Transient temperature heterogeneous distribution analysis in three-dimensional passive µDMFC

•The temperature change before reaching a stable trend is simulated for the first time.•The non-uniform temperature distribution during cell start-up are analyzed.•A three-dimensional µDMFC model is established and verified by experiment. In this paper, the transient temperature heterogeneous distri...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of heat and mass transfer Vol. 189; p. 122749
Main Authors Yuan, Zhenyu, Zuo, Kaiyuan, Cao, Jiamu
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 15.06.2022
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •The temperature change before reaching a stable trend is simulated for the first time.•The non-uniform temperature distribution during cell start-up are analyzed.•A three-dimensional µDMFC model is established and verified by experiment. In this paper, the transient temperature heterogeneous distribution analysis in three-dimensional passive micro Direct Methanol Fuel Cell (µDMFC) is presented in detail. The metal-based µDMFC with the effective area of 1.0 cm2 is fabricated to verify the correctness of the model. By coupling the mass transport, momentum transport, electron-proton conduction and heat transfer mechanisms, the models of the whole cell and a single flow channel are established, and the non-uniform temperature changes in different stages of the cell are analyzed. Simulation results manifest that the temperature of collector and channel is in heterogeneous distribution state during the process of the fuel cell from starting work to reaching a stable trend. Due to the different fluids in the cathode and anode flow channels, the inside of flow channels also presents different heating trends. In addition, the temperature-increasing rate of each part of the cell after starting work is also simulated. The results can be used as a reference for the inner heterogeneous transfer and startup phase optimization of fuel cells. [Display omitted]
AbstractList •The temperature change before reaching a stable trend is simulated for the first time.•The non-uniform temperature distribution during cell start-up are analyzed.•A three-dimensional µDMFC model is established and verified by experiment. In this paper, the transient temperature heterogeneous distribution analysis in three-dimensional passive micro Direct Methanol Fuel Cell (µDMFC) is presented in detail. The metal-based µDMFC with the effective area of 1.0 cm2 is fabricated to verify the correctness of the model. By coupling the mass transport, momentum transport, electron-proton conduction and heat transfer mechanisms, the models of the whole cell and a single flow channel are established, and the non-uniform temperature changes in different stages of the cell are analyzed. Simulation results manifest that the temperature of collector and channel is in heterogeneous distribution state during the process of the fuel cell from starting work to reaching a stable trend. Due to the different fluids in the cathode and anode flow channels, the inside of flow channels also presents different heating trends. In addition, the temperature-increasing rate of each part of the cell after starting work is also simulated. The results can be used as a reference for the inner heterogeneous transfer and startup phase optimization of fuel cells. [Display omitted]
In this paper, the transient temperature heterogeneous distribution analysis in three-dimensional passive micro Direct Methanol Fuel Cell (µDMFC) is presented in detail. The metal-based µDMFC with the effective area of 1.0 cm2 is fabricated to verify the correctness of the model. By coupling the mass transport, momentum transport, electron-proton conduction and heat transfer mechanisms, the models of the whole cell and a single flow channel are established, and the non-uniform temperature changes in different stages of the cell are analyzed. Simulation results manifest that the temperature of collector and channel is in heterogeneous distribution state during the process of the fuel cell from starting work to reaching a stable trend. Due to the different fluids in the cathode and anode flow channels, the inside of flow channels also presents different heating trends. In addition, the temperature-increasing rate of each part of the cell after starting work is also simulated. The results can be used as a reference for the inner heterogeneous transfer and startup phase optimization of fuel cells.
