A Bi-LSTM based approach for Compensation detection during robotic stroke rehabilitation therapy
Stroke is a common cause of brain damage and death due to blocked blood flow to the brain. Prolonged strokes increase the risk of irreversible brain damage and bodily harm. Stroke rehabilitation entails objective setting, robust exercise, comprehensive care, and purpose-driven training, occasionally...
Saved in:
Published in | Procedia computer science Vol. 258; pp. 3145 - 3154 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
2025
|
Subjects | |
Online Access | Get full text |
ISSN | 1877-0509 1877-0509 |
DOI | 10.1016/j.procs.2025.04.572 |
Cover
Loading…
Abstract | Stroke is a common cause of brain damage and death due to blocked blood flow to the brain. Prolonged strokes increase the risk of irreversible brain damage and bodily harm. Stroke rehabilitation entails objective setting, robust exercise, comprehensive care, and purpose-driven training, occasionally including robotic systems for increased therapy. However, unsupervised patients often compensate with unaffected joints and muscles, hindering rehabilitation outcomes. This study detects these compensatory movements using LSTM and Bi-LSTM models. The dataset includes 3-D joint position trajectories of the upper body over time. Results show the Bi-LSTM model, with accuracies of 97% for healthy subjects and 98% for stroke patients, outperforms other models, maintaining consistency in both 4-class and 2-class problems. |
---|---|
AbstractList | Stroke is a common cause of brain damage and death due to blocked blood flow to the brain. Prolonged strokes increase the risk of irreversible brain damage and bodily harm. Stroke rehabilitation entails objective setting, robust exercise, comprehensive care, and purpose-driven training, occasionally including robotic systems for increased therapy. However, unsupervised patients often compensate with unaffected joints and muscles, hindering rehabilitation outcomes. This study detects these compensatory movements using LSTM and Bi-LSTM models. The dataset includes 3-D joint position trajectories of the upper body over time. Results show the Bi-LSTM model, with accuracies of 97% for healthy subjects and 98% for stroke patients, outperforms other models, maintaining consistency in both 4-class and 2-class problems. |
Author | Rizvi, Danish Raza Rani, Samta Masood, Sarfaraz |
Author_xml | – sequence: 1 givenname: Samta surname: Rani fullname: Rani, Samta organization: Department of Computer Science and Applications, Sharda University, Greater Noida, Uttar Pradesh-201310, India – sequence: 2 givenname: Sarfaraz surname: Masood fullname: Masood, Sarfaraz organization: Department of Computer Engineering, Jamia Millia Islamia University, Okhla, New Delhi-110025, India – sequence: 3 givenname: Danish Raza surname: Rizvi fullname: Rizvi, Danish Raza email: drizvi@jmi.ac.in organization: Department of Computer Engineering, Jamia Millia Islamia University, Okhla, New Delhi-110025, India |
BookMark | eNp9kM1OwzAQhC1UJErpE3DxCySsHcdJDxxKxZ9UxIFyNo6zJi5tHNkBqW9PSjhwYi87h53RzndOJq1vkZBLBikDJq-2aRe8iSkHnqcg0rzgJ2TKyqJIIIfF5I8-I_MYtzBMVpYLVkzJ25LeuGT9snmilY5YU90Nado01PpAV37fYRt173xLa-zRjOozuPadBl_53hka--A_kAZsdOV2rh_P-waD7g4X5NTqXcT5756R17vbzeohWT_fP66W68RwlvNE8ErKjCMYFNKCYVkJIKCyec11LhFELUxRLdBwoSETWElrUddaam1sWWYzko25JvgYA1rVBbfX4aAYqCMntVU_nNSRkwKhBk6D63p04fDal8OgonHYGqxdGMqq2rt__d9rU3Xp |
