A Bi-LSTM based approach for Compensation detection during robotic stroke rehabilitation therapy

Stroke is a common cause of brain damage and death due to blocked blood flow to the brain. Prolonged strokes increase the risk of irreversible brain damage and bodily harm. Stroke rehabilitation entails objective setting, robust exercise, comprehensive care, and purpose-driven training, occasionally...

Full description

Saved in:
Bibliographic Details
Published inProcedia computer science Vol. 258; pp. 3145 - 3154
Main Authors Rani, Samta, Masood, Sarfaraz, Rizvi, Danish Raza
Format Journal Article
LanguageEnglish
Published Elsevier B.V 2025
Subjects
Online AccessGet full text
ISSN1877-0509
1877-0509
DOI10.1016/j.procs.2025.04.572

Cover

Loading…
Abstract Stroke is a common cause of brain damage and death due to blocked blood flow to the brain. Prolonged strokes increase the risk of irreversible brain damage and bodily harm. Stroke rehabilitation entails objective setting, robust exercise, comprehensive care, and purpose-driven training, occasionally including robotic systems for increased therapy. However, unsupervised patients often compensate with unaffected joints and muscles, hindering rehabilitation outcomes. This study detects these compensatory movements using LSTM and Bi-LSTM models. The dataset includes 3-D joint position trajectories of the upper body over time. Results show the Bi-LSTM model, with accuracies of 97% for healthy subjects and 98% for stroke patients, outperforms other models, maintaining consistency in both 4-class and 2-class problems.
AbstractList Stroke is a common cause of brain damage and death due to blocked blood flow to the brain. Prolonged strokes increase the risk of irreversible brain damage and bodily harm. Stroke rehabilitation entails objective setting, robust exercise, comprehensive care, and purpose-driven training, occasionally including robotic systems for increased therapy. However, unsupervised patients often compensate with unaffected joints and muscles, hindering rehabilitation outcomes. This study detects these compensatory movements using LSTM and Bi-LSTM models. The dataset includes 3-D joint position trajectories of the upper body over time. Results show the Bi-LSTM model, with accuracies of 97% for healthy subjects and 98% for stroke patients, outperforms other models, maintaining consistency in both 4-class and 2-class problems.
Author Rizvi, Danish Raza
Rani, Samta
Masood, Sarfaraz
Author_xml – sequence: 1
  givenname: Samta
  surname: Rani
  fullname: Rani, Samta
  organization: Department of Computer Science and Applications, Sharda University, Greater Noida, Uttar Pradesh-201310, India
– sequence: 2
  givenname: Sarfaraz
  surname: Masood
  fullname: Masood, Sarfaraz
  organization: Department of Computer Engineering, Jamia Millia Islamia University, Okhla, New Delhi-110025, India
– sequence: 3
  givenname: Danish Raza
  surname: Rizvi
  fullname: Rizvi, Danish Raza
  email: drizvi@jmi.ac.in
  organization: Department of Computer Engineering, Jamia Millia Islamia University, Okhla, New Delhi-110025, India
BookMark eNp9kM1OwzAQhC1UJErpE3DxCySsHcdJDxxKxZ9UxIFyNo6zJi5tHNkBqW9PSjhwYi87h53RzndOJq1vkZBLBikDJq-2aRe8iSkHnqcg0rzgJ2TKyqJIIIfF5I8-I_MYtzBMVpYLVkzJ25LeuGT9snmilY5YU90Nado01PpAV37fYRt173xLa-zRjOozuPadBl_53hka--A_kAZsdOV2rh_P-waD7g4X5NTqXcT5756R17vbzeohWT_fP66W68RwlvNE8ErKjCMYFNKCYVkJIKCyec11LhFELUxRLdBwoSETWElrUddaam1sWWYzko25JvgYA1rVBbfX4aAYqCMntVU_nNSRkwKhBk6D63p04fDal8OgonHYGqxdGMqq2rt__d9rU3Xp
Cites_doi 10.4018/978-1-5225-7368-5.ch004
10.1109/JTEHM.2017.2780836
10.1109/JBHI.2019.2963365
10.3390/s20061801
10.1145/3154862.3154925
10.1007/s40141-014-0056-z
10.1109/SII55687.2023.10039185
10.1109/BioRob.2012.6290668
10.1016/j.jstrokecerebrovasdis.2017.08.027
10.1109/ICSensT.2016.7796266
10.1155/2017/7125057
10.1109/ICAIIHI57871.2023.10489150
10.57197/JDR-2023-0036
10.1109/ACCESS.2019.2923077
10.1016/j.neucom.2019.01.078
10.5853/jos.2013.15.3.174
10.1016/B978-0-12-816176-0.00026-0
10.1016/j.eng.2019.08.015
ContentType Journal Article
Copyright 2025 The Author(s)
Copyright_xml – notice: 2025 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.procs.2025.04.572
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1877-0509
EndPage 3154
ExternalDocumentID 10_1016_j_procs_2025_04_572
S187705092501676X
GroupedDBID --K
0R~
1B1
457
5VS
6I.