ArticleNumber 122749
Author Zuo, Kaiyuan
Yuan, Zhenyu
Cao, Jiamu
Author_xml – sequence: 1
  givenname: Zhenyu
  orcidid: 0000-0003-2988-2214
  surname: Yuan
  fullname: Yuan, Zhenyu
  email: yuanzhenyu@ise.neu.edu.cn
  organization: College of Information Science and Engineering, Northeastern University, Shenyang, Liaoning 110819, China
– sequence: 2
  givenname: Kaiyuan
  surname: Zuo
  fullname: Zuo, Kaiyuan
  organization: College of Information Science and Engineering, Northeastern University, Shenyang, Liaoning 110819, China
– sequence: 3
  givenname: Jiamu
  surname: Cao
  fullname: Cao, Jiamu
  organization: MEMS Center, Harbin Institute of Technology, Harbin 150001, China
BookMark eNqVkb1OwzAQgC1UJNrCO0RiYUmxHceJN1Ch_KiIpYzIcp0LddTGxXYq9cF4AZ4MR2WCBSbrdHff3X0eoUFrW0DoguAJwYRfNhPTrECFjfI-ONX6GtyEYkonhNKCiSM0JGUhUkpKMUBDjEmRiozgEzTyvulDzPgQvS76XgNtSAJstuBU6BwkKwjg7Bu0YDufVCaOMMsuGNsmqlXrvTc-MW0SVg4grcwGIsPGRLKN65gdJJ8fN0-z6Sk6rtXaw9n3O0Yvs9vF9D6dP989TK_nqaYkz9NMawEkA6AZ4xyqrNYlrQhTpWIVE4JhwZeclQXFmRBEgMY850vQua4xWebZGJ0fuFtn3zvwQTa2c3EfLylnouCYZH3V7FClnfXeQS21Cao_Kgo0a0mw7NXKRv5WK3u18qA2gq5-gLbObJTb_wfxeEBA1LIzMet1_AUNlXGgg6ys-TvsC2mXqUw
CitedBy_id crossref_primary_10_1016_j_renene_2025_122373
crossref_primary_10_1016_j_ijheatmasstransfer_2024_126059
Cites_doi 10.1016/j.ijhydene.2020.02.107
10.1149/1.2142267
10.1007/s11581-015-1589-6
10.1016/j.ijhydene.2016.11.022
10.1016/j.renene.2018.07.055
10.1016/j.energy.2010.11.034
10.1016/j.ijhydene.2015.09.040
10.1021/acssuschemeng.9b01665
10.1016/j.ijheatmasstransfer.2005.04.014
10.1016/S0378-7753(97)02485-3
10.1016/j.energy.2018.02.132
10.1016/j.jpowsour.2005.02.088
10.1016/S0378-7753(02)00339-7
10.1016/j.ijhydene.2009.12.085
10.1016/j.ijhydene.2011.02.058
10.1016/j.electacta.2007.03.069
10.4028/www.scientific.net/AMR.457-458.156
10.1021/acsami.9b09713
10.1016/j.renene.2014.08.043
10.1016/j.jpowsour.2011.01.094
10.1016/j.ijhydene.2012.06.094
10.1016/j.energy.2016.07.074
10.1016/j.energy.2013.06.024
10.1016/j.jpowsour.2007.09.086
10.1016/j.jpowsour.2019.01.088
10.1016/j.jpowsour.2004.11.022
10.1016/j.jpowsour.2009.03.008
10.1016/j.jpowsour.2006.10.047
10.1016/j.ijhydene.2018.10.196
10.1016/j.ijhydene.2016.05.116
10.1016/j.ijhydene.2013.05.118
10.1016/j.jpowsour.2012.10.061
10.1016/j.jpowsour.2012.12.009
10.1016/j.jpowsour.2020.228541
10.1016/j.ijhydene.2017.03.144
10.1016/j.jpowsour.2015.03.094
10.1016/j.ijhydene.2016.02.057
10.1016/j.jpowsour.2010.08.087
10.1016/j.jpowsour.2019.226948
10.1016/j.jpowsour.2015.02.132
10.1149/1.1559061
10.1016/j.apenergy.2010.11.012
10.1016/j.ijhydene.2016.09.087
ContentType Journal Article
Copyright 2022
Copyright Elsevier BV Jun 15, 2022
Copyright_xml – notice: 2022
– notice: Copyright Elsevier BV Jun 15, 2022
DBID AAYXX
CITATION
7TB
8FD
FR3
H8D
KR7
L7M
DOI 10.1016/j.ijheatmasstransfer.2022.122749
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1879-2189
ExternalDocumentID 10_1016_j_ijheatmasstransfer_2022_122749
S0017931022002319
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFNM
ABMAC
ABNUV
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEWK
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSR
SST
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29J
6TJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDMP
ABDPE
ABJNI
ABWVN
ABXDB
ACKIV
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RIG
SAC
SET
SEW
SSH
T9H
VOH
WUQ
ZY4
7TB
8FD
EFKBS
FR3
H8D
KR7
L7M
ID FETCH-LOGICAL-c2155-3cc9e13ee23466ed3fc82d14a8a4d4994096b64872039919ec0656bec5cf01b53
IEDL.DBID .~1
ISSN 0017-9310
IngestDate Fri Jul 25 05:06:05 EDT 2025
Thu Apr 24 22:56:00 EDT 2025
Tue Jul 01 04:24:12 EDT 2025
Fri Feb 23 02:39:31 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Passive direct methanol fuel cell
Heterogeneous
Transient temperature
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2155-3cc9e13ee23466ed3fc82d14a8a4d4994096b64872039919ec0656bec5cf01b53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2988-2214
PQID 2649760135
PQPubID 2045464
ParticipantIDs proquest_journals_2649760135
