Transient temperature heterogeneous distribution analysis in three-dimensional passive µDMFC
•The temperature change before reaching a stable trend is simulated for the first time.•The non-uniform temperature distribution during cell start-up are analyzed.•A three-dimensional µDMFC model is established and verified by experiment. In this paper, the transient temperature heterogeneous distri...
Saved in:
Published in | International journal of heat and mass transfer Vol. 189; p. 122749 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
15.06.2022
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •The temperature change before reaching a stable trend is simulated for the first time.•The non-uniform temperature distribution during cell start-up are analyzed.•A three-dimensional µDMFC model is established and verified by experiment.
In this paper, the transient temperature heterogeneous distribution analysis in three-dimensional passive micro Direct Methanol Fuel Cell (µDMFC) is presented in detail. The metal-based µDMFC with the effective area of 1.0 cm2 is fabricated to verify the correctness of the model. By coupling the mass transport, momentum transport, electron-proton conduction and heat transfer mechanisms, the models of the whole cell and a single flow channel are established, and the non-uniform temperature changes in different stages of the cell are analyzed. Simulation results manifest that the temperature of collector and channel is in heterogeneous distribution state during the process of the fuel cell from starting work to reaching a stable trend. Due to the different fluids in the cathode and anode flow channels, the inside of flow channels also presents different heating trends. In addition, the temperature-increasing rate of each part of the cell after starting work is also simulated. The results can be used as a reference for the inner heterogeneous transfer and startup phase optimization of fuel cells.
[Display omitted] |
---|---|
AbstractList | •The temperature change before reaching a stable trend is simulated for the first time.•The non-uniform temperature distribution during cell start-up are analyzed.•A three-dimensional µDMFC model is established and verified by experiment.
In this paper, the transient temperature heterogeneous distribution analysis in three-dimensional passive micro Direct Methanol Fuel Cell (µDMFC) is presented in detail. The metal-based µDMFC with the effective area of 1.0 cm2 is fabricated to verify the correctness of the model. By coupling the mass transport, momentum transport, electron-proton conduction and heat transfer mechanisms, the models of the whole cell and a single flow channel are established, and the non-uniform temperature changes in different stages of the cell are analyzed. Simulation results manifest that the temperature of collector and channel is in heterogeneous distribution state during the process of the fuel cell from starting work to reaching a stable trend. Due to the different fluids in the cathode and anode flow channels, the inside of flow channels also presents different heating trends. In addition, the temperature-increasing rate of each part of the cell after starting work is also simulated. The results can be used as a reference for the inner heterogeneous transfer and startup phase optimization of fuel cells.
[Display omitted] In this paper, the transient temperature heterogeneous distribution analysis in three-dimensional passive micro Direct Methanol Fuel Cell (µDMFC) is presented in detail. The metal-based µDMFC with the effective area of 1.0 cm2 is fabricated to verify the correctness of the model. By coupling the mass transport, momentum transport, electron-proton conduction and heat transfer mechanisms, the models of the whole cell and a single flow channel are established, and the non-uniform temperature changes in different stages of the cell are analyzed. Simulation results manifest that the temperature of collector and channel is in heterogeneous distribution state during the process of the fuel cell from starting work to reaching a stable trend. Due to the different fluids in the cathode and anode flow channels, the inside of flow channels also presents different heating trends. In addition, the temperature-increasing rate of each part of the cell after starting work is also simulated. The results can be used as a reference for the inner heterogeneous transfer and startup phase optimization of fuel cells. |
ArticleNumber | 122749 |
Author | Zuo, Kaiyuan Yuan, Zhenyu Cao, Jiamu |