Cites_doi | 10.4018/978-1-5225-7368-5.ch004 10.1109/JTEHM.2017.2780836 10.1109/JBHI.2019.2963365 10.3390/s20061801 10.1145/3154862.3154925 10.1007/s40141-014-0056-z 10.1109/SII55687.2023.10039185 10.1109/BioRob.2012.6290668 10.1016/j.jstrokecerebrovasdis.2017.08.027 10.1109/ICSensT.2016.7796266 10.1155/2017/7125057 10.1109/ICAIIHI57871.2023.10489150 10.57197/JDR-2023-0036 10.1109/ACCESS.2019.2923077 10.1016/j.neucom.2019.01.078 10.5853/jos.2013.15.3.174 10.1016/B978-0-12-816176-0.00026-0 10.1016/j.eng.2019.08.015 |
ContentType | Journal Article |
Copyright | 2025 The Author(s) |
Copyright_xml | – notice: 2025 The Author(s) |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.procs.2025.04.572 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1877-0509 |
EndPage | 3154 |
ExternalDocumentID | 10_1016_j_procs_2025_04_572 S187705092501676X |
GroupedDBID | --K 0R~ 1B1 457 5VS 6I. 71M AAEDT AAEDW AAFTH AAIKJ AALRI AAQFI AAXUO AAYWO ABMAC ABWVN ACGFS ACRPL ACVFH ADBBV ADCNI ADEZE ADNMO ADVLN AEUPX AEXQZ AFPUW AFTJW AGHFR AIGII AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ E3Z EBS EJD EP3 FDB FNPLU HZ~ IXB KQ8 M41 M~E O-L O9- OK1 P2P ROL SES SSZ AAYXX CITATION RIG |
ID | FETCH-LOGICAL-c2152-42b6632e0ce46f0c1380040bf5d2a56e04d4c7b9ec24a034eb6ffeada6aacf883 |
IEDL.DBID | IXB |
ISSN | 1877-0509 |
IngestDate | Thu Aug 07 06:20:13 EDT 2025 Sat Aug 30 17:14:21 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Stroke Rehabilitation Artificial Neural Network Long Short-Term Memory (LSTM) Bidirectional Long Short-Term Memory (Bi-LSTM) |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2152-42b6632e0ce46f0c1380040bf5d2a56e04d4c7b9ec24a034eb6ffeada6aacf883 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S187705092501676X |
PageCount | 10 |
ParticipantIDs | crossref_primary_10_1016_j_procs_2025_04_572 elsevier_sciencedirect_doi_10_1016_j_procs_2025_04_572 |
PublicationCentury | 2000 |
PublicationDate | 2025 2025-00-00 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – year: 2025 text: 2025 |
PublicationDecade | 2020 |
PublicationTitle | Procedia computer science |
PublicationYear | 2025 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Kramer, I., Memmesheimer, R., & Paulus, D. (2023, January) “Classification of pathological and healthy individuals for computer-aided physical rehabilitation”. In Kshatri, M., Lukose, W., Parida, P.K., & Khan, J. (2023, December) “Prediction of Stroke Risk with LSTM Networks and Patient Health Records.” In Guo, Sung (bib1133) 2020; 20 Przewoźnik, Rajtar-Zembaty, Starowicz-Filip (bib1115) 2015; 10 Liu, Guo (bib1132) 2019; 337 22(2). (pp. 1-6). Ali Aljarallah, N., Dutta, A.K., Wahab Sait, A.R., Alanaz, A.K.M., & Absi, R.A. (2023) “Predicting functional recovery of stroke rehabilitation using a deep learning technique.” DiPietro, R., & Hager, G.D. (2020) “Deep learning: RNNs and LSTM”. In (pp. 503-519). Walczak, S. (2019) “Artificial neural networks”. In Huang, Naghdy, Naghdy, Du, Todd (bib1126) 2018; 27 Zhi, Lukasik, Li, Dolatabadi, Wang, Taati (bib1117) 2017; 6 Cai, Li, Su, Wei, Huang, Ma, Xie (bib1118) 2020; 24 (Vol. 1, pp. 1-6). (3): 60-69. (pp. 375-381). (pp. 1607-1613). Hylin, M.J., Kerr, A.L., & Holden, R. (2017) “Understanding the mechanisms of recovery and/or compensation following injury”. Rong, Mendez, Assi, Zhao, Sawan (bib1128) 2020; 6 Zhao, R., Wang, J., Yan, R., & Mao, K. (2016, November) “Machine health monitoring with LSTM networks”. In Adeniyi, A.F., Idowu, O.A., Ogwumike, O.O., & Adeniyi, C.Y. (2012) “Comparative influence of self-efficacy, social support and perceived barriers on low physical activity development in patients with type 2 diabetes, hypertension or stroke”. Taati, B., Wang, R., Huq, R., Snoek, J., & Mihailidis, A. (2012, June) “Vision-based posture assessment to detect and categorize compensation during robotic rehabilitation therapy”. In Maciejasz, Eschweiler, Gerlach-Hahn, Jansen-Troy, Leonhardt (bib1121) 2014; 31 (pp. 40-53). (2017) 7125057. Cai, Li, Huang, Zheng, Xie (bib1122) 2019; 7 Dolatabadi, E., Zhi, Y.X., Ye, B., Coahran, M., Lupinacci, G., Mihailidis, A., ... & Taati, B. (2017, May) “The toronto rehab stroke pose dataset to detect compensation during stroke rehabilitation therapy”. In Blank, French, Pehlivan, O’Malley (bib1124) 2014; 2 Chang, Kim (bib1119) 2013; 15 Zhi (10.1016/j.procs.2025.04.572_bib1117) 2017; 6 Rong (10.1016/j.procs.2025.04.572_bib1128) 2020; 6 10.1016/j.procs.2025.04.572_bib1130 Chang (10.1016/j.procs.2025.04.572_bib1119) 2013; 15 10.1016/j.procs.2025.04.572_bib1120 10.1016/j.procs.2025.04.572_bib1131 10.1016/j.procs.2025.04.572_bib1123 10.1016/j.procs.2025.04.572_bib1134 Cai (10.1016/j.procs.2025.04.572_bib1122) 2019; 7 Przewoźnik (10.1016/j.procs.2025.04.572_bib1115) 2015; 10 Guo (10.1016/j.procs.2025.04.572_bib1133) 2020; 20 Blank (10.1016/j.procs.2025.04.572_bib1124) 2014; 2 Huang (10.1016/j.procs.2025.04.572_bib1126) 2018; 27 10.1016/j.procs.2025.04.572_bib1125 10.1016/j.procs.2025.04.572_bib1135 10.1016/j.procs.2025.04.572_bib1116 10.1016/j.procs.2025.04.572_bib1127 Liu (10.1016/j.procs.2025.04.572_bib1132) 2019; 337 10.1016/j.procs.2025.04.572_bib1129 Maciejasz (10.1016/j.procs.2025.04.572_bib1121) 2014; 31 Cai (10.1016/j.procs.2025.04.572_bib1118) 2020; 24 |
References_xml | – reference: (pp. 375-381). – reference: , 22(2). – reference: (pp. 503-519). – reference: DiPietro, R., & Hager, G.D. (2020) “Deep learning: RNNs and LSTM”. In – reference: (3): 60-69. – volume: 7 start-page: 80300 year: 2019 end-page: 80309 ident: bib1122 article-title: "Automatic detection of compensatory movement patterns by a pressure distribution mattress using machine learning methods: a pilot study" publication-title: IEEE Access – volume: 20 start-page: 1801 year: 2020 ident: bib1133 article-title: "Movement estimation using soft sensors based on Bi-LSTM and two-layer LSTM for human motion capture" publication-title: Sensors – reference: Walczak, S. (2019) “Artificial neural networks”. In – volume: 31 start-page: 1 year: 2014 end-page: 29 ident: bib1121 article-title: "A survey on robotic devices for upper limb rehabilitation" publication-title: Journal of neuroengineering and rehabilitation – volume: 15 start-page: 174 year: 2013 ident: bib1119 article-title: "Robot-assisted therapy in stroke rehabilitation" publication-title: Journal