Utilization Of Data Mining To Classify The Locations Of New Street Food Businesses Attracted And Potentially Big Profits In The City Of Surakarta
This study uses C4.5 algorithm to classify potentially large-profit businesses in the city of Surakarta. The data used are street vendors who are divided into 4 types of merchandise namely snacks, snacks, heavy foods and drinks. The locations that are targeted for classification are Car Free Day. Th...
Saved in:
Published in | Journal of Applied Engineering and Technological Science (Online) Vol. 1; no. 2; pp. 162 - 168 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Yayasan Pendidikan Riset dan Pengembangan Intelektual (YRPI)
21.08.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 2715-6087 2715-6079 |
DOI | 10.37385/jaets.v1i2.45 |
Cover
Loading…
Abstract | This study uses C4.5 algorithm to classify potentially large-profit businesses in the city of Surakarta. The data used are street vendors who are divided into 4 types of merchandise namely snacks, snacks, heavy foods and drinks. The locations that are targeted for classification are Car Free Day. The division of the Car Free Day zone was carried out to find out which areas had more influence on certain foods to get big profits. Car free day zone is divided into 4 parts, namely purwosari area - rumah makan diamond, rumah makan diamond - toko buku gramedia, toko buku gramedia - ngarsopuro and the last one is ngarsopuro – bundaran gladag. Based on the results of the study, the most profitable area to sell is the toko buku gramedia - ngarsopuro. Besides this research also classifies based on the ability of the production of raw materials, namely medium and large. The best business category that requires this type of medium-sized raw material is selling at the toko buku Gramedia - Ngarsopuro area, while for the best raw material the best area is the same among Purwosari - Rumah makan diamonds, Gramedia toko buku - Ngarsopuro and Ngarsopuro – bundaran gladak |
---|---|
AbstractList | This study uses C4.5 algorithm to classify potentially large-profit businesses in the city of Surakarta. The data used are street vendors who are divided into 4 types of merchandise namely snacks, snacks, heavy foods and drinks. The locations that are targeted for classification are Car Free Day. The division of the Car Free Day zone was carried out to find out which areas had more influence on certain foods to get big profits. Car free day zone is divided into 4 parts, namely purwosari area - rumah makan diamond, rumah makan diamond - toko buku gramedia, toko buku gramedia - ngarsopuro and the last one is ngarsopuro – bundaran gladag. Based on the results of the study, the most profitable area to sell is the toko buku gramedia - ngarsopuro. Besides this research also classifies based on the ability of the production of raw materials, namely medium and large. The best business category that requires this type of medium-sized raw material is selling at the toko buku Gramedia - Ngarsopuro area, while for the best raw material the best area is the same among Purwosari - Rumah makan diamonds, Gramedia toko buku - Ngarsopuro and Ngarsopuro – bundaran gladak |
Author | Setiawan, Ismail Purbiyanto, Eko |
Author_xml | – sequence: 1 givenname: Ismail surname: Setiawan fullname: Setiawan, Ismail – sequence: 2 givenname: Eko surname: Purbiyanto fullname: Purbiyanto, Eko |