Author_xml | – sequence: 1 givenname: Zhenyu orcidid: 0000-0003-2988-2214 surname: Yuan fullname: Yuan, Zhenyu email: yuanzhenyu@ise.neu.edu.cn organization: College of Information Science and Engineering, Northeastern University, Shenyang, Liaoning 110819, China – sequence: 2 givenname: Kaiyuan surname: Zuo fullname: Zuo, Kaiyuan organization: College of Information Science and Engineering, Northeastern University, Shenyang, Liaoning 110819, China – sequence: 3 givenname: Jiamu surname: Cao fullname: Cao, Jiamu organization: MEMS Center, Harbin Institute of Technology, Harbin 150001, China |
BookMark | eNqVkb1OwzAQgC1UJNrCO0RiYUmxHceJN1Ch_KiIpYzIcp0LddTGxXYq9cF4AZ4MR2WCBSbrdHff3X0eoUFrW0DoguAJwYRfNhPTrECFjfI-ONX6GtyEYkonhNKCiSM0JGUhUkpKMUBDjEmRiozgEzTyvulDzPgQvS76XgNtSAJstuBU6BwkKwjg7Bu0YDufVCaOMMsuGNsmqlXrvTc-MW0SVg4grcwGIsPGRLKN65gdJJ8fN0-z6Sk6rtXaw9n3O0Yvs9vF9D6dP989TK_nqaYkz9NMawEkA6AZ4xyqrNYlrQhTpWIVE4JhwZeclQXFmRBEgMY850vQua4xWebZGJ0fuFtn3zvwQTa2c3EfLylnouCYZH3V7FClnfXeQS21Cao_Kgo0a0mw7NXKRv5WK3u18qA2gq5-gLbObJTb_wfxeEBA1LIzMet1_AUNlXGgg6ys-TvsC2mXqUw |
CitedBy_id | crossref_primary_10_1016_j_renene_2025_122373 crossref_primary_10_1016_j_ijheatmasstransfer_2024_126059 |
Cites_doi | 10.1016/j.ijhydene.2020.02.107 10.1149/1.2142267 10.1007/s11581-015-1589-6 10.1016/j.ijhydene.2016.11.022 10.1016/j.renene.2018.07.055 10.1016/j.energy.2010.11.034 10.1016/j.ijhydene.2015.09.040 10.1021/acssuschemeng.9b01665 10.1016/j.ijheatmasstransfer.2005.04.014 10.1016/S0378-7753(97)02485-3 10.1016/j.energy.2018.02.132 10.1016/j.jpowsour.2005.02.088 10.1016/S0378-7753(02)00339-7 10.1016/j.ijhydene.2009.12.085 10.1016/j.ijhydene.2011.02.058 10.1016/j.electacta.2007.03.069 10.4028/www.scientific.net/AMR.457-458.156 10.1021/acsami.9b09713 10.1016/j.renene.2014.08.043 10.1016/j.jpowsour.2011.01.094 10.1016/j.ijhydene.2012.06.094 10.1016/j.energy.2016.07.074 10.1016/j.energy.2013.06.024 10.1016/j.jpowsour.2007.09.086 10.1016/j.jpowsour.2019.01.088 10.1016/j.jpowsour.2004.11.022 10.1016/j.jpowsour.2009.03.008 10.1016/j.jpowsour.2006.10.047 10.1016/j.ijhydene.2018.10.196 10.1016/j.ijhydene.2016.05.116 10.1016/j.ijhydene.2013.05.118 10.1016/j.jpowsour.2012.10.061 10.1016/j.jpowsour.2012.12.009 10.1016/j.jpowsour.2020.228541 10.1016/j.ijhydene.2017.03.144 10.1016/j.jpowsour.2015.03.094 10.1016/j.ijhydene.2016.02.057 10.1016/j.jpowsour.2010.08.087 10.1016/j.jpowsour.2019.226948 10.1016/j.jpowsour.2015.02.132 10.1149/1.1559061 10.1016/j.apenergy.2010.11.012 10.1016/j.ijhydene.2016.09.087 |
ContentType | Journal Article |
Copyright | 2022 Copyright Elsevier BV Jun 15, 2022 |
Copyright_xml | – notice: 2022 – notice: Copyright Elsevier BV Jun 15, 2022 |
DBID | AAYXX CITATION 7TB 8FD FR3 H8D KR7 L7M |
DOI | 10.1016/j.ijheatmasstransfer.2022.122749 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1879-2189 |
ExternalDocumentID | 10_1016_j_ijheatmasstransfer_2022_122749 S0017931022002319 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABFNM ABMAC ABNUV ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEWK ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AHPOS AIEXJ AIKHN AITUG AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA K-O KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSG SSR SST SSZ T5K TN5 XPP ZMT ~02 ~G- 29J 6TJ AAQXK AATTM AAXKI AAYWO AAYXX ABDMP ABDPE ABJNI ABWVN ABXDB ACKIV ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- RIG SAC SET SEW SSH T9H VOH WUQ ZY4 7TB 8FD EFKBS FR3 H8D KR7 L7M |
ID | FETCH-LOGICAL-c2155-3cc9e13ee23466ed3fc82d14a8a4d4994096b64872039919ec0656bec5cf01b53 |
IEDL.DBID | .~1 |
ISSN | 0017-9310 |
IngestDate | Fri Jul 25 05:06:05 EDT 2025 Thu Apr 24 22:56:00 EDT 2025 Tue Jul 01 04:24:12 EDT 2025 Fri Feb 23 02:39:31 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Passive direct methanol fuel cell Heterogeneous Transient temperature |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2155-3cc9e13ee23466ed3fc82d14a8a4d4994096b64872039919ec0656bec5cf01b53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2988-2214 |
PQID | 2649760135 |
PQPubID | 2045464 |
ParticipantIDs | proquest_journals_2649760135 crossref_citationtrail_10_1016_j_ijheatmasstransfer_2022_122749 crossref_primary_10_1016_j_ijheatmasstransfer_2022_122749 elsevier_sciencedirect_doi_10_1016_j_ijheatmasstransfer_2022_122749 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220615 |
PublicationDateYYYYMMDD | 2022-06-15 |
PublicationDate_xml | – month: 06 year: 2022 text: 20220615 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | International journal of heat and mass transfer |
