
M41
M~E
O-L
O9-
OK1
P2P
RIG
ROL
SES
SSZ
AAYXX
CITATION
ID FETCH-LOGICAL-c2156-be2c6bc5653758a1be14ef3b885538aae78ceb1eccd4d3dd69aae2fb524cbc8a3
IEDL.DBID IXB
ISSN 1877-0509
IngestDate Sun Jul 06 05:05:30 EDT 2025
Sat Jun 14 16:52:17 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Ensemble Models
Parkinson’s disease
Machine learning
Random Forest Classifier
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2156-be2c6bc5653758a1be14ef3b885538aae78ceb1eccd4d3dd69aae2fb524cbc8a3
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1877050925010701
PageCount 10
ParticipantIDs crossref_primary_10_1016_j_procs_2025_03_326
elsevier_sciencedirect_doi_10_1016_j_procs_2025_03_326
PublicationCentury 2000
PublicationDate 2025
2025-00-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 2025
PublicationDecade 2020
PublicationTitle Procedia computer science
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References (1), 75-97.
519-528.
Rehman, A., Saba, T., Mujahid, M., Alamri, F. S., & ElHakim, N. (2023). Parkinson’s disease detection using hybrid LSTM-GRU deep learning model.
Kumar, C., Jha, S. K., Yadav, D. K., Prakash, S., & Prasad, M. (2024). A generalized approach to construct node probability table for Bayesian belief network using fuzzy logic.
Srinivasu, P. N., Sirisha, U., Sandeep, K., Praveen, S. P., Maguluri, L. P., & Bikku, T. (2024). An Interpretable Approach with Explainable AI for Heart Stroke Prediction.
(2), 128.
(pp. 1335-1341). IEEE.
(pp. 799-804). IEEE.
116480-116489.
(7), 1240-1244.
249-261.
Junaid, M., Ali, S., Eid, F., El-Sappagh, S., & Abuhmed, T. (2023). Explainable machine learning models based on multimodal time-series data for the early detection of Parkinson’s disease.
Sasidharakurup, H., & Diwakar, S. (2020). Computational modelling of TNFα related pathways regulated by neuroinflammation, oxidative stress and insulin resistance in neurodegeneration.
Younis Thanoun, M., & T. Yaseen, Mohammad. (2020, October). A comparative study of Parkinson disease diagnosis in machine learning. In
Silva, A. B. R. L., de Oliveira, R. W. G., Diógenes, G. P., de Castro Aguiar, M. F., Sallem, C. C., Lima, M. P. P., ... & Dos Santos, J. C. C. (2023). Premotor, nonmotor and motor symptoms of Parkinson’s disease: a new clinical state of the art.
Biswas, S. K., Nath Boruah, A., Saha, R., Raj, R. S., Chakraborty, M., & Bordoloi, M. (2023). Early detection of Parkinson disease using stacking ensemble method.
102013..
Gupta, R., Kumari, S., Senapati, A., Ambasta, R. K., & Kumar, P. (2023). New era of artificial intelligence and machine learning-based detection, diagnosis, and therapeutics in Parkinson’s disease.
.
(pp. 23-28).
Reddy, N. S. S., Manoj, A. V. S., Reddy, V. P. M. S., Aadhithya, A., & Sowmya, V. (2023, December). Transfer Learning Approach for Differentiating Parkinson’s Syndromes Using Voice Recordings. In
(13), 2856.
Poorjam, A. H., Kavalekalam, M. S., Shi, L., Raykov, J. P., Jensen, J. R., Little, M. A., & Christensen, M. G. (2021). Automatic quality control and enhancement for voice-based remote Parkinson’s disease detection.
Yang, Y., Wei, L., Hu, Y., Wu, Y., Hu, L., & Nie, S. (2021). Classification of Parkinson’s disease based on multi-modal features and stacking ensemble learning.
Chicco, D., & Jurman, G. (2020). The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation.