of stroke – reference: (pp. 40-53). – reference: (pp. 1-6). – reference: Kshatri, M., Lukose, W., Parida, P.K., & Khan, J. (2023, December) “Prediction of Stroke Risk with LSTM Networks and Patient Health Records.” In – volume: 27 start-page: 221 year: 2018 end-page: 228 ident: bib1126 article-title: "The combined effects of adaptive control and virtual reality on robot-assisted fine hand motion rehabilitation in chronic stroke patients: a case study" publication-title: Journal of Stroke and Cerebrovascular Diseases – reference: Ali Aljarallah, N., Dutta, A.K., Wahab Sait, A.R., Alanaz, A.K.M., & Absi, R.A. (2023) “Predicting functional recovery of stroke rehabilitation using a deep learning technique.” – reference: Taati, B., Wang, R., Huq, R., Snoek, J., & Mihailidis, A. (2012, June) “Vision-based posture assessment to detect and categorize compensation during robotic rehabilitation therapy”. In – volume: 2 start-page: 184 year: 2014 end-page: 195 ident: bib1124 article-title: "Current trends in robot-assisted upper-limb stroke rehabilitation: promoting patient engagement in therapy" publication-title: Current physical medicine and rehabilitation reports – reference: (pp. 1607-1613). – volume: 6 start-page: 1 year: 2017 end-page: 7 ident: bib1117 article-title: "Automatic detection of compensation during robotic stroke rehabilitation therapy" publication-title: IEEE journal of translational engineering in health and medicine – volume: 24 start-page: 2630 year: 2020 end-page: 2638 ident: bib1118 article-title: "Real-time detection of compensatory patterns in patients with stroke to reduce compensation during robotic rehabilitation therapy" publication-title: IEEE journal of biomedical and health informatics – volume: 337 start-page: 325 year: 2019 end-page: 338 ident: bib1132 article-title: "Bidirectional LSTM with attention mechanism and convolutional layer for text classification" publication-title: Neurocomputing – volume: 10 start-page: 64 year: 2015 end-page: 68 ident: bib1115 article-title: "The influence of cognitive, emotional and social factors on motivation for rehabilitation in patients after stroke." publication-title: Neuropsychiatria i Neuropsychologia/Neuropsychiatry and Neuropsychology – reference: (Vol. 1, pp. 1-6). – reference: Zhao, R., Wang, J., Yan, R., & Mao, K. (2016, November) “Machine health monitoring with LSTM networks”. In – reference: Dolatabadi, E., Zhi, Y.X., Ye, B., Coahran, M., Lupinacci, G., Mihailidis, A., ... & Taati, B. (2017, May) “The toronto rehab stroke pose dataset to detect compensation during stroke rehabilitation therapy”. In – reference: Hylin, M.J., Kerr, A.L., & Holden, R. (2017) “Understanding the mechanisms of recovery and/or compensation following injury”. – reference: Adeniyi, A.F., Idowu, O.A., Ogwumike, O.O., & Adeniyi, C.Y. (2012) “Comparative influence of self-efficacy, social support and perceived barriers on low physical activity development in patients with type 2 diabetes, hypertension or stroke”. – reference: , (2017) 7125057. – reference: Kramer, I., Memmesheimer, R., & Paulus, D. (2023, January) “Classification of pathological and healthy individuals for computer-aided physical rehabilitation”. In – volume: 6 start-page: 291 year: 