PublicationYear | 2022 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Oliveira, Rangel, Pinto (bib0036) 2011; 196 Yang, Zhao (bib0042) 2007; 52 Bahrami, Faghri (bib0004) 2011; 196 Basri, Kamarudin (bib0009) 2011; 36 Bahrami, Faghri (bib0001) 2013; 230 Yuan, Tang, Yang, Wan (bib0016) 2012; 37 Karaoglan, M. Ince, Glusen, Colpan, Muller (bib0037) 2021; 46 Falcao, Oliveira, Rangel, Pinto (bib0024) 2015; 74 Lin, Nguyen, Lin (bib0041) 2006; 153 Achmad, Kamarudin, Daud, Majlan (bib0005) 2011; 88 Guo, Sun, Deng, Jiao, Huang (bib0031) 2015; 40 Shrivastava, Thombre, Chadge (bib0013) 2015; 22 Wilberforce, Alaswad, Palumbo, Dassisti, Olabi (bib0002) 2016; 41 Liu, Wang (bib0026) 2007; 164 Yuan, Zhang, Zuo, Ren (bib0038) 2018; 150 Yang, Chen, Zhao (bib0039) 2008; 175 Yuan, Hou, Zhang, Zhong, Luo, Mo, Zhang, Liu (bib0006) 2019; 11 Li, Faghri (bib0007) 2013; 226 Abdelkareem, Allagui, Sayed, El Haj Assad, Said, Elsaid (bib0020) 2019; 131 Lee, Lee, Han, Gwak, Ju (bib0027) 2017; 42 Yu, Yang, Kianimanesh, Freiheit, Park, Zhao, Xue (bib0029) 2013; 38 Yuan, Zhang, Zhang, Liu (bib0003) 2019; 7 Wang, Wang (bib0043) 2003; 150 Deodath, Jhingoorie, Riverol (bib0014) 2017; 42 Yuan, Zuo, Cao, Chen, Chuai, Guo (bib0018) 2019; 416 Scott, Taama, Cruickshank (bib0040) 1997; 65 García-Salaberri, Vera (bib0030) 2016; 113 Ge, Liu (bib0019) 2005; 142 Chen, Zhao (bib0034) 2005; 152 Wang, Jing, Mao, Xie (bib0017) 2016; 41 Faghri, Guo (bib0033) 2005; 48 Yuan, Yang (bib0011) 2015; 285 Wang, Zhu, Liao, Chen, Ye, Sui, Djilali (bib0032) 2020; 477 Taymaz, Akgun, Benli (bib0023) 2011; 36 Chen, Ye, Lin (bib0025) 2010; 35 Lo Vecchio, Serov, Romero (bib0012) 2019; 437 Dohle (bib0021) 2002; 111 Cao, Han, Yu, Chen (bib0008) 2012; 457 Ouellette, Gencalp, Colpan (bib0028) 2017; 42 Ye, Zhu, Liao, Li, Fu (bib0010) 2009; 192 Zuo, Yuan, Cao, Hao (bib0015) 2018; 43 Huang, Hwang, Lai (bib0022) 2015; 284 Wang, Zhang, An, Huang, Zhou, Liu (bib0035) 2013; 58 Lo Vecchio (10.1016/j.ijheatmasstransfer.2022.122749_bib0012) 2019; 437 Wang (10.1016/j.ijheatmasstransfer.2022.122749_bib0032) 2020; 477 Yuan (10.1016/j.ijheatmasstransfer.2022.122749_bib0016) 2012; 37 Falcao (10.1016/j.ijheatmasstransfer.2022.122749_bib0024) 2015; 74 Wang (10.1016/j.ijheatmasstransfer.2022.122749_bib0017) 2016; 41 Ouellette (10.1016/j.ijheatmasstransfer.2022.122749_bib0028) 2017; 42 Liu (10.1016/j.ijheatmasstransfer.2022.122749_bib0026) 2007; 164 Yuan (10.1016/j.ijheatmasstransfer.2022.122749_bib0006) 2019; 11 Faghri (10.1016/j.ijheatmasstransfer.2022.122749_bib0033) 2005; 48 Zuo (10.1016/j.ijheatmasstransfer.2022.122749_bib0015) 2018; 43 García-Salaberri (10.1016/j.ijheatmasstransfer.2022.122749_bib0030) 2016; 113 Ye (10.1016/j.ijheatmasstransfer.2022.122749_bib0010) 2009; 192 Yuan (10.1016/j.ijheatmasstransfer.2022.122749_bib0018) 2019; 416 Taymaz (10.1016/j.ijheatmasstransfer.2022.122749_bib0023) 2011; 36 Achmad (10.1016/j.ijheatmasstransfer.2022.122749_bib0005) 2011; 88 Ge (10.1016/j.ijheatmasstransfer.2022.122749_bib0019) 2005; 142 Lee (10.1016/j.ijheatmasstransfer.2022.122749_bib0027) 2017; 42 Wang (10.1016/j.ijheatmasstransfer.2022.122749_bib0035) 2013; 58 Oliveira (10.1016/j.ijheatmasstransfer.2022.122749_bib0036) 2011; 196 Lin (10.1016/j.ijheatmasstransfer.2022.122749_bib0041) 2006; 153 Karaoglan (10.1016/j.ijheatmasstransfer.2022.122749_bib0037) 2021; 46 Yuan (10.1016/j.ijheatmasstransfer.2022.122749_bib0011) 2015; 285 Basri (10.1016/j.ijheatmasstransfer.2022.122749_bib0009) 2011; 36 Yang (10.1016/j.ijheatmasstransfer.2022.122749_bib0042) 2007; 52 Bahrami (10.1016/j.ijheatmasstransfer.2022.122749_bib0004) 2011; 196 Deodath (10.1016/j.ijheatmasstransfer.2022.122749_bib0014) 2017; 42 Guo (10.1016/j.ijheatmasstransfer.2022.122749_bib0031) 2015; 40 Huang (10.1016/j.ijheatmasstransfer.2022.122749_bib0022) 2015; 284 Chen (10.1016/j.ijheatmasstransfer.2022.122749_bib0034) 2005; 152 Yang (10.1016/j.ijheatmasstransfer.2022.122749_bib0039) 2008; 175 Abdelkareem (10.1016/j.ijheatmasstransfer.2022.122749_bib0020) 2019; 131 Bahrami (10.1016/j.ijheatmasstransfer.2022.122749_bib0001) 2013; 230 Wang (10.1016/j.ijheatmasstransfer.2022.122749_bib0043) 2003; 150 Li (10.1016/j.ijheatmasstransfer.2022.122749_bib0007) 2013; 226 Yuan (10.1016/j.ijheatmasstransfer.2022.122749_bib0003) 2019; 7 Yu (10.1016/j.ijheatmasstransfer.2022.122749_bib0029) 2013; 38 Scott (10.1016/j.ijheatmasstransfer.2022.122749_bib0040) 1997; 65 Shrivastava (10.1016/j.ijheatmasstransfer.2022.122749_bib0013) 2015; 22 Yuan (10.1016/j.ijheatmasstransfer.2022.122749_bib0038) 2018; 150 Cao (10.1016/j.ijheatmasstransfer.2022.122749_bib0008) 2012; 457 Chen (10.1016/j.ijheatmasstransfer.2022.122749_bib0025) 2010; 35 Wilberforce (10.1016/j.ijheatmasstransfer.2022.122749_bib0002) 2016; 41 Dohle (10.1016/j.ijheatmasstransfer.2022.122749_bib0021) 2002; 111 |