Hossain, M. A., & Amenta, F. (2024). Machine learning-based classification of Parkinson’s disease patients using speech biomarkers.
Karabayir, I., Goldman, S. M., Pappu, S., & Akbilgic, O. (2020). Gradient boosting for Parkinson’s disease diagnosis from voice recordings.
Kumar, C., Das, S., Singha, S., Bhowmik, B. B., & Sarkar, J. L. (2023, December). loT in Health Sector: An optical sensor for detection of tuberculosis in suspected patients’ blood sample. In
De Lau, L. M. L., Giesbergen, P. C. L. M., De Rijk, M. C., Hofman, A., Koudstaal, P. J., & Breteler, M. M. B. (2004). Incidence of parkinsonism and Parkinson disease in a general population: the Rotterdam Study.
Farrer, M. J. (2006). Genetics of Parkinson disease: paradigm shifts and future prospects.
(4s), 2300-2306.
1-16.
(1), 72.
107495.
Salmanpour, M. R., Shamsaei, M., Saberi, A., Klyuzhin, I. S., Tang, J., Sossi, V., & Rahmim, A. (2020). Machine learning methods for optimal prediction of motor outcome in Parkinson’s disease.
(pp. 213-226). Cham: Springer Nature Switzerland.
(12), 3067.
(pp. 171-176). Ieee.
(pp. 1-4). IEEE.
ul Haq, A., Li, J. P., Agbley, B. L. Y., Mawuli, C. B., Ali, Z., Nazir, S., & Din, S. U. (2022). A survey of deep learning techniques based Parkinson’s disease recognition methods employing clinical data.
101834.
(4), 306-318.
Kumar, C., & Singh, B. (2022). A Comparative Study of Machine Learning Regression Approach on Dental Caries Detection.
109019.
(Preprint), 1-15..
1-7.
Johri, A., & Tripathi, A. (2019, August). Parkinson disease detection using deep neural networks. In
233-240.
Pereira, C. R., Pereira, D. R., Da Silva, F. A., Hook, C., Weber, S. A., Pereira, L. A., & Papa, J. P. (2015, June). A step towards the automated diagnosis of parkinson’s disease: Analyzing handwriting movements. In
Ali, L., Zhu, C., Golilarz, N. A., Javeed, A., Zhou, M., & Liu, Y. (2019). Reliable Parkinson’s disease detection by analyzing handwritten drawings: construction of an unbiased cascaded learning system based on feature selection and adaptive boosting model.
118045.
Vardhan, H., Sd, S., Sriram, K., & Kakarla, Y. (2024, January). Disease Prediction Based on Symptoms Using Ensemble and Hybrid Machine Learning Models. In
(pp. 62-67). IEEE.
Govindu, A., & Palwe, S. (2023). Early detection of Parkinson’s disease using machine learning.
Subramanian, K., Adesh, J. P., & Amutha, A. L. (2024). Identification of Parkinson’s Disease Using Stacking Classifier.
Parkinson’s disease dataset, available at
1-13.
Srinivasu, P. N., Shafi, J., Krishna, T. B., Sujatha, C. N., Praveen, S. P., & Ijaz, M. F. (2022). Using recurrent neural networks for predicting type-2 diabetes from genomic and tabular data.
Joshi, D. D., Joshi, H. H., Panchal, B. Y., Goel, P., & Ganatra, A. (2022, April). A Parkinson disease classification using stacking ensemble machine learning methodology. In
(5), 527-539..