2020 end-page: 301 ident: bib1128 article-title: "Artificial intelligence in healthcare: review and prediction case studies" publication-title: Engineering – ident: 10.1016/j.procs.2025.04.572_bib1127 doi: 10.4018/978-1-5225-7368-5.ch004 – volume: 6 start-page: 1 year: 2017 ident: 10.1016/j.procs.2025.04.572_bib1117 article-title: "Automatic detection of compensation during robotic stroke rehabilitation therapy" publication-title: IEEE journal of translational engineering in health and medicine doi: 10.1109/JTEHM.2017.2780836 – volume: 24 start-page: 2630 issue: 9 year: 2020 ident: 10.1016/j.procs.2025.04.572_bib1118 article-title: "Real-time detection of compensatory patterns in patients with stroke to reduce compensation during robotic rehabilitation therapy" publication-title: IEEE journal of biomedical and health informatics doi: 10.1109/JBHI.2019.2963365 – volume: 20 start-page: 1801 issue: 6 year: 2020 ident: 10.1016/j.procs.2025.04.572_bib1133 article-title: "Movement estimation using soft sensors based on Bi-LSTM and two-layer LSTM for human motion capture" publication-title: Sensors doi: 10.3390/s20061801 – ident: 10.1016/j.procs.2025.04.572_bib1123 doi: 10.1145/3154862.3154925 – volume: 2 start-page: 184 year: 2014 ident: 10.1016/j.procs.2025.04.572_bib1124 article-title: "Current trends in robot-assisted upper-limb stroke rehabilitation: promoting patient engagement in therapy" publication-title: Current physical medicine and rehabilitation reports doi: 10.1007/s40141-014-0056-z – ident: 10.1016/j.procs.2025.04.572_bib1135 doi: 10.1109/SII55687.2023.10039185 – volume: 10 start-page: 64 issue: 2 year: 2015 ident: 10.1016/j.procs.2025.04.572_bib1115 article-title: "The influence of cognitive, emotional and social factors on motivation for rehabilitation in patients after stroke." publication-title: Neuropsychiatria i Neuropsychologia/Neuropsychiatry and Neuropsychology – ident: 10.1016/j.procs.2025.04.572_bib1125 doi: 10.1109/BioRob.2012.6290668 – volume: 27 start-page: 221 issue: 1 year: 2018 ident: 10.1016/j.procs.2025.04.572_bib1126 article-title: "The combined effects of adaptive control and virtual reality on robot-assisted fine hand motion rehabilitation in chronic stroke patients: a case study" publication-title: Journal of Stroke and Cerebrovascular Diseases doi: 10.1016/j.jstrokecerebrovasdis.2017.08.027 – ident: 10.1016/j.procs.2025.04.572_bib1131 doi: 10.1109/ICSensT.2016.7796266 – ident: 10.1016/j.procs.2025.04.572_bib1120 doi: 10.1155/2017/7125057 – ident: 10.1016/j.procs.2025.04.572_bib1129 doi: 10.1109/ICAIIHI57871.2023.10489150 – volume: 31 start-page: 1 year: 2014 ident: 10.1016/j.procs.2025.04.572_bib1121 article-title: "A survey on robotic devices for upper limb rehabilitation" publication-title: Journal of neuroengineering and rehabilitation – ident: 10.1016/j.procs.2025.04.572_bib1134 doi: 10.57197/JDR-2023-0036 – volume: 7 start-page: 80300 year: 2019 ident: 10.1016/j.procs.2025.04.572_bib1122 article-title: "Automatic detection of compensatory movement patterns by a pressure distribution mattress using machine learning methods: a pilot study" publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2923077 – ident: 10.1016/j.procs.2025.04.572_bib1116 – volume: 337 