References_xml | – volume: 477 year: 2020 ident: bib0032 article-title: Numerical simulation on mass transport in a passive vapor-fed direct methanol fuel cell operating with neat methanol publication-title: J. Power Sources – volume: 43 start-page: 23463 year: 2018 end-page: 23474 ident: bib0015 article-title: The mass transport based on convection effects in a passive DMFC under open-circuit conditions publication-title: Int. J. Hydrog. Energy – volume: 113 start-page: 1265 year: 2016 end-page: 1287 ident: bib0030 article-title: On the effect of operating conditions in liquid-feed direct methanol fuel cells: a multiphysics modeling approach publication-title: Energy – volume: 7 start-page: 11653 year: 2019 end-page: 11661 ident: bib0003 article-title: Improved anode two-phase mass transfer management of direct methanol fuel cell by the application of graphene aerogel publication-title: ACS Sustain. Chem. Eng. – volume: 196 start-page: 1191 year: 2011 end-page: 1204 ident: bib0004 article-title: Exergy analysis of a passive direct methanol fuel cell publication-title: J. Power Sources – volume: 42 start-page: 2680 year: 2017 end-page: 2690 ident: bib0028 article-title: Effect of cathode flow field configuration on the performance of flowing electrolytedirect methanol fuel cell publication-title: Int. J. Hydrog. Energy – volume: 74 start-page: 464 year: 2015 end-page: 470 ident: bib0024 article-title: Experimental and modeling studies of a micro direct methanol fuel cell publication-title: Renew. Energy – volume: 230 start-page: 303 year: 2013 end-page: 320 ident: bib0001 article-title: Review and advances of direct methanol fuel cells: part II: modeling and numerical simulation publication-title: J. Power Sources – volume: 88 start-page: 1681 year: 2011 end-page: 1689 ident: bib0005 article-title: Passive direct methanol fuel cells for portable electronic devices publication-title: Appl. Energy – volume: 65 start-page: 159 year: 1997 end-page: 171 ident: bib0040 article-title: Performance and modeling of a direct methanol solid polymer electrolyte fuel cell publication-title: J. Power Sources – volume: 36 start-page: 6219 year: 2011 end-page: 6236 ident: bib0009 article-title: Process system engineering in direct methanol fuel cell publication-title: Int. J. Hydrog. Energy – volume: 153 start-page: A372 year: 2006 end-page: A382 ident: bib0041 article-title: A two-dimensional two-phase model of a PEM fuel cell publication-title: J. Electrochem. Soc. – volume: 41 start-page: 16509 year: 2016 end-page: 16522 ident: bib0002 article-title: Advances in stationary and portable fuel cell applications publication-title: Int. J. Hydrog. Energy – volume: 58 start-page: 283 year: 2013 end-page: 295 ident: bib0035 article-title: Nonisothermal modeling of a small passive direct methanol fuel cell in vertical operation with anode natural convection effect publication-title: Energy – volume: 150 start-page: A508 year: 2003 end-page: A519 ident: bib0043 article-title: Mathematical modeling of liquid-feed direct methanol fuel cells publication-title: J. Electrochem. Soc. – volume: 42 start-page: 12032 year: 2017 end-page: 12045 ident: bib0014 article-title: Direct methanol fuel cell system reliability analysis publication-title: Int. J. Hydrog. Energy – volume: 152 start-page: 122 year: 2005 end-page: 130 ident: bib0034 article-title: Mathematical modeling of a passive-feed DMFC with heat transfer effect publication-title: J. Power Sources – volume: 164 start-page: 189 year: 2007 end-page: 195 ident: bib0026 article-title: Modeling water transport in liquid feed direct methanol fuel cells publication-title: J. Power Sources – volume: 52 start-page: 6125 year: 2007 end-page: 6140 ident: bib0042 article-title: A two-dimensional, two-phase mass transport model for liquid-feed DMFCs publication-title: Electrochim. Acta – volume: 11 start-page: 37626 year: 2019 end-page: 37634 ident: bib0006 article-title: Constructing a cathode catalyst layer of a passive direct methanol fuel cell with highly hydrophilic carbon aerogel for improved water management publication-title: ACS Appl. Mater. Interfaces – volume: 36 start-page: 1155 year: 2011 end-page: 1160 ident: bib0023 article-title: Application of response surface methodology to optimize and investigate the effects of operating conditions on the performance of DMFC publication-title: Energy – volume: 226 start-page: 223 year: 2013 end-page: 240 ident: bib0007 article-title: Review and advances of direct methanol fuel cells (DMFCs) part I: design, fabrication, and testing with high concentration methanol solutions publication-title: J. Power Sources – volume: 416 start-page: 9 year: 2019 end-page: 20 ident: bib0018 article-title: The whole process, bubble dynamic analysis in two-phase transport of the passive miniature direct methanol fuel cells publication-title: J. Power Sources – volume: 196 start-page: 8973 year: 2011 end-page: 8982 ident: bib0036 article-title: One-dimensional and non-isothermal model or a passive DMFC publication-title: J. Power Sources – volume: 437 start-page: 22694 year: 2019 