10.1016/j.procs.2025.03.326_bib27
10.1016/j.procs.2025.03.326_bib26
10.1016/j.procs.2025.03.326_bib29
10.1016/j.procs.2025.03.326_bib28
10.1016/j.procs.2025.03.326_bib6
10.1016/j.procs.2025.03.326_bib23
10.1016/j.procs.2025.03.326_bib7
10.1016/j.procs.2025.03.326_bib22
10.1016/j.procs.2025.03.326_bib4
10.1016/j.procs.2025.03.326_bib25
10.1016/j.procs.2025.03.326_bib5
10.1016/j.procs.2025.03.326_bib24
10.1016/j.procs.2025.03.326_bib8
10.1016/j.procs.2025.03.326_bib21
10.1016/j.procs.2025.03.326_bib9
10.1016/j.procs.2025.03.326_bib20
10.1016/j.procs.2025.03.326_bib2
10.1016/j.procs.2025.03.326_bib3
10.1016/j.procs.2025.03.326_bib1
10.1016/j.procs.2025.03.326_bib19
10.1016/j.procs.2025.03.326_bib16
10.1016/j.procs.2025.03.326_bib15
10.1016/j.procs.2025.03.326_bib18
10.1016/j.procs.2025.03.326_bib17
10.1016/j.procs.2025.03.326_bib12
10.1016/j.procs.2025.03.326_bib11
10.1016/j.procs.2025.03.326_bib14
10.1016/j.procs.2025.03.326_bib13
10.1016/j.procs.2025.03.326_bib30
10.1016/j.procs.2025.03.326_bib10
References_xml – reference: (pp. 213-226). Cham: Springer Nature Switzerland.
– reference: (pp. 1-4). IEEE.
– reference: Ali, L., Zhu, C., Golilarz, N. A., Javeed, A., Zhou, M., & Liu, Y. (2019). Reliable Parkinson’s disease detection by analyzing handwritten drawings: construction of an unbiased cascaded learning system based on feature selection and adaptive boosting model.
– reference: (4), 306-318.
– reference: De Lau, L. M. L., Giesbergen, P. C. L. M., De Rijk, M. C., Hofman, A., Koudstaal, P. J., & Breteler, M. M. B. (2004). Incidence of parkinsonism and Parkinson disease in a general population: the Rotterdam Study.
– reference: , 107495.
– reference: Sasidharakurup, H., & Diwakar, S. (2020). Computational modelling of TNFα related pathways regulated by neuroinflammation, oxidative stress and insulin resistance in neurodegeneration.
– reference: Farrer, M. J. (2006). Genetics of Parkinson disease: paradigm shifts and future prospects.
– reference: , 519-528.
– reference: (12), 3067.
– reference: Poorjam, A. H., Kavalekalam, M. S., Shi, L., Raykov, J. P., Jensen, J. R., Little, M. A., & Christensen, M. G. (2021). Automatic quality control and enhancement for voice-based remote Parkinson’s disease detection.
– reference: Younis Thanoun, M., & T. Yaseen, Mohammad. (2020, October). A comparative study of Parkinson disease diagnosis in machine learning. In
– reference: (pp. 799-804). IEEE.
– reference: (pp. 1335-1341). IEEE.
– reference: Junaid, M., Ali, S., Eid, F., El-Sappagh, S., & Abuhmed, T. (2023). Explainable machine learning models based on multimodal time-series data for the early detection of Parkinson’s disease.
– reference: Srinivasu, P. N., Shafi, J., Krishna, T. B., Sujatha, C. N., Praveen, S. P., & Ijaz, M. F. (2022). Using recurrent neural networks for predicting type-2 diabetes from genomic and tabular data.
– reference: (pp. 62-67). IEEE.
– reference: Parkinson’s disease dataset, available at:
– reference: (pp. 171-176). Ieee.
– reference: (5), 527-539..
– reference: , 233-240.
– reference: , 116480-116489.
– reference: Yang, Y., Wei, L., Hu, Y., Wu, Y., Hu, L., & Nie, S. (2021). Classification of Parkinson’s disease based on multi-modal features and stacking ensemble learning.
– reference: Johri, A., & Tripathi, A. (2019, August). Parkinson disease detection using deep neural networks. In
– reference: Hossain, M. A., & Amenta, F. (2024). Machine learning-based classification of Parkinson’s disease patients using speech biomarkers.