crossref_citationtrail_10_1016_j_ijheatmasstransfer_2022_122749
crossref_primary_10_1016_j_ijheatmasstransfer_2022_122749
elsevier_sciencedirect_doi_10_1016_j_ijheatmasstransfer_2022_122749
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220615
PublicationDateYYYYMMDD 2022-06-15
PublicationDate_xml – month: 06
  year: 2022
  text: 20220615
  day: 15
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle International journal of heat and mass transfer
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Oliveira, Rangel, Pinto (bib0036) 2011; 196
Yang, Zhao (bib0042) 2007; 52
Bahrami, Faghri (bib0004) 2011; 196
Basri, Kamarudin (bib0009) 2011; 36
Bahrami, Faghri (bib0001) 2013; 230
Yuan, Tang, Yang, Wan (bib0016) 2012; 37
Karaoglan, M. Ince, Glusen, Colpan, Muller (bib0037) 2021; 46
Falcao, Oliveira, Rangel, Pinto (bib0024) 2015; 74
Lin, Nguyen, Lin (bib0041) 2006; 153
Achmad, Kamarudin, Daud, Majlan (bib0005) 2011; 88
Guo, Sun, Deng, Jiao, Huang (bib0031) 2015; 40
Shrivastava, Thombre, Chadge (bib0013) 2015; 22
Wilberforce, Alaswad, Palumbo, Dassisti, Olabi (bib0002) 2016; 41
Liu, Wang (bib0026) 2007; 164
Yuan, Zhang, Zuo, Ren (bib0038) 2018; 150
Yang, Chen, Zhao (bib0039) 2008; 175
Yuan, Hou, Zhang, Zhong, Luo, Mo, Zhang, Liu (bib0006) 2019; 11
Li, Faghri (bib0007) 2013; 226
Abdelkareem, Allagui, Sayed, El Haj Assad, Said, Elsaid (bib0020) 2019; 131
Lee, Lee, Han, Gwak, Ju (bib0027) 2017; 42
Yu, Yang, Kianimanesh, Freiheit, Park, Zhao, Xue (bib0029) 2013; 38
Yuan, Zhang, Zhang, Liu (bib0003) 2019; 7
Wang, Wang (bib0043) 2003; 150
Deodath, Jhingoorie, Riverol (bib0014) 2017; 42
Yuan, Zuo, Cao, Chen, Chuai, Guo (bib0018) 2019; 416
Scott, Taama, Cruickshank (bib0040) 1997; 65
García-Salaberri, Vera (bib0030) 2016; 113
Ge, Liu (bib0019) 2005; 142
Chen, Zhao (bib0034) 2005; 152
Wang, Jing, Mao, Xie (bib0017) 2016; 41
Faghri, Guo (bib0033) 2005; 48
Yuan, Yang (bib0011) 2015; 285
Wang, Zhu, Liao, Chen, Ye, Sui, Djilali (bib0032) 2020; 477
Taymaz, Akgun, Benli (bib0023) 2011; 36
Chen, Ye, Lin (bib0025) 2010; 35
Lo Vecchio, Serov, Romero (bib0012) 2019; 437
Dohle (bib0021) 2002; 111
Cao, Han, Yu, Chen (bib0008) 2012; 457
Ouellette, Gencalp, Colpan (bib0028) 2017; 42
Ye, Zhu, Liao, Li, Fu (bib0010) 2009; 192
Zuo, Yuan, Cao, Hao (bib0015) 2018; 43
Huang, Hwang, Lai (bib0022) 2015; 284
Wang, Zhang, An, Huang, Zhou, Liu (bib0035) 2013; 58
Lo Vecchio (10.1016/j.ijheatmasstransfer.2022.122749_bib0012) 2019; 437
Wang (10.1016/j.ijheatmasstransfer.2022.122749_bib0032) 2020; 477
Yuan (10.1016/j.ijheatmasstransfer.2022.122749_bib0016) 2012; 37
Falcao (10.1016/j.ijheatmasstransfer.2022.122749_bib0024) 2015; 74
Wang (10.1016/j.ijheatmasstransfer.2022.122749_bib0017) 2016; 41
Ouellette (10.1016/j.ijheatmasstransfer.2022.122749_bib0028) 2017; 42
Liu (10.1016/j.ijheatmasstransfer.2022.122749_bib0026) 2007; 164
Yuan (10.1016/j.ijheatmasstransfer.2022.122749_bib0006) 2019; 11
Faghri (10.1016/j.ijheatmasstransfer.2022.122749_bib0033) 2005; 48
Zuo (10.1016/j.ijheatmasstransfer.2022.122749_bib0015) 2018; 43
García-Salaberri (10.1016/j.ijheatmasstransfer.2022.122749_bib0030) 2016; 113
Ye (10.1016/j.ijheatmasstransfer.2022.122749_bib0010) 2009; 192
Yuan (10.1016/j.ijheatmasstransfer.2022.122749_bib0018) 2019; 416
Taymaz (10.1016/j.ijheatmasstransfer.2022.122749_bib0023) 2011; 36
Achmad (10.1016/j.ijheatmasstransfer.2022.122749_bib0005) 2011; 88
Ge (10.1016/j.ijheatmasstransfer.2022.122749_bib0019) 2005; 142
Lee (10.1016/j.ijheatmasstransfer.2022.122749_bib0027) 2017; 42
Wang (10.1016/j.ijheatmasstransfer.2022.122749_bib0035) 2013; 58
Oliveira (10.1016/j.ijheatmasstransfer.2022.122749_bib0036) 2011; 196
Lin (10.1016/j.ijheatmasstransfer.2022.122749_bib0041) 2006; 153
Karaoglan (10.1016/j.ijheatmasstransfer.2022.122749_bib0037) 2021; 46
Yuan (10.1016/j.ijheatmasstransfer.2022.122749_bib0011) 2015; 285
Basri (10.1016/j.ijheatmasstransfer.2022.122749_bib0009) 2011; 36
Yang (10.1016/j.ijheatmasstransfer.2022.122749_bib0042) 2007; 52
Bahrami (10.1016/j.ijheatmasstransfer.2022.122749_bib0004) 2011; 196
Deodath (10.1016/j.ijheatmasstransfer.2022.122749_bib0014) 2017; 42
Guo (10.1016/j.ijheatmasstransfer.2022.122749_bib0031) 2015; 40
Huang (10.1016/j.ijheatmasstransfer.2022.122749_bib0022) 2015; 284