end-page: 22698 ident: bib0012 article-title: Commercial platinum group metal-free cathodic electrocatalysts for highly performed direct methanol fuel cell applications publication-title: J. Power Sources – volume: 22 start-page: 1 year: 2015 end-page: 23 ident: bib0013 article-title: Liquid feed passive direct methanol fuel cell: challenges and recent advances publication-title: Ionics – volume: 192 start-page: 502 year: 2009 end-page: 514 ident: bib0010 article-title: Two-dimensional two-phase mass transport model for methanol and water crossover in air-breathing direct methanol fuel cells publication-title: J. Power Sources – volume: 37 start-page: 13510 year: 2012 end-page: 13521 ident: bib0016 article-title: Toward using porous metal-fiber sintered plate as anodic methanol barrier in a passive direct methanol fuel cell publication-title: Int. J. Hydrog. Energy – volume: 38 start-page: 9873 year: 2013 end-page: 9885 ident: bib0029 article-title: A CFD model with semi-empirical electrochemical relationships to study the influence of geometric and operating parameters on DMFC performance publication-title: Int. J. Hydrog. Energy – volume: 457 start-page: 156 year: 2012 end-page: 160 ident: bib0008 article-title: Investigation of passive direct methanol fuel cell (DMFC) at the open circuit condition publication-title: Adv. Mater. Res. – volume: 111 start-page: 268 year: 2002 end-page: 282 ident: bib0021 article-title: Heat and power management of a direct-methanol-fuel-cell (DMFC) system publication-title: J. Power Sources – volume: 142 start-page: 56 year: 2005 end-page: 69 ident: bib0019 article-title: Experimental studies of a direct methanol fuel cell publication-title: J. Power Sources – volume: 48 start-page: 3891 year: 2005 end-page: 3920 ident: bib0033 article-title: Challenges and opportunities of thermal management issues related to fuel cell technology and modeling publication-title: Int. J. Heat Mass Transf. – volume: 42 start-page: 1736 year: 2017 end-page: 1750 ident: bib0027 article-title: Numerical modeling and simulations of active direct methanol fuel cell (DMFC) systems under various ambient temperatures and operating conditions publication-title: Int. J. Hydrog. Energy – volume: 131 start-page: 563 year: 2019 end-page: 584 ident: bib0020 article-title: Comparative analysis of liquid versus vapor-feed passive direct methanol fuel cells publication-title: Renew. Energy – volume: 150 start-page: 28 year: 2018 end-page: 37 ident: bib0038 article-title: The effect of gravity on inner transport and cell performance in passive micro direct methanol fuel cell publication-title: Energy – volume: 46 start-page: 4484 year: 2021 end-page: 4856 ident: bib0037 article-title: Comparison of single-cell testing, short-stack testing and mathematical modeling methods for a direct methanol fuel cell publication-title: Int. J. Hydrog. Energy – volume: 175 start-page: b276 year: 2008 end-page: b287 ident: bib0039 article-title: Two-dimensional two-phase thermal model for passive direct methanol fuel cells publication-title: J. Power Sources – volume: 35 start-page: 8225 year: 2010 end-page: 8233 ident: bib0025 article-title: Effect of operating conditions on the performance of a direct methanol fuel cell with PtRuMo/CNTs as anode catalyst publication-title: Int. J. Hydrog. Energy – volume: 41 start-page: 16247 year: 2016 end-page: 16253 ident: bib0017 article-title: Polarization distribution and theoretical fitting of direct methanol fuel cell publication-title: Int. J. Hydrog. Energy – volume: 285 start-page: 318 year: 2015 end-page: 324 ident: bib0011 article-title: The effect of temperature on the output characteristics of micro direct methanol fuel cell publication-title: J. Power Sources – volume: 284 start-page: 77 year: 2015 end-page: 85 ident: bib0022 article-title: The influence of humidification and temperature differences between inlet gases on water transport through the membrane of a proton exchange membrane fuel cell publication-title: J. Power Sources – volume: 40 start-page: 14978 year: 2015 end-page: 14995 ident: bib0031 article-title: Transient analysis of passive direct methanol fuel cells with different operation and design parameters publication-title: Int. J. Hydrog. Energy – volume: 46 start-page: 4484 year: 2021 ident: 10.1016/j.ijheatmasstransfer.2022.122749_bib0037 article-title: Comparison of single-cell testing, short-stack testing and mathematical modeling methods for a direct methanol fuel cell publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2020.02.107 – volume: 153 start-page: A372 issue: 2 year: 2006 ident: 10.1016/j.ijheatmasstransfer.2022.122749_bib0041 article-title: A two-dimensional two-phase model of a PEM fuel cell publication-title: J. Electrochem. Soc. doi: 10.1149/1.2142267 – volume: 22 start-page: 1 year: 2015 ident: 10.1016/j.ijheatmasstransfer.2022.122749_bib0013 article-title: Liquid feed passive direct methanol fuel cell: challenges and recent advances publication-title: Ionics doi: 10.1007/s11581-015-1589-6 – volume: 42 start-page: 2680 year: 2017 ident: 10.1016/j.ijheatmasstransfer.2022.122749_bib0028 article-title: Effect of cathode flow field configuration on the performance of flowing electrolytedirect methanol fuel cell publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2016.11.022 – volume: 131 start-page: 563 year: 2019 ident: 10.1016/j.ijheatmasstransfer.2022.122749_bib0020 article-title: Comparative analysis of liquid versus vapor-feed passive direct methanol fuel cells publication-title: Renew. Energy doi: 10.1016/j.renene.2018.07.055 – volume: 36 start-page: 1155 year: 2011 ident: 10.1016/j.ijheatmasstransfer.2022.122749_bib0023 article-title: Application of response surface methodology to optimize and investigate the effects of operating conditions on the performance of DMFC publication-title: Energy doi: 10.1016/j.energy.2010.11.034 – volume: 40 start-page: 14978 year: 2015 ident: 10.1016/j.ijheatmasstransfer.2022.122749_bib0031 article-title: Transient analysis of passive direct methanol fuel cells with different operation and design parameters publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2015.09.040 – volume: 7 start-page: 11653 year: 2019 ident: 10.1016/j.ijheatmasstransfer.2022.122749_bib0003 article-title: Improved anode two-phase mass transfer management of direct methanol fuel cell by the application of graphene aerogel publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.9b01665 – volume: 48 start-page: 3891 year: 2005 ident: 10.1016/j.ijheatmasstransfer.2022.122749_bib0033 article-title: Challenges and opportunities of thermal management issues related to fuel cell technology and modeling publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2005.04.014 – volume: 65 start-page: 159 issue: 1 year: 1997 ident: 10.1016/j.ijheatmasstransfer.2022.122749_bib0040 article-title: Performance and modeling of a direct methanol solid polymer electrolyte fuel cell publication-title: J. Power Sources doi: 10.1016/S0378-7753(97)02485-3 – volume: 150 start-page: 28 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2022.122749_bib0038 article-title: The effect of gravity on inner transport and cell performance in passive micro direct methanol fuel cell publication-title: Energy doi: 10.1016/j.energy.2018.02.132 – volume: 152 start-page: 122 year: 2005 ident: 10.1016/j.ijheatmasstransfer.2022.122749_bib0034 article-title: Mathematical modeling of a passive-feed DMFC with heat transfer effect publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2005.02.088 – volume: 111 start-page: 268 year: 2002 ident: 10.1016/j.ijheatmasstransfer.2022.122749_bib0021 article-title: Heat and power management of a direct-methanol-fuel-cell (DMFC) system publication-title: J. Power Sources doi: 10.1016/S0378-7753(02)00339-7 – volume: 35 start-page: 8225 year: 2010 ident: 10.1016/j.ijheatmasstransfer.2022.122749_bib0025 article-title: Effect of operating conditions on the performance of a direct methanol fuel cell with PtRuMo/CNTs as anode catalyst publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2009.12.085 – volume: 36 start-page: 6219 year: 2011 ident: 10.1016/j.ijheatmasstransfer.2022.122749_bib0009 article-title: Process system engineering in direct methanol fuel cell publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2011.02.058 – volume: 52 start-page: 6125 issue: 20 year: 2007 ident: 10.1016/j.ijheatmasstransfer.2022.122749_bib0042 article-title: A two-dimensional, two-phase mass transport model for liquid-feed DMFCs publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2007.03.069 – volume: 457 start-page: 156 year: 2012 ident: 10.1016/j.ijheatmasstransfer.2022.122749_bib0008 article-title: Investigation of passive direct methanol fuel cell (DMFC) at the open circuit condition publication-title: Adv. Mater. Res. doi: 10.4028/www.scientific.net/AMR.457-458.156 – volume: 11 start-page: 37626 year: 2019 ident: 10.1016/j.ijheatmasstransfer.2022.122749_bib0006 article-title: Constructing a cathode catalyst layer of a passive direct methanol fuel cell with highly hydrophilic carbon aerogel for improved water management publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b09713 – volume: 74 start-page: 464 year: 2015 ident: 10.1016/j.ijheatmasstransfer.2022.122749_bib0024 article-title: Experimental and modeling studies of a micro direct methanol fuel cell publication-title: Renew. Energy doi: 10.1016/j.renene.2014.08.043 – volume: 196 start-page: 8973 year: 