– reference: (1), 72.
– reference: , 249-261.
– reference: Joshi, D. D., Joshi, H. H., Panchal, B. Y., Goel, P., & Ganatra, A. (2022, April). A Parkinson disease classification using stacking ensemble machine learning methodology. In
– reference: Rehman, A., Saba, T., Mujahid, M., Alamri, F. S., & ElHakim, N. (2023). Parkinson’s disease detection using hybrid LSTM-GRU deep learning model.
– reference: (2), 128.
– reference: , 109019.
– reference: , 102013..
– reference: (pp. 23-28).
– reference: Reddy, N. S. S., Manoj, A. V. S., Reddy, V. P. M. S., Aadhithya, A., & Sowmya, V. (2023, December). Transfer Learning Approach for Differentiating Parkinson’s Syndromes Using Voice Recordings. In
– reference: Govindu, A., & Palwe, S. (2023). Early detection of Parkinson’s disease using machine learning.
– reference: , 101834.
– reference: Subramanian, K., Adesh, J. P., & Amutha, A. L. (2024). Identification of Parkinson’s Disease Using Stacking Classifier.
– reference: Kumar, C., & Singh, B. (2022). A Comparative Study of Machine Learning Regression Approach on Dental Caries Detection.
– reference: Silva, A. B. R. L., de Oliveira, R. W. G., Diógenes, G. P., de Castro Aguiar, M. F., Sallem, C. C., Lima, M. P. P., ... & Dos Santos, J. C. C. (2023). Premotor, nonmotor and motor symptoms of Parkinson’s disease: a new clinical state of the art.
– reference: , 118045.
– reference: (1), 75-97.
– reference: Kumar, C., Das, S., Singha, S., Bhowmik, B. B., & Sarkar, J. L. (2023, December). loT in Health Sector: An optical sensor for detection of tuberculosis in suspected patients’ blood sample. In
– reference: Gupta, R., Kumari, S., Senapati, A., Ambasta, R. K., & Kumar, P. (2023). New era of artificial intelligence and machine learning-based detection, diagnosis, and therapeutics in Parkinson’s disease.
– reference: Chicco, D., & Jurman, G. (2020). The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation.
– reference: Salmanpour, M. R., Shamsaei, M., Saberi, A., Klyuzhin, I. S., Tang, J., Sossi, V., & Rahmim, A. (2020). Machine learning methods for optimal prediction of motor outcome in Parkinson’s disease.
– reference: (13), 2856.
– reference: ul Haq, A., Li, J. P., Agbley, B. L. Y., Mawuli, C. B., Ali, Z., Nazir, S., & Din, S. U. (2022). A survey of deep learning techniques based Parkinson’s disease recognition methods employing clinical data.
– reference: Biswas, S. K., Nath Boruah, A., Saha, R., Raj, R. S., Chakraborty, M., & Bordoloi, M. (2023). Early detection of Parkinson disease using stacking ensemble method.
– reference: Srinivasu, P. N., Sirisha, U., Sandeep, K., Praveen, S. P., Maguluri, L. P., & Bikku, T. (2024). An Interpretable Approach with Explainable AI for Heart Stroke Prediction.
– reference: Vardhan, H., Sd, S., Sriram, K., & Kakarla, Y. (2024, January). Disease Prediction Based on Symptoms Using Ensemble and Hybrid Machine Learning Models. In
– reference: (4s), 2300-2306.
– reference: (7), 1240-1244.
– reference: .
– reference: , 1-7.
– reference: , (Preprint), 1-15..
– reference: Kumar, C., Jha, S. K., Yadav, D. K., Prakash, S., & Prasad, M. (2024). A generalized approach to construct node probability table for Bayesian belief network using fuzzy logic.
– reference: Karabayir, I., Goldman, S. M., Pappu, S., & Akbilgic, O. (2020). Gradient boosting for Parkinson’s disease diagnosis from voice recordings.