71M
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAQFI
AAXUO
AAYWO
ABMAC
ABWVN
ACGFS
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADNMO
ADVLN
AEUPX
AEXQZ
AFPUW
AFTJW
AGHFR
AIGII
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
E3Z
EBS
EJD
EP3
FDB
FNPLU
HZ~
IXB
KQ8
M41
M~E
O-L
O9-
OK1
P2P
ROL
SES
SSZ
AAYXX
CITATION
RIG
ID FETCH-LOGICAL-c2152-42b6632e0ce46f0c1380040bf5d2a56e04d4c7b9ec24a034eb6ffeada6aacf883
IEDL.DBID IXB
ISSN 1877-0509
IngestDate Thu Aug 07 06:20:13 EDT 2025
Sat Aug 30 17:14:21 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Stroke Rehabilitation
Artificial Neural Network
Long Short-Term Memory (LSTM)
Bidirectional Long Short-Term Memory (Bi-LSTM)
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2152-42b6632e0ce46f0c1380040bf5d2a56e04d4c7b9ec24a034eb6ffeada6aacf883
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S187705092501676X
PageCount 10
ParticipantIDs crossref_primary_10_1016_j_procs_2025_04_572
elsevier_sciencedirect_doi_10_1016_j_procs_2025_04_572
PublicationCentury 2000
PublicationDate 2025
2025-00-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 2025
PublicationDecade 2020
PublicationTitle Procedia computer science
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Kramer, I., Memmesheimer, R., & Paulus, D. (2023, January) “Classification of pathological and healthy individuals for computer-aided physical rehabilitation”. In
Kshatri, M., Lukose, W., Parida, P.K., & Khan, J. (2023, December) “Prediction of Stroke Risk with LSTM Networks and Patient Health Records.” In
Guo, Sung (bib1133) 2020; 20
Przewoźnik, Rajtar-Zembaty, Starowicz-Filip (bib1115) 2015; 10
Liu, Guo (bib1132) 2019; 337
22(2).
(pp. 1-6).
Ali Aljarallah, N., Dutta, A.K., Wahab Sait, A.R., Alanaz, A.K.M., & Absi, R.A. (2023) “Predicting functional recovery of stroke rehabilitation using a deep learning technique.”
DiPietro, R., & Hager, G.D. (2020) “Deep learning: RNNs and LSTM”. In
(pp. 503-519).
Walczak, S. (2019) “Artificial neural networks”. In
Huang, Naghdy, Naghdy, Du, Todd (bib1126) 2018; 27
Zhi, Lukasik, Li, Dolatabadi, Wang, Taati (bib1117) 2017; 6
Cai, Li, Su, Wei, Huang, Ma, Xie (bib1118) 2020; 24
(Vol. 1, pp. 1-6).
(3): 60-69.
(pp. 375-381).
(pp. 1607-1613).
Hylin, M.J., Kerr, A.L., & Holden, R. (2017) “Understanding the mechanisms of recovery and/or compensation following injury”.