2011 ident: 10.1016/j.ijheatmasstransfer.2022.122749_bib0036 article-title: One-dimensional and non-isothermal model or a passive DMFC publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2011.01.094 – volume: 37 start-page: 13510 year: 2012 ident: 10.1016/j.ijheatmasstransfer.2022.122749_bib0016 article-title: Toward using porous metal-fiber sintered plate as anodic methanol barrier in a passive direct methanol fuel cell publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2012.06.094 – volume: 113 start-page: 1265 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2022.122749_bib0030 article-title: On the effect of operating conditions in liquid-feed direct methanol fuel cells: a multiphysics modeling approach publication-title: Energy doi: 10.1016/j.energy.2016.07.074 – volume: 58 start-page: 283 year: 2013 ident: 10.1016/j.ijheatmasstransfer.2022.122749_bib0035 article-title: Nonisothermal modeling of a small passive direct methanol fuel cell in vertical operation with anode natural convection effect publication-title: Energy doi: 10.1016/j.energy.2013.06.024 – volume: 175 start-page: b276 issue: 1 year: 2008 ident: 10.1016/j.ijheatmasstransfer.2022.122749_bib0039 article-title: Two-dimensional two-phase thermal model for passive direct methanol fuel cells publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2007.09.086 – volume: 416 start-page: 9 year: 2019 ident: 10.1016/j.ijheatmasstransfer.2022.122749_bib0018 article-title: The whole process, bubble dynamic analysis in two-phase transport of the passive miniature direct methanol fuel cells publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2019.01.088 – volume: 142 start-page: 56 year: 2005 ident: 10.1016/j.ijheatmasstransfer.2022.122749_bib0019 article-title: Experimental studies of a direct methanol fuel cell publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2004.11.022 – volume: 192 start-page: 502 year: 2009 ident: 10.1016/j.ijheatmasstransfer.2022.122749_bib0010 article-title: Two-dimensional two-phase mass transport model for methanol and water crossover in air-breathing direct methanol fuel cells publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2009.03.008 – volume: 164 start-page: 189 year: 2007 ident: 10.1016/j.ijheatmasstransfer.2022.122749_bib0026 article-title: Modeling water transport in liquid feed direct methanol fuel cells publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2006.10.047 – volume: 43 start-page: 23463 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2022.122749_bib0015 article-title: The mass transport based on convection effects in a passive DMFC under open-circuit conditions publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2018.10.196 – volume: 41 start-page: 16247 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2022.122749_bib0017 article-title: Polarization distribution and theoretical fitting of direct methanol fuel cell publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2016.05.116 – volume: 38 start-page: 9873 year: 2013 ident: 10.1016/j.ijheatmasstransfer.2022.122749_bib0029 article-title: A CFD model with semi-empirical electrochemical relationships to study the influence of geometric and operating parameters on DMFC performance publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2013.05.118 – volume: 226 start-page: 223 year: 2013 ident: 10.1016/j.ijheatmasstransfer.2022.122749_bib0007 article-title: Review and advances of direct methanol fuel cells (DMFCs) part I: design, fabrication, and testing with high concentration methanol solutions publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2012.10.061 – volume: 230 start-page: 303 year: 2013 ident: 10.1016/j.ijheatmasstransfer.2022.122749_bib0001 article-title: Review and advances of direct methanol fuel cells: part II: modeling and numerical simulation publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2012.12.009 – volume: 477 year: 2020 ident: 10.1016/j.ijheatmasstransfer.2022.122749_bib0032 article-title: Numerical simulation on mass transport in a passive vapor-fed direct methanol fuel cell operating with neat methanol publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2020.228541 – volume: 42 start-page: 12032 year: 2017 ident: 10.1016/j.ijheatmasstransfer.2022.122749_bib0014 article-title: Direct methanol fuel cell system reliability analysis publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2017.03.144 – volume: 285 start-page: 318 year: 2015 ident: 10.1016/j.ijheatmasstransfer.2022.122749_bib0011 article-title: The effect of temperature on the output characteristics of micro direct methanol fuel cell publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.03.094 – volume: 41 start-page: 16509 