Chen (10.1016/j.ijheatmasstransfer.2022.122749_bib0034) 2005; 152
Yang (10.1016/j.ijheatmasstransfer.2022.122749_bib0039) 2008; 175
Abdelkareem (10.1016/j.ijheatmasstransfer.2022.122749_bib0020) 2019; 131
Bahrami (10.1016/j.ijheatmasstransfer.2022.122749_bib0001) 2013; 230
Wang (10.1016/j.ijheatmasstransfer.2022.122749_bib0043) 2003; 150
Li (10.1016/j.ijheatmasstransfer.2022.122749_bib0007) 2013; 226
Yuan (10.1016/j.ijheatmasstransfer.2022.122749_bib0003) 2019; 7
Yu (10.1016/j.ijheatmasstransfer.2022.122749_bib0029) 2013; 38
Scott (10.1016/j.ijheatmasstransfer.2022.122749_bib0040) 1997; 65
Shrivastava (10.1016/j.ijheatmasstransfer.2022.122749_bib0013) 2015; 22
Yuan (10.1016/j.ijheatmasstransfer.2022.122749_bib0038) 2018; 150
Cao (10.1016/j.ijheatmasstransfer.2022.122749_bib0008) 2012; 457
Chen (10.1016/j.ijheatmasstransfer.2022.122749_bib0025) 2010; 35
Wilberforce (10.1016/j.ijheatmasstransfer.2022.122749_bib0002) 2016; 41
Dohle (10.1016/j.ijheatmasstransfer.2022.122749_bib0021) 2002; 111
References_xml – volume: 477
  year: 2020
  ident: bib0032
  article-title: Numerical simulation on mass transport in a passive vapor-fed direct methanol fuel cell operating with neat methanol
  publication-title: J. Power Sources
– volume: 43
  start-page: 23463
  year: 2018
  end-page: 23474
  ident: bib0015
  article-title: The mass transport based on convection effects in a passive DMFC under open-circuit conditions
  publication-title: Int. J. Hydrog. Energy
– volume: 113
  start-page: 1265
  year: 2016
  end-page: 1287
  ident: bib0030
  article-title: On the effect of operating conditions in liquid-feed direct methanol fuel cells: a multiphysics modeling approach
  publication-title: Energy
– volume: 7
  start-page: 11653
  year: 2019
  end-page: 11661
  ident: bib0003
  article-title: Improved anode two-phase mass transfer management of direct methanol fuel cell by the application of graphene aerogel
  publication-title: ACS Sustain. Chem. Eng.
– volume: 196
  start-page: 1191
  year: 2011
  end-page: 1204
  ident: bib0004
  article-title: Exergy analysis of a passive direct methanol fuel cell
  publication-title: J. Power Sources
– volume: 42
  start-page: 2680
  year: 2017
  end-page: 2690
  ident: bib0028
  article-title: Effect of cathode flow field configuration on the performance of flowing electrolytedirect methanol fuel cell
  publication-title: Int. J. Hydrog. Energy
– volume: 74
  start-page: 464
  year: 2015
  end-page: 470
  ident: bib0024
  article-title: Experimental and modeling studies of a micro direct methanol fuel cell
  publication-title: Renew. Energy
– volume: 230
  start-page: 303
  year: 2013
  end-page: 320
  ident: bib0001
  article-title: Review and advances of direct methanol fuel cells: part II: modeling and numerical simulation
  publication-title: J. Power Sources
– volume: 88
  start-page: 1681
  year: 2011
  end-page: 1689
  ident: bib0005
  article-title: Passive direct methanol fuel cells for portable electronic devices
  publication-title: Appl. Energy
– volume: 65
  start-page: 159
  year: 1997
  end-page: 171
  ident: bib0040
  article-title: Performance and modeling of a direct methanol solid polymer electrolyte fuel cell
  publication-title: J. Power Sources
– volume: 36
  start-page: 6219
  year: 2011
  end-page: 6236
  ident: bib0009
  article-title: Process system engineering in direct methanol fuel cell
  publication-title: Int. J. Hydrog. Energy
– volume: 153
  start-page: A372
  year: 2006
  end-page: A382
  ident: bib0041
  article-title: A two-dimensional two-phase model of a PEM fuel cell
  publication-title: J. Electrochem. Soc.
– volume: 41
  start-page: 16509
  year: 2016
  end-page: 16522
  ident: bib0002
  article-title: Advances in stationary and portable fuel cell applications
  publication-title: Int. J. Hydrog. Energy
– volume: 58
  start-page: 283
  year: 2013
  end-page: 295
  ident: bib0035
  article-title: Nonisothermal modeling of a small passive direct methanol fuel cell in vertical operation with anode natural convection effect
  publication-title: Energy
– volume: 150
  start-page: A508
  year: 2003
  end-page: A519
  ident: bib0043
  article-title: Mathematical modeling of liquid-feed direct methanol fuel cells
  publication-title: J. Electrochem. Soc.