Rong, Mendez, Assi, Zhao, Sawan (bib1128) 2020; 6
Zhao, R., Wang, J., Yan, R., & Mao, K. (2016, November) “Machine health monitoring with LSTM networks”. In
Adeniyi, A.F., Idowu, O.A., Ogwumike, O.O., & Adeniyi, C.Y. (2012) “Comparative influence of self-efficacy, social support and perceived barriers on low physical activity development in patients with type 2 diabetes, hypertension or stroke”.
Taati, B., Wang, R., Huq, R., Snoek, J., & Mihailidis, A. (2012, June) “Vision-based posture assessment to detect and categorize compensation during robotic rehabilitation therapy”. In
Maciejasz, Eschweiler, Gerlach-Hahn, Jansen-Troy, Leonhardt (bib1121) 2014; 31
(pp. 40-53).
(2017) 7125057.
Cai, Li, Huang, Zheng, Xie (bib1122) 2019; 7
Dolatabadi, E., Zhi, Y.X., Ye, B., Coahran, M., Lupinacci, G., Mihailidis, A., ... & Taati, B. (2017, May) “The toronto rehab stroke pose dataset to detect compensation during stroke rehabilitation therapy”. In
Blank, French, Pehlivan, O’Malley (bib1124) 2014; 2
Chang, Kim (bib1119) 2013; 15
Zhi (10.1016/j.procs.2025.04.572_bib1117) 2017; 6
Rong (10.1016/j.procs.2025.04.572_bib1128) 2020; 6
10.1016/j.procs.2025.04.572_bib1130
Chang (10.1016/j.procs.2025.04.572_bib1119) 2013; 15
10.1016/j.procs.2025.04.572_bib1120
10.1016/j.procs.2025.04.572_bib1131
10.1016/j.procs.2025.04.572_bib1123
10.1016/j.procs.2025.04.572_bib1134
Cai (10.1016/j.procs.2025.04.572_bib1122) 2019; 7
Przewoźnik (10.1016/j.procs.2025.04.572_bib1115) 2015; 10
Guo (10.1016/j.procs.2025.04.572_bib1133) 2020; 20
Blank (10.1016/j.procs.2025.04.572_bib1124) 2014; 2
Huang (10.1016/j.procs.2025.04.572_bib1126) 2018; 27
10.1016/j.procs.2025.04.572_bib1125
10.1016/j.procs.2025.04.572_bib1135
10.1016/j.procs.2025.04.572_bib1116
10.1016/j.procs.2025.04.572_bib1127
Liu (10.1016/j.procs.2025.04.572_bib1132) 2019; 337
10.1016/j.procs.2025.04.572_bib1129
Maciejasz (10.1016/j.procs.2025.04.572_bib1121) 2014; 31
Cai (10.1016/j.procs.2025.04.572_bib1118) 2020; 24
References_xml – reference: (pp. 375-381).
– reference: , 22(2).
– reference: (pp. 503-519).
– reference: DiPietro, R., & Hager, G.D. (2020) “Deep learning: RNNs and LSTM”. In
– reference: (3): 60-69.
– volume: 7
  start-page: 80300
  year: 2019
  end-page: 80309
  ident: bib1122
  article-title: "Automatic detection of compensatory movement patterns by a pressure distribution mattress using machine learning methods: a pilot study"
  publication-title: IEEE Access
– volume: 20
  start-page: 1801
  year: 2020
  ident: bib1133
  article-title: "Movement estimation using soft sensors based on Bi-LSTM and two-layer LSTM for human motion capture"
  publication-title: Sensors
– reference: Walczak, S. (2019) “Artificial neural networks”. In
– volume: 31
  start-page: 1
  year: 2014
  end-page: 29
  ident: bib1121
  article-title: "A survey on robotic devices for upper limb rehabilitation"
  publication-title: Journal of neuroengineering and rehabilitation
– volume: 15
  start-page: 174
  year: 2013
  ident: bib1119
  article-title: "Robot-assisted therapy in stroke rehabilitation"
  publication-title: Journal of stroke
– reference: (pp. 40-53).