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2022.122749_bib0002 article-title: Advances in stationary and portable fuel cell applications publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2016.02.057 – volume: 196 start-page: 1191 year: 2011 ident: 10.1016/j.ijheatmasstransfer.2022.122749_bib0004 article-title: Exergy analysis of a passive direct methanol fuel cell publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2010.08.087 – volume: 437 start-page: 22694 year: 2019 ident: 10.1016/j.ijheatmasstransfer.2022.122749_bib0012 article-title: Commercial platinum group metal-free cathodic electrocatalysts for highly performed direct methanol fuel cell applications publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2019.226948 – volume: 284 start-page: 77 year: 2015 ident: 10.1016/j.ijheatmasstransfer.2022.122749_bib0022 article-title: The influence of humidification and temperature differences between inlet gases on water transport through the membrane of a proton exchange membrane fuel cell publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.02.132 – volume: 150 start-page: A508 issue: 4 year: 2003 ident: 10.1016/j.ijheatmasstransfer.2022.122749_bib0043 article-title: Mathematical modeling of liquid-feed direct methanol fuel cells publication-title: J. Electrochem. Soc. doi: 10.1149/1.1559061 – volume: 88 start-page: 1681 year: 2011 ident: 10.1016/j.ijheatmasstransfer.2022.122749_bib0005 article-title: Passive direct methanol fuel cells for portable electronic devices publication-title: Appl. Energy doi: 10.1016/j.apenergy.2010.11.012 – volume: 42 start-page: 1736 year: 2017 ident: 10.1016/j.ijheatmasstransfer.2022.122749_bib0027 article-title: Numerical modeling and simulations of active direct methanol fuel cell (DMFC) systems under various ambient temperatures and operating conditions publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2016.09.087 |
SSID | ssj0017046 |
Score | 2.381216 |
Snippet | •The temperature change before reaching a stable trend is simulated for the first time.•The non-uniform temperature distribution during cell start-up are... In this paper, the transient temperature heterogeneous distribution analysis in three-dimensional passive micro Direct Methanol Fuel Cell (µDMFC) is presented... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 122749 |
SubjectTerms | Channels Conduction heating Fluid flow Fuel cells Heterogeneous Mass transport Optimization Passive direct methanol fuel cell Proton conduction Three dimensional analysis Transient temperature |
Title | Transient temperature heterogeneous distribution analysis in three-dimensional passive µDMFC |
URI | https://dx.doi.org/10.1016/j.ijheatmasstransfer.2022.122749 https://www.proquest.com/docview/2649760135 |
Volume | 189 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8NAEF1EUbyIn1i_2IMHL7FNdjdNTiLVUi16EMVeZMluZrFF22Lr1X_lH_CXOZNsFBUPgqeQkE2WmdmZN_D2LWP7COkhF1kWJAJEIJWTgTEywYUnEuPAuBwKtsVl3LmR5z3Vm2Gtai8M0Sp97i9zepGt_ZO6t2Z93O_THl8KLupYqPAU0p9SNinKD18-aB5hs1Fu1qFsTG8vsINPjld_QBnvEWHqtICJQAqhUXQYRtispb-Vqm9Ju6hE7WW25CEkPy5nucJmYLjK5gsqp52ssbui_NA2R066U140md8T72WE4QLY6_Oc9HL9UVc888IkvD_kU_QtBDlp_pd6HXyM88aUyN9eTy7arXV20z69bnUCf4hCYLGaq0BYm0IoACIh4xj94mwS5aHMkkzm2O5gfxebGNuWqIFYJUzBIiiJ0bPKukZolNhgs8PREDYZB9lwOD51KYDMrMpU6oxVzhmXgcptjR1V9tLWK4zTQRcPuqKSDfRPi2uyuC4tXmPpxxfGpdrGH8a2KhfpLxGksTj84Ss7lXe1X80TjaAxJe6QUFv_8pNttkh3xDgL1Q6bnT49wy5im6nZK4J3j80dn3U7l3TtXt123wHoMwOE |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4hEI8LKi8VCq0PIHEJbBI7xAdUoaWrpTxOIHFBJnbG6qJ2d8Uuqnrpn0L8AX5ZZxKHqkU9IJVrIjvOePx9M9LnGYBNCumxTIsiylNMI6m8jKyVOR28NLcerS-xUlucZd0L-flSXU7AfXMXhmWVAftrTK_QOjzZDdbcHfZ6fMeXnYszFiaeWAdl5TH--E5522j_6JA2eStJOp_O290otBaIHHGcilLnNMYpYpLKLKPVepcnZSyLvJAlJQGU9WQ2o2A-aRGDxxodUXVG_6ucb8WWW0UQ7k9Jggtum7Dz80lXEu-16ttBDP-8vBnY_i0q690wxH6juHhcxaXIJUmTZCdOKDvU_-LGv1iior7OG5gPMas4qM2yABPYX4TpSjvqRktwVfEd36sUXOgqVGkWX1hoMyD_xMHdSJRcoDf01hJFqIQien0xJmfCqOQmA3WBEDGkdRMGi8eHw9NOexkuXsW0KzDZH_TxLQiULU_jtdeIsnCqUNpbp7y3vkBVulX42NjLuFDSnDtrfDWNdu3GPLe4YYub2uKroJ9mGNblPV4wtt1skfnDZQ2x0QtmWW921wT4GBmKUjWLlVK19l8-8gFmu-enJ-bk6Oz4HczxG5a7xWodJse3d7hBgdXYvq8cWcD1a5-cX3kzPBs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transient+temperature+heterogeneous+distribution+analysis+in+three-dimensional+passive+%C2%B5DMFC&rft.jtitle=International+journal+of+heat+and+mass+transfer&rft.au=Yuan%2C+Zhenyu&rft.au=Zuo%2C+Kaiyuan&rft.au=Cao%2C+Jiamu&rft.date=2022-06-15&rft.pub=Elsevier+BV&rft.issn=0017-9310&rft.eissn=1879-2189&rft.volume=189&rft.spage=1&rft_id=info:doi/10.1016%2Fj.ijheatmasstransfer.2022.122749&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0017-9310&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0017-9310&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0017-9310&client=summon |