– reference: , 1-16.
– reference: Pereira, C. R., Pereira, D. R., Da Silva, F. A., Hook, C., Weber, S. A., Pereira, L. A., & Papa, J. P. (2015, June). A step towards the automated diagnosis of parkinson’s disease: Analyzing handwriting movements. In
– reference: , 1-13.
– ident: 10.1016/j.procs.2025.03.326_bib23
  doi: 10.3390/diagnostics12123067
– ident: 10.1016/j.procs.2025.03.326_bib30
  doi: 10.1109/ICACITE53722.2022.9823509
– ident: 10.1016/j.procs.2025.03.326_bib12
  doi: 10.1007/978-3-031-56703-2_18
– ident: 10.1016/j.procs.2025.03.326_bib21
  doi: 10.1016/j.jneumeth.2020.109019
– ident: 10.1016/j.procs.2025.03.326_bib2
  doi: 10.1007/s41109-020-00307-w
– ident: 10.1016/j.procs.2025.03.326_bib24
  doi: 10.1186/s12864-019-6413-7
– ident: 10.1016/j.procs.2025.03.326_bib4
  doi: 10.1016/j.arr.2022.101834
– ident: 10.1016/j.procs.2025.03.326_bib10
  doi: 10.1109/Confluence60223.2024.10463480
– ident: 10.1016/j.procs.2025.03.326_bib11
  doi: 10.1016/j.procs.2022.12.054
– ident: 10.1016/j.procs.2025.03.326_bib6
  doi: 10.1212/01.WNL.0000140706.52798.BE
– ident: 10.1016/j.procs.2025.03.326_bib19
  doi: 10.1016/j.procs.2023.01.007
– ident: 10.1016/j.procs.2025.03.326_bib22
  doi: 10.1016/j.eswa.2022.118045
– ident: 10.1016/j.procs.2025.03.326_bib25
  doi: 10.3390/diagnostics14020128
– ident: 10.1016/j.procs.2025.03.326_bib16
  doi: 10.1109/ACCESS.2019.2932037
– ident: 10.1016/j.procs.2025.03.326_bib26
  doi: 10.3233/JPD-230002
– ident: 10.1016/j.procs.2025.03.326_bib7
  doi: 10.1016/j.ejmp.2019.12.022
– ident: 10.1016/j.procs.2025.03.326_bib13
  doi: 10.1016/j.specom.2020.12.007
– ident: 10.1016/j.procs.2025.03.326_bib15
  doi: 10.1109/CBMS.2015.34
– ident: 10.1016/j.procs.2025.03.326_bib17
  doi: 10.1186/s12911-020-01250-7
– ident: 10.1016/j.procs.2025.03.326_bib27
  doi: 10.52783/jes.2400
– ident: 10.1016/j.procs.2025.03.326_bib8
  doi: 10.1109/GCWkshps58843.2023.10465182
– ident: 10.1016/j.procs.2025.03.326_bib28
  doi: 10.1080/10255842.2022.2072683
– ident: 10.1016/j.procs.2025.03.326_bib1
  doi: 10.1016/j.arr.2023.102013
– ident: 10.1016/j.procs.2025.03.326_bib14
  doi: 10.1109/IC3.2019.8844941
– ident: 10.1016/j.procs.2025.03.326_bib9
  doi: 10.1007/s11227-023-05458-y
– ident: 10.1016/j.procs.2025.03.326_bib20
– ident: 10.1016/j.procs.2025.03.326_bib29
  doi: 10.1145/3441417.3441425
– ident: 10.1016/j.procs.2025.03.326_bib5
  doi: 10.3390/electronics12132856
– ident: 10.1016/j.procs.2025.03.326_bib3
  doi: 10.1038/nrg1831