– reference: (pp. 1-6).
– reference: Kshatri, M., Lukose, W., Parida, P.K., & Khan, J. (2023, December) “Prediction of Stroke Risk with LSTM Networks and Patient Health Records.” In
– volume: 27
  start-page: 221
  year: 2018
  end-page: 228
  ident: bib1126
  article-title: "The combined effects of adaptive control and virtual reality on robot-assisted fine hand motion rehabilitation in chronic stroke patients: a case study"
  publication-title: Journal of Stroke and Cerebrovascular Diseases
– reference: Ali Aljarallah, N., Dutta, A.K., Wahab Sait, A.R., Alanaz, A.K.M., & Absi, R.A. (2023) “Predicting functional recovery of stroke rehabilitation using a deep learning technique.”
– reference: Taati, B., Wang, R., Huq, R., Snoek, J., & Mihailidis, A. (2012, June) “Vision-based posture assessment to detect and categorize compensation during robotic rehabilitation therapy”. In
– volume: 2
  start-page: 184
  year: 2014
  end-page: 195
  ident: bib1124
  article-title: "Current trends in robot-assisted upper-limb stroke rehabilitation: promoting patient engagement in therapy"
  publication-title: Current physical medicine and rehabilitation reports
– reference: (pp. 1607-1613).
– volume: 6
  start-page: 1
  year: 2017
  end-page: 7
  ident: bib1117
  article-title: "Automatic detection of compensation during robotic stroke rehabilitation therapy"
  publication-title: IEEE journal of translational engineering in health and medicine
– volume: 24
  start-page: 2630
  year: 2020
  end-page: 2638
  ident: bib1118
  article-title: "Real-time detection of compensatory patterns in patients with stroke to reduce compensation during robotic rehabilitation therapy"
  publication-title: IEEE journal of biomedical and health informatics
– volume: 337
  start-page: 325
  year: 2019
  end-page: 338
  ident: bib1132
  article-title: "Bidirectional LSTM with attention mechanism and convolutional layer for text classification"
  publication-title: Neurocomputing
– volume: 10
  start-page: 64
  year: 2015
  end-page: 68
  ident: bib1115
  article-title: "The influence of cognitive, emotional and social factors on motivation for rehabilitation in patients after stroke."
  publication-title: Neuropsychiatria i Neuropsychologia/Neuropsychiatry and Neuropsychology
– reference: (Vol. 1, pp. 1-6).
– reference: Zhao, R., Wang, J., Yan, R., & Mao, K. (2016, November) “Machine health monitoring with LSTM networks”. In
– reference: Dolatabadi, E., Zhi, Y.X., Ye, B., Coahran, M., Lupinacci, G., Mihailidis, A., ... & Taati, B. (2017, May) “The toronto rehab stroke pose dataset to detect compensation during stroke rehabilitation therapy”. In
– reference: Hylin, M.J., Kerr, A.L., & Holden, R. (2017) “Understanding the mechanisms of recovery and/or compensation following injury”.
– reference: Adeniyi, A.F., Idowu, O.A., Ogwumike, O.O., & Adeniyi, C.Y. (2012) “Comparative influence of self-efficacy, social support and perceived barriers on low physical activity development in patients with type 2 diabetes, hypertension or stroke”.
– reference: , (2017) 7125057.