– volume: 42
  start-page: 12032
  year: 2017
  end-page: 12045
  ident: bib0014
  article-title: Direct methanol fuel cell system reliability analysis
  publication-title: Int. J. Hydrog. Energy
– volume: 152
  start-page: 122
  year: 2005
  end-page: 130
  ident: bib0034
  article-title: Mathematical modeling of a passive-feed DMFC with heat transfer effect
  publication-title: J. Power Sources
– volume: 164
  start-page: 189
  year: 2007
  end-page: 195
  ident: bib0026
  article-title: Modeling water transport in liquid feed direct methanol fuel cells
  publication-title: J. Power Sources
– volume: 52
  start-page: 6125
  year: 2007
  end-page: 6140
  ident: bib0042
  article-title: A two-dimensional, two-phase mass transport model for liquid-feed DMFCs
  publication-title: Electrochim. Acta
– volume: 11
  start-page: 37626
  year: 2019
  end-page: 37634
  ident: bib0006
  article-title: Constructing a cathode catalyst layer of a passive direct methanol fuel cell with highly hydrophilic carbon aerogel for improved water management
  publication-title: ACS Appl. Mater. Interfaces
– volume: 36
  start-page: 1155
  year: 2011
  end-page: 1160
  ident: bib0023
  article-title: Application of response surface methodology to optimize and investigate the effects of operating conditions on the performance of DMFC
  publication-title: Energy
– volume: 226
  start-page: 223
  year: 2013
  end-page: 240
  ident: bib0007
  article-title: Review and advances of direct methanol fuel cells (DMFCs) part I: design, fabrication, and testing with high concentration methanol solutions
  publication-title: J. Power Sources
– volume: 416
  start-page: 9
  year: 2019
  end-page: 20
  ident: bib0018
  article-title: The whole process, bubble dynamic analysis in two-phase transport of the passive miniature direct methanol fuel cells
  publication-title: J. Power Sources
– volume: 196
  start-page: 8973
  year: 2011
  end-page: 8982
  ident: bib0036
  article-title: One-dimensional and non-isothermal model or a passive DMFC
  publication-title: J. Power Sources
– volume: 437
  start-page: 22694
  year: 2019
  end-page: 22698
  ident: bib0012
  article-title: Commercial platinum group metal-free cathodic electrocatalysts for highly performed direct methanol fuel cell applications
  publication-title: J. Power Sources
– volume: 22
  start-page: 1
  year: 2015
  end-page: 23
  ident: bib0013
  article-title: Liquid feed passive direct methanol fuel cell: challenges and recent advances
  publication-title: Ionics
– volume: 192
  start-page: 502
  year: 2009
  end-page: 514
  ident: bib0010
  article-title: Two-dimensional two-phase mass transport model for methanol and water crossover in air-breathing direct methanol fuel cells
  publication-title: J. Power Sources
– volume: 37
  start-page: 13510
  year: 2012
  end-page: 13521
  ident: bib0016
  article-title: Toward using porous metal-fiber sintered plate as anodic methanol barrier in a passive direct methanol fuel cell
  publication-title: Int. J. Hydrog. Energy
– volume: 38
  start-page: 9873
  year: 2013
  end-page: 9885
  ident: bib0029
  article-title: A CFD model with semi-empirical electrochemical relationships to study the influence of geometric and operating parameters on DMFC performance
  publication-title: Int. J. Hydrog. Energy
– volume: 457
  start-page: 156
  year: 2012
  end-page: 160
  ident: bib0008
  article-title: Investigation of passive direct methanol fuel cell (DMFC) at the open circuit condition
  publication-title: Adv. Mater. Res.
– volume: 111
  start-page: 268
  year: 2002
  end-page: 282
  ident: bib0021
  article-title: Heat and power management of a direct-methanol-fuel-cell (DMFC) system
  publication-title: J. Power Sources
– volume: 142
  start-page: 56
  year: 2005
  end-page: 69
  ident: bib0019
  article-title: Experimental studies of a direct methanol fuel cell
  publication-title: J. Power Sources
– volume: 48
  start-page: 3891
  year: 2005
  end-page: 3920
  ident: bib0033
  article-title: Challenges and opportunities of thermal management issues related to fuel cell technology and modeling
  publication-title: Int. J. Heat Mass Transf.