– ident: 10.1016/j.procs.2025.03.326_bib18
  doi: 10.1016/j.cmpb.2023.107495
SSID ssj0000388917
Score 2.341906
Snippet Parkinson’s disease (PD) damage to the brain’s nerve cells. Detecting the initial symptoms, including tremors, muscular rigidity, decreased balance, and...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 250
SubjectTerms Ensemble Models
Machine learning
Parkinson’s disease
Random Forest Classifier
Title Enhanced Parkinson’s Diagnosis through Ensemble Learning with Stacking and Cross-Validation
URI https://dx.doi.org/10.1016/j.procs.2025.03.326
Volume 259
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqsrDwRpRH5YERq03sJM5YSquKCgag0AVZfhWKIFS07PwN_h6_BJ_jIJAQA2OsnGSdnXvlvu8QOpTKZJLzlMgJTQlT3BCpc0kSaa3MaNZWMaCRz87TwYidjpNxDXUrLAy0VQbbX9p0b63DSitoszWbTluXEc8yYC9xTtzlMB7DRRn3IL7x8VedBdhOcj94F94nIFCRD_k2L_ATQNsdJ0B2SoFk4TcH9c3p9NfQSogWcafc0Dqq2WIDrVaTGHD4MDfRba-497_yMaCYPaDr4-19jk_KRrrpHId5PLhXzO2TerQ4EKveYajEYhdzaiiaY1kY3IWNkWsXoZcDl7bQqN-76g5IGJxAtPPgKVE21qnSLlajLh2QkbIRsxOqOE-cfZPSZlw7G-1OzzBDjUlztxZPVBIzrTSXdBvVi-fC7iAcRXQSa8OjSOeszay0ic4k0OhRTV1y1UBHlbbErOTHEFXj2IPwyhWgXNGmwim3gdJKo-LHMQtnwf8S3P2v4B5ahqeyarKP6ouXV3vg4oiFaqKlzvDiZtj0F-YT9qnLaQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqMsDCG1GeHhix2sRJ7IxQWrXQdqFFXZDlV6EIQkXLzt_g7_FL8CUOAgkxsDo6yTond58vd9-H0IlUhknOEyInNCGR4oZInUoSS2slo6yhQphG7g-Szii6HMfjCmqWszDQVuljfxHT82jtV-rem_XZdFq_DjhjwF7ikri7w8AM15JDAwz0G7rj869CC9CdpLnyLhgQsCjZh_I-L0gUwNsdxsB2SoFl4bcM9S3rtNfRqoeL-KzY0Qaq2GwTrZVSDNh_mVvotpXd5__yMYwx5xNdH2_vc3xRdNJN59gL8uBWNrdP6tFiz6x6h6EUix3o1FA1xzIzuAkbIzcOoheKS9to1G4Nmx3ilROIdik8IcqGOlHagTXq7gMyUDaI7IQqzmMX4KS0jGsXpN3xmchQY5LUrYUTFYeRVppLuoOq2XNmdxEOAjoJteFBoNOoEVlpY80k8OhRTd3tqoZOS2-JWUGQIcrOsQeRO1eAc0WDCufcGkpKj4of5yxcCP_LcO-_hsdouTPs90SvO7jaRyvwpCihHKDq4uXVHjpQsVBH-UvzCdLzzOU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+Parkinson%E2%80%99s+Diagnosis+through+Ensemble+Learning+with+Stacking+and+Cross-Validation&rft.jtitle=Procedia+computer+science&rft.au=Prasanna%2C+M.+Lakshmi&rft.au=Kumar%2C+Chandan&rft.au=Mishra%2C+Ram+Krishn&rft.date=2025&rft.pub=Elsevier+B.V&rft.issn=1877-0509&rft.eissn=1877-0509&rft.volume=259&rft.spage=250&rft.epage=259&rft_id=info:doi/10.1016%2Fj.procs.2025.03.326&rft.externalDocID=S1877050925010701
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-0509&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-0509&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-0509&client=summon