start-page: 325 year: 2019 ident: 10.1016/j.procs.2025.04.572_bib1132 article-title: "Bidirectional LSTM with attention mechanism and convolutional layer for text classification" publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.01.078 – volume: 15 start-page: 174 issue: 3 year: 2013 ident: 10.1016/j.procs.2025.04.572_bib1119 article-title: "Robot-assisted therapy in stroke rehabilitation" publication-title: Journal of stroke doi: 10.5853/jos.2013.15.3.174 – ident: 10.1016/j.procs.2025.04.572_bib1130 doi: 10.1016/B978-0-12-816176-0.00026-0 – volume: 6 start-page: 291 issue: 3 year: 2020 ident: 10.1016/j.procs.2025.04.572_bib1128 article-title: "Artificial intelligence in healthcare: review and prediction case studies" publication-title: Engineering doi: 10.1016/j.eng.2019.08.015 |
SSID | ssj0000388917 |
Score | 2.3418117 |
Snippet | Stroke is a common cause of brain damage and death due to blocked blood flow to the brain. Prolonged strokes increase the risk of irreversible brain damage and... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 3145 |
SubjectTerms | Artificial Neural Network Bidirectional Long Short-Term Memory (Bi-LSTM) Long Short-Term Memory (LSTM) Stroke Rehabilitation |
Title | A Bi-LSTM based approach for Compensation detection during robotic stroke rehabilitation therapy |
URI | https://dx.doi.org/10.1016/j.procs.2025.04.572 |
Volume | 258 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT8MgFCbLvHjxt3H-WDh4lKylFNrjtrgsTj24LfaGQCGZJutS68H_XqCtcYnx4K000DQf8L4Hee97AFxbH9VQonN7NjECEc00EiJXiKQiMSFWJhRe7fORTpfkLouzDhi3uTAurLKx_bVN99a6eTNo0BxsVqvBPEwYc-ollsRDymhm7XBEEp_El42-71mc2knqC--6_sgNaMWHfJiX4wkn241jJ3kaM_w7Qf0gnckB2Gu8RTisf-gQdPT6COy3lRhgszGPwcsQjlbofr54gI6WcthKhUPrk0LX355W_RzAXFc--so--QxFWBaysJ-H71VZvGlYbkl3wzo_6_MELCe3i_EUNbUTkHKVahHB0voSWAdKE2oCFUaJ26_SxDkWMdUByYliMtUKExFEREtqjF1VggqhTJJEp6C7Ltb6DMBYkSRX1k-M8pTEMpA0ZVLgyETMMqxQPXDTAsY3tUQGb2PHXrnHlzt8eUC4xbcHaAsq35ppbo34XwPP_zvwAuy6Vn1xcgm6Vfmhr6wrUck-2BnOnp5nfb9mvgCUqMue |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGWDhjShPD4xYzcOxk7GtqFpou7SVshnbsaWC1FQhDPx7bCdBVEIMbFGSi6LP9t1n6-47AO4NR9UEq8zsTTRHWFGFOM8kwgmPtR9I7XOn9jkjoyV-SqO0BQZNLYxNq6x9f-XTnbeu73RrNLub1ao792NKrXqJCeI-oSTdAbuGDVDbv2Gc9r8PWqzcSeI671oDZC0a9SGX52UDhdXtDiKreRrR4PcI9SPqDI_AQU0XYa_6o2PQUusTcNi0YoD1yjwFLz3YX6HJfDGFNi5lsNEKh4aUQvu-2a66QYCZKl36lblyJYqwyEVuPg_fyyJ_U7DY0u6GVYHW5xlYDh8XgxGqmycgaVvVIhwIQyYC5UmFifakH8Z2wQodZQGPiPJwhiUViZIB5l6IlSBam2nFCedSx3F4DtrrfK0uAIwkjjNpiGKYJTgSniAJFTwIdUhNiOWyAx4awNim0shgTfLYK3P4Mosv8zAz-HYAaUBlW0PNjBf_y_Dyv4Z3YG-0mE7YZDx7vgL79kl1inIN2mXxoW4MryjFrZs3X3JyzRo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Bi-LSTM+based+approach+for+Compensation+detection+during+robotic+stroke+rehabilitation+therapy&rft.jtitle=Procedia+computer+science&rft.au=Rani%2C+Samta&rft.au=Masood%2C+Sarfaraz&rft.au=Rizvi%2C+Danish+Raza&rft.date=2025&rft.issn=1877-0509&rft.eissn=1877-0509&rft.volume=258&rft.spage=3145&rft.epage=3154&rft_id=info:doi/10.1016%2Fj.procs.2025.04.572&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_procs_2025_04_572 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-0509&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-0509&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-0509&client=summon |