– volume: 42
  start-page: 1736
  year: 2017
  end-page: 1750
  ident: bib0027
  article-title: Numerical modeling and simulations of active direct methanol fuel cell (DMFC) systems under various ambient temperatures and operating conditions
  publication-title: Int. J. Hydrog. Energy
– volume: 131
  start-page: 563
  year: 2019
  end-page: 584
  ident: bib0020
  article-title: Comparative analysis of liquid versus vapor-feed passive direct methanol fuel cells
  publication-title: Renew. Energy
– volume: 150
  start-page: 28
  year: 2018
  end-page: 37
  ident: bib0038
  article-title: The effect of gravity on inner transport and cell performance in passive micro direct methanol fuel cell
  publication-title: Energy
– volume: 46
  start-page: 4484
  year: 2021
  end-page: 4856
  ident: bib0037
  article-title: Comparison of single-cell testing, short-stack testing and mathematical modeling methods for a direct methanol fuel cell
  publication-title: Int. J. Hydrog. Energy
– volume: 175
  start-page: b276
  year: 2008
  end-page: b287
  ident: bib0039
  article-title: Two-dimensional two-phase thermal model for passive direct methanol fuel cells
  publication-title: J. Power Sources
– volume: 35
  start-page: 8225
  year: 2010
  end-page: 8233
  ident: bib0025
  article-title: Effect of operating conditions on the performance of a direct methanol fuel cell with PtRuMo/CNTs as anode catalyst
  publication-title: Int. J. Hydrog. Energy
– volume: 41
  start-page: 16247
  year: 2016
  end-page: 16253
  ident: bib0017
  article-title: Polarization distribution and theoretical fitting of direct methanol fuel cell
  publication-title: Int. J. Hydrog. Energy
– volume: 285
  start-page: 318
  year: 2015
  end-page: 324
  ident: bib0011
  article-title: The effect of temperature on the output characteristics of micro direct methanol fuel cell
  publication-title: J. Power Sources
– volume: 284
  start-page: 77
  year: 2015
  end-page: 85
  ident: bib0022
  article-title: The influence of humidification and temperature differences between inlet gases on water transport through the membrane of a proton exchange membrane fuel cell
  publication-title: J. Power Sources
– volume: 40
  start-page: 14978
  year: 2015
  end-page: 14995
  ident: bib0031
  article-title: Transient analysis of passive direct methanol fuel cells with different operation and design parameters
  publication-title: Int. J. Hydrog. Energy
– volume: 46
  start-page: 4484
  year: 2021
  ident: 10.1016/j.ijheatmasstransfer.2022.122749_bib0037
  article-title: Comparison of single-cell testing, short-stack testing and mathematical modeling methods for a direct methanol fuel cell
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2020.02.107
– volume: 153
  start-page: A372
  issue: 2
  year: 2006
  ident: 10.1016/j.ijheatmasstransfer.2022.122749_bib0041
  article-title: A two-dimensional two-phase model of a PEM fuel cell
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2142267
– volume: 22
  start-page: 1
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2022.122749_bib0013
  article-title: Liquid feed passive direct methanol fuel cell: challenges and recent advances
  publication-title: Ionics
  doi: 10.1007/s11581-015-1589-6
– volume: 42
  start-page: 2680
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2022.122749_bib0028
  article-title: Effect of cathode flow field configuration on the performance of flowing electrolytedirect methanol fuel cell
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2016.11.022
– volume: 131
  start-page: 563
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2022.122749_bib0020
  article-title: Comparative analysis of liquid versus vapor-feed passive direct methanol fuel cells
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2018.07.055
– volume: 36
  start-page: 1155
  year: 2011
  ident: 10.1016/j.ijheatmasstransfer.2022.122749_bib0023
  article-title: Application of response surface methodology to optimize and investigate the effects of operating conditions on the performance of DMFC
  publication-title: Energy
  doi: 10.1016/j.energy.2010.11.034
– volume: 40
  start-page: 14978
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2022.122749_bib0031
  article-title: Transient analysis of passive direct methanol fuel cells with different operation and design parameters
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2015.09.040
– volume: 7
  start-page: 11653
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2022.122749_bib0003
  article-title: Improved anode two-phase mass transfer management of direct methanol fuel cell by the application of graphene aerogel
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.9b01665
– volume: 48
  start-page: 3891
  year: 2005
  ident: 10.1016/j.ijheatmasstransfer.2022.122749_bib0033
  article-title: Challenges and opportunities of thermal management issues related to fuel cell technology and modeling
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2005.04.014
– volume: 65
  start-page: 159
  issue: 1
  year: 1997
  ident: 10.1016/j.ijheatmasstransfer.2022.122749_bib0040
  article-title: Performance and modeling of a direct methanol solid polymer electrolyte fuel cell
  publication-title: J. Power Sources
  doi: 10.1016/S0378-7753(97)02485-3
– volume: 150
  start-page: 28
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2022.122749_bib0038
  article-title: The effect of gravity on inner transport and cell performance in passive micro direct methanol fuel cell
  publication-title: Energy
  doi: 10.1016/j.energy.2018.02.132
– volume: 152
  start-page: 122
  year: 2005
  ident: 10.1016/j.ijheatmasstransfer.2022.122749_bib0034
  article-title: Mathematical modeling of a passive-feed DMFC with heat transfer effect
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2005.02.088
– volume: 111
  start-page: 268
  year: 2002
  ident: 10.1016/j.ijheatmasstransfer.2022.122749_bib0021
  article-title: Heat and power management of a direct-methanol-fuel-cell (DMFC) system
  publication-title: J. Power Sources
  doi: 10.1016/S0378-7753(02)00339-7
– volume: 35
  start-page: 8225
  year: 2010
  ident: 10.1016/j.ijheatmasstransfer.2022.122749_bib0025
  article-title: Effect of operating conditions on the performance of a direct methanol fuel cell with PtRuMo/CNTs as anode catalyst
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2009.12.085
– volume: 36
  start-page: 6219
  year: 2011
  ident: 10.1016/j.ijheatmasstransfer.2022.122749_bib0009
  article-title: Process system engineering in direct methanol fuel cell
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2011.02.058
– volume: 52
  start-page: 6125
  issue: 20
  year: 2007
  ident: 10.1016/j.ijheatmasstransfer.2022.122749_bib0042
  article-title: A two-dimensional, two-phase mass transport model for liquid-feed DMFCs
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2007.03.069
– volume: 457
  start-page: 156
  year: 2012
  ident: 10.1016/j.ijheatmasstransfer.2022.122749_bib0008
  article-title: Investigation of passive direct methanol fuel cell (DMFC) at the open circuit condition
  publication-title: Adv. Mater. Res.