– reference: Kramer, I., Memmesheimer, R., & Paulus, D. (2023, January) “Classification of pathological and healthy individuals for computer-aided physical rehabilitation”. In
– volume: 6
  start-page: 291
  year: 2020
  end-page: 301
  ident: bib1128
  article-title: "Artificial intelligence in healthcare: review and prediction case studies"
  publication-title: Engineering
– ident: 10.1016/j.procs.2025.04.572_bib1127
  doi: 10.4018/978-1-5225-7368-5.ch004
– volume: 6
  start-page: 1
  year: 2017
  ident: 10.1016/j.procs.2025.04.572_bib1117
  article-title: "Automatic detection of compensation during robotic stroke rehabilitation therapy"
  publication-title: IEEE journal of translational engineering in health and medicine
  doi: 10.1109/JTEHM.2017.2780836
– volume: 24
  start-page: 2630
  issue: 9
  year: 2020
  ident: 10.1016/j.procs.2025.04.572_bib1118
  article-title: "Real-time detection of compensatory patterns in patients with stroke to reduce compensation during robotic rehabilitation therapy"
  publication-title: IEEE journal of biomedical and health informatics
  doi: 10.1109/JBHI.2019.2963365
– volume: 20
  start-page: 1801
  issue: 6
  year: 2020
  ident: 10.1016/j.procs.2025.04.572_bib1133
  article-title: "Movement estimation using soft sensors based on Bi-LSTM and two-layer LSTM for human motion capture"
  publication-title: Sensors
  doi: 10.3390/s20061801
– ident: 10.1016/j.procs.2025.04.572_bib1123
  doi: 10.1145/3154862.3154925
– volume: 2
  start-page: 184
  year: 2014
  ident: 10.1016/j.procs.2025.04.572_bib1124
  article-title: "Current trends in robot-assisted upper-limb stroke rehabilitation: promoting patient engagement in therapy"
  publication-title: Current physical medicine and rehabilitation reports
  doi: 10.1007/s40141-014-0056-z
– ident: 10.1016/j.procs.2025.04.572_bib1135
  doi: 10.1109/SII55687.2023.10039185
– volume: 10
  start-page: 64
  issue: 2
  year: 2015
  ident: 10.1016/j.procs.2025.04.572_bib1115
  article-title: "The influence of cognitive, emotional and social factors on motivation for rehabilitation in patients after stroke."
  publication-title: Neuropsychiatria i Neuropsychologia/Neuropsychiatry and Neuropsychology
– ident: 10.1016/j.procs.2025.04.572_bib1125
  doi: 10.1109/BioRob.2012.6290668
– volume: 27
  start-page: 221
  issue: 1
  year: 2018
  ident: 10.1016/j.procs.2025.04.572_bib1126
  article-title: "The combined effects of adaptive control and virtual reality on robot-assisted fine hand motion rehabilitation in chronic stroke patients: a case study"
  publication-title: Journal of Stroke and Cerebrovascular Diseases
  doi: 10.1016/j.jstrokecerebrovasdis.2017.08.027
– ident: 10.1016/j.procs.2025.04.572_bib1131
  doi: 10.1109/ICSensT.2016.7796266
– ident: 10.1016/j.procs.2025.04.572_bib1120
  doi: 10.1155/2017/7125057
– ident: 10.1016/j.procs.2025.04.572_bib1129
  doi: 10.1109/ICAIIHI57871.2023.10489150
– volume: 31
  start-page: 1
  year: 2014
  ident: 10.1016/j.procs.2025.04.572_bib1121
  article-title: "A survey on robotic devices for upper limb rehabilitation"
  publication-title: Journal of neuroengineering and rehabilitation
– ident: 10.1016/j.procs.2025.04.572_bib1134
  doi: 10.57197/JDR-2023-0036
– volume: 7
  start-page: 80300
  year: 2019
  ident: 10.1016/j.procs.2025.04.572_bib1122