BookMark | eNo9kcFuEzEQhi1UJErplbNfIGFtr9frYxooRAq0UtOzNbbHwWWxke0WhbfgjUm2qKcZjf7_00jfW3KWckJC3rNuKZQY5YcHwFaXTyzyZS9fkXOumFwMndJnL_uo3pDLWqPt-l71QqjhnPy9b3GKf6DFnOhNoB-hAf0aU0x7ust0PcGxEA509x3pNrs5V0_Bb_ib3rWC2Oh1zp5ePdaYsFasdNVaAdfQ01Xy9DY3TC3CNB3oVdzT25JDbJVu0gxdx3Y48e4eC_yA0uAdeR1gqnj5f16Q--tPu_WXxfbm82a92i4cZ1IuBAwQAgZlhWeMj2JwbhjswLUDizgEK7jldlQieC08cO2Z1ZahU14HK8UF2TxzfYYH86vEn1AOJkM08yGXvTm-E92EJnBxLHgthRr7TnKNI-POeuWFFkyPR9bymeVKrrVgeOGxzsx-zOzHnPyYXop_L0qITw |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.37385/jaets.v1i2.45 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2715-6079 |
EndPage | 168 |
ExternalDocumentID | oai_doaj_org_article_f23b53d9537840529e812cbd7d393198 10_37385_jaets_v1i2_45 |
GroupedDBID | AAYXX ALMA_UNASSIGNED_HOLDINGS CITATION GROUPED_DOAJ |
ID | FETCH-LOGICAL-c2155-3a6affef7b3d112836cc66b629cabee6fb32b2b873fd93da29d1b9b1ec7d9fb53 |
IEDL.DBID | DOA |
ISSN | 2715-6087 |
IngestDate | Wed Aug 27 01:25:42 EDT 2025 Tue Jul 01 00:40:03 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2155-3a6affef7b3d112836cc66b629cabee6fb32b2b873fd93da29d1b9b1ec7d9fb53 |
OpenAccessLink | https://doaj.org/article/f23b53d9537840529e812cbd7d393198 |
PageCount | 7 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f23b53d9537840529e812cbd7d393198 crossref_primary_10_37385_jaets_v1i2_45 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-08-21 |
PublicationDateYYYYMMDD | 2020-08-21 |
PublicationDate_xml | – month: 08 year: 2020 text: 2020-08-21 day: 21 |
PublicationDecade | 2020 |
PublicationTitle | Journal of Applied Engineering and Technological Science (Online) |
PublicationYear | 2020 |
Publisher | Yayasan Pendidikan Riset dan Pengembangan Intelektual (YRPI) |
Publisher_xml | – name: Yayasan Pendidikan Riset dan Pengembangan Intelektual (YRPI) |
SSID | ssib044743376 ssj0002909151 |
Score | 2.1172824 |
Snippet | This study uses C4.5 algorithm to classify potentially large-profit businesses in the city of Surakarta. The data used are street vendors who are divided into... |
SourceID | doaj crossref |
SourceType | Open Website Index Database |
StartPage | 162 |
SubjectTerms | classification, c4.5, business location, big profit, car free day |
Title | Utilization Of Data Mining To Classify The Locations Of New Street Food Businesses Attracted And Potentially Big Profits In The City Of Surakarta |
URI | https://doaj.org/article/f23b53d9537840529e812cbd7d393198 |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxRBEG4kJy-iaDC-qEPA0yTT7-3j5rFEcWPALOQ29FNWlxnJdoRc_A_-Y6t7JrI3LzIwh5mmGL4u-qua7vqKkMMZV0nrJJpIbdsIE1wz81E1jmOsIKJNtJZHLy_VxUp8vJE3O62-ypmwUR54BO44Me4kD0ZyjbmIZCYiJXkXdOAG3aeW-bam3Umm0JOEQGLkE9GWNZkZ5MXai5FpKhvVzvSo4FiEfeTxNxvz9ugnXbOjUte0w1A7Qv6VcRZPyZMpVIT5-InPyKPYPye_V3m9mWon4XOCM5stLGuXB7geoPa4XKd7wOmHT8P0P64MxNUMxi1oWAxDgIcT73EL85yraHOAeR_gasjlBJHdbO7hZP0VrkpX77yFD301eophe7H35e7Wfkf47AuyWpxfn140U1uFxiO_y4ZbZVOKSTseMNrC2fJeKaeY8dbFqJLjzDE30zwFw4NlJlBnHI1eB5NwMvbJXj_08SWBFK3Bty1zngqKFhNeTgqLURV1vj0g7x-g7H6M6hkdZh0V9K6C3hXQOyEPyElB-u-oonpdH6AvdJMvdP_yhVf_w8hr8piVnLrFFYS-IXv59i6-xcAju3fVx_C-_HX-Bx0c1gc |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Utilization+Of+Data+Mining+To+Classify+The+Locations+Of+New+Street+Food+Businesses+Attracted+And+Potentially+Big+Profits+In+The+City+Of+Surakarta&rft.jtitle=Journal+of+Applied+Engineering+and+Technological+Science+%28Online%29&rft.au=Ismail+Setiawan&rft.au=Eko+Purbiyanto&rft.date=2020-08-21&rft.pub=Yayasan+Pendidikan+Riset+dan+Pengembangan+Intelektual+%28YRPI%29&rft.issn=2715-6087&rft.eissn=2715-6079&rft.volume=1&rft.issue=2&rft.spage=162&rft.epage=168&rft_id=info:doi/10.37385%2Fjaets.v1i2.45&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_f23b53d9537840529e812cbd7d393198 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2715-6087&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2715-6087&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2715-6087&client=summon |