  doi: 10.4028/www.scientific.net/AMR.457-458.156
– volume: 11
  start-page: 37626
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2022.122749_bib0006
  article-title: Constructing a cathode catalyst layer of a passive direct methanol fuel cell with highly hydrophilic carbon aerogel for improved water management
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b09713
– volume: 74
  start-page: 464
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2022.122749_bib0024
  article-title: Experimental and modeling studies of a micro direct methanol fuel cell
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2014.08.043
– volume: 196
  start-page: 8973
  year: 2011
  ident: 10.1016/j.ijheatmasstransfer.2022.122749_bib0036
  article-title: One-dimensional and non-isothermal model or a passive DMFC
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2011.01.094
– volume: 37
  start-page: 13510
  year: 2012
  ident: 10.1016/j.ijheatmasstransfer.2022.122749_bib0016
  article-title: Toward using porous metal-fiber sintered plate as anodic methanol barrier in a passive direct methanol fuel cell
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2012.06.094
– volume: 113
  start-page: 1265
  year: 2016
  ident: 10.1016/j.ijheatmasstransfer.2022.122749_bib0030
  article-title: On the effect of operating conditions in liquid-feed direct methanol fuel cells: a multiphysics modeling approach
  publication-title: Energy
  doi: 10.1016/j.energy.2016.07.074
– volume: 58
  start-page: 283
  year: 2013
  ident: 10.1016/j.ijheatmasstransfer.2022.122749_bib0035
  article-title: Nonisothermal modeling of a small passive direct methanol fuel cell in vertical operation with anode natural convection effect
  publication-title: Energy
  doi: 10.1016/j.energy.2013.06.024
– volume: 175
  start-page: b276
  issue: 1
  year: 2008
  ident: 10.1016/j.ijheatmasstransfer.2022.122749_bib0039
  article-title: Two-dimensional two-phase thermal model for passive direct methanol fuel cells
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2007.09.086
– volume: 416
  start-page: 9
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2022.122749_bib0018
  article-title: The whole process, bubble dynamic analysis in two-phase transport of the passive miniature direct methanol fuel cells
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2019.01.088
– volume: 142
  start-page: 56
  year: 2005
  ident: 10.1016/j.ijheatmasstransfer.2022.122749_bib0019
  article-title: Experimental studies of a direct methanol fuel cell
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2004.11.022
– volume: 192
  start-page: 502
  year: 2009
  ident: 10.1016/j.ijheatmasstransfer.2022.122749_bib0010
  article-title: Two-dimensional two-phase mass transport model for methanol and water crossover in air-breathing direct methanol fuel cells
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2009.03.008
– volume: 164
  start-page: 189
  year: 2007
  ident: 10.1016/j.ijheatmasstransfer.2022.122749_bib0026
  article-title: Modeling water transport in liquid feed direct methanol fuel cells
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2006.10.047
– volume: 43
  start-page: 23463
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2022.122749_bib0015
  article-title: The mass transport based on convection effects in a passive DMFC under open-circuit conditions
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2018.10.196
– volume: 41
  start-page: 16247
  year: 2016
  ident: 10.1016/j.ijheatmasstransfer.2022.122749_bib0017
  article-title: Polarization distribution and theoretical fitting of direct methanol fuel cell
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2016.05.116
– volume: 38
  start-page: 9873
  year: 2013
  ident: 10.1016/j.ijheatmasstransfer.2022.122749_bib0029
  article-title: A CFD model with semi-empirical electrochemical relationships to study the influence of geometric and operating parameters on DMFC performance
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2013.05.118
– volume: 226
  start-page: 223
  year: 2013
  ident: 10.1016/j.ijheatmasstransfer.2022.122749_bib0007
  article-title: Review and advances of direct methanol fuel cells (DMFCs) part I: design, fabrication, and testing with high concentration methanol solutions
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2012.10.061
– volume: 230
  start-page: 303
  year: 2013
  ident: 10.1016/j.ijheatmasstransfer.2022.122749_bib0001
  article-title: Review and advances of direct methanol fuel cells: part II: modeling and numerical simulation
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2012.12.009
– volume: 477
  year: 2020
  ident: 10.1016/j.ijheatmasstransfer.2022.122749_bib0032
  article-title: Numerical simulation on mass transport in a passive vapor-fed direct methanol fuel cell operating with neat methanol
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2020.228541
– volume: 42
  start-page: 12032
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2022.122749_bib0014
  article-title: Direct methanol fuel cell system reliability analysis
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2017.03.144
– volume: 285
  start-page: 318
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2022.122749_bib0011
  article-title: The effect of temperature on the output characteristics of micro direct methanol fuel cell
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.03.094
– volume: 41
  start-page: 16509
  year: 2016
  ident: 10.1016/j.ijheatmasstransfer.2022.122749_bib0002
  article-title: Advances in stationary and portable fuel cell applications
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2016.02.057
– volume: 196
  start-page: 1191
  year: 2011
  ident: 10.1016/j.ijheatmasstransfer.2022.122749_bib0004
  article-title: Exergy analysis of a passive direct methanol fuel cell
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2010.08.087
– volume: 437
  start-page: 22694
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2022.122749_bib0012
  article-title: Commercial platinum group metal-free cathodic electrocatalysts for highly performed direct methanol fuel cell applications
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2019.226948
– volume: 284
  start-page: 77
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2022.122749_bib0022
  article-title: The influence of humidification and temperature differences between inlet gases on water transport through the membrane of a proton exchange membrane fuel cell
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.02.132
– volume: 150
  start-page: A508
  issue: 4
  year: 2003
  ident: 10.1016/j.ijheatmasstransfer.2022.122749_bib0043
  article-title: Mathematical modeling of liquid-feed direct methanol fuel cells
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1559061
– volume: 88
  start-page: 1681
  year: 2011
  ident: 10.1016/j.ijheatmasstransfer.2022.122749_bib0005
  article-title: Passive direct methanol fuel cells for portable electronic devices
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2010.11.012
– volume: 42
  start-page: 1736
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2022.122749_bib0027
  article-title: Numerical modeling and simulations of active direct methanol fuel cell (DMFC) systems under various ambient temperatures and operating conditions
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2016.09.087
SSID ssj0017046
Score 2.381216
Snippet •The temperature change before reaching a stable trend is simulated for the first time.•The non-uniform temperature distribution during cell start-up are...
In this paper, the transient temperature heterogeneous distribution analysis in three-dimensional passive micro Direct Methanol Fuel Cell (µDMFC) is presented...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 122749
SubjectTerms Channels
Conduction heating
Fluid flow
Fuel cells
Heterogeneous
Mass transport
Optimization
Passive direct methanol fuel cell
Proton conduction
Three dimensional analysis
Transient temperature
Title Transient temperature heterogeneous distribution analysis in three-dimensional passive µDMFC
URI https://dx.doi.org/10.1016/j.ijheatmasstransfer.2022.122749
https://www.proquest.com/docview/2649760135
Volume 189
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8NAEF1EUbyIn1i_2IMHL7FNdjdNTiLVUi16EMVeZMluZrFF22Lr1X_lH_CXOZNsFBUPgqeQkE2WmdmZN_D2LWP7COkhF1kWJAJEIJWTgTEywYUnEuPAuBwKtsVl3LmR5z3Vm2Gtai8M0Sp97i9zepGt_ZO6t2Z93O_THl8KLupYqPAU0p9SNinKD18-aB5hs1Fu1qFsTG8vsINPjld_QBnvEWHqtICJQAqhUXQYRtispb-Vqm9Ju6hE7WW25CEkPy5nucJmYLjK5gsqp52ssbui_NA2R066U140md8T72WE4QLY6_Oc9HL9UVc888IkvD_kU_QtBDlp_pd6HXyM88aUyN9eTy7arXV20z69bnUCf4hCYLGaq0BYm0IoACIh4xj94mwS5aHMkkzm2O5gfxebGNuWqIFYJUzBIiiJ0bPKukZolNhgs8PREDYZB9lwOD51KYDMrMpU6oxVzhmXgcptjR1V9tLWK4zTQRcPuqKSDfRPi2uyuC4tXmPpxxfGpdrGH8a2KhfpLxGksTj84Ss7lXe1X80TjaAxJe6QUFv_8pNttkh3xDgL1Q6bnT49wy5im6nZK4J3j80dn3U7l3TtXt123wHoMwOE
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4hEI8LKi8VCq0PIHEJbBI7xAdUoaWrpTxOIHFBJnbG6qJ2d8Uuqnrpn0L8AX5ZZxKHqkU9IJVrIjvOePx9M9LnGYBNCumxTIsiylNMI6m8jKyVOR28NLcerS-xUlucZd0L-flSXU7AfXMXhmWVAftrTK_QOjzZDdbcHfZ6fMeXnYszFiaeWAdl5TH--E5522j_6JA2eStJOp_O290otBaIHHGcilLnNMYpYpLKLKPVepcnZSyLvJAlJQGU9WQ2o2A-aRGDxxodUXVG_6ucb8WWW0UQ7k9Jggtum7Dz80lXEu-16ttBDP-8vBnY_i0q690wxH6juHhcxaXIJUmTZCdOKDvU_-LGv1iior7OG5gPMas4qM2yABPYX4TpSjvqRktwVfEd36sUXOgqVGkWX1hoMyD_xMHdSJRcoDf01hJFqIQien0xJmfCqOQmA3WBEDGkdRMGi8eHw9NOexkuXsW0KzDZH_TxLQiULU_jtdeIsnCqUNpbp7y3vkBVulX42NjLuFDSnDtrfDWNdu3GPLe4YYub2uKroJ9mGNblPV4wtt1skfnDZQ2x0QtmWW921wT4GBmKUjWLlVK19l8-8gFmu-enJ-bk6Oz4HczxG5a7xWodJse3d7hBgdXYvq8cWcD1a5-cX3kzPBs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transient+temperature+heterogeneous+distribution+analysis+in+three-dimensional+passive+%C2%B5DMFC&rft.jtitle=International+journal+of+heat+and+mass+transfer&rft.au=Yuan%2C+Zhenyu&rft.au=Zuo%2C+Kaiyuan&rft.au=Cao%2C+Jiamu&rft.date=2022-06-15&rft.pub=Elsevier+BV&rft.issn=0017-9310&rft.eissn=1879-2189&rft.volume=189&rft.spage=1&rft_id=info:doi/10.1016%2Fj.ijheatmasstransfer.2022.122749&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0017-9310&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0017-9310&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0017-9310&client=summon