  article-title: "Automatic detection of compensatory movement patterns by a pressure distribution mattress using machine learning methods: a pilot study"
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2923077
– ident: 10.1016/j.procs.2025.04.572_bib1116
– volume: 337
  start-page: 325
  year: 2019
  ident: 10.1016/j.procs.2025.04.572_bib1132
  article-title: "Bidirectional LSTM with attention mechanism and convolutional layer for text classification"
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.01.078
– volume: 15
  start-page: 174
  issue: 3
  year: 2013
  ident: 10.1016/j.procs.2025.04.572_bib1119
  article-title: "Robot-assisted therapy in stroke rehabilitation"
  publication-title: Journal of stroke
  doi: 10.5853/jos.2013.15.3.174
– ident: 10.1016/j.procs.2025.04.572_bib1130
  doi: 10.1016/B978-0-12-816176-0.00026-0
– volume: 6
  start-page: 291
  issue: 3
  year: 2020
  ident: 10.1016/j.procs.2025.04.572_bib1128
  article-title: "Artificial intelligence in healthcare: review and prediction case studies"
  publication-title: Engineering
  doi: 10.1016/j.eng.2019.08.015
SSID ssj0000388917
Score 2.3418117
Snippet Stroke is a common cause of brain damage and death due to blocked blood flow to the brain. Prolonged strokes increase the risk of irreversible brain damage and...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 3145
SubjectTerms Artificial Neural Network
Bidirectional Long Short-Term Memory (Bi-LSTM)
Long Short-Term Memory (LSTM)
Stroke Rehabilitation
Title A Bi-LSTM based approach for Compensation detection during robotic stroke rehabilitation therapy
URI https://dx.doi.org/10.1016/j.procs.2025.04.572
Volume 258
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT8MgFCbLvHjxt3H-WDh4lKylFNrjtrgsTj24LfaGQCGZJutS68H_XqCtcYnx4K000DQf8L4Hee97AFxbH9VQonN7NjECEc00EiJXiKQiMSFWJhRe7fORTpfkLouzDhi3uTAurLKx_bVN99a6eTNo0BxsVqvBPEwYc-ollsRDymhm7XBEEp_El42-71mc2knqC--6_sgNaMWHfJiX4wkn241jJ3kaM_w7Qf0gnckB2Gu8RTisf-gQdPT6COy3lRhgszGPwcsQjlbofr54gI6WcthKhUPrk0LX355W_RzAXFc--so--QxFWBaysJ-H71VZvGlYbkl3wzo_6_MELCe3i_EUNbUTkHKVahHB0voSWAdKE2oCFUaJ26_SxDkWMdUByYliMtUKExFEREtqjF1VggqhTJJEp6C7Ltb6DMBYkSRX1k-M8pTEMpA0ZVLgyETMMqxQPXDTAsY3tUQGb2PHXrnHlzt8eUC4xbcHaAsq35ppbo34XwPP_zvwAuy6Vn1xcgm6Vfmhr6wrUck-2BnOnp5nfb9mvgCUqMue
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGWDhjShPD4xYzcOxk7GtqFpou7SVshnbsaWC1FQhDPx7bCdBVEIMbFGSi6LP9t1n6-47AO4NR9UEq8zsTTRHWFGFOM8kwgmPtR9I7XOn9jkjoyV-SqO0BQZNLYxNq6x9f-XTnbeu73RrNLub1ao792NKrXqJCeI-oSTdAbuGDVDbv2Gc9r8PWqzcSeI671oDZC0a9SGX52UDhdXtDiKreRrR4PcI9SPqDI_AQU0XYa_6o2PQUusTcNi0YoD1yjwFLz3YX6HJfDGFNi5lsNEKh4aUQvu-2a66QYCZKl36lblyJYqwyEVuPg_fyyJ_U7DY0u6GVYHW5xlYDh8XgxGqmycgaVvVIhwIQyYC5UmFifakH8Z2wQodZQGPiPJwhiUViZIB5l6IlSBam2nFCedSx3F4DtrrfK0uAIwkjjNpiGKYJTgSniAJFTwIdUhNiOWyAx4awNim0shgTfLYK3P4Mosv8zAz-HYAaUBlW0PNjBf_y_Dyv4Z3YG-0mE7YZDx7vgL79kl1inIN2mXxoW4MryjFrZs3X3JyzRo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Bi-LSTM+based+approach+for+Compensation+detection+during+robotic+stroke+rehabilitation+therapy&rft.jtitle=Procedia+computer+science&rft.au=Rani%2C+Samta&rft.au=Masood%2C+Sarfaraz&rft.au=Rizvi%2C+Danish+Raza&rft.date=2025&rft.issn=1877-0509&rft.eissn=1877-0509&rft.volume=258&rft.spage=3145&rft.epage=3154&rft_id=info:doi/10.1016%2Fj.procs.2025.04.572&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_procs_2025_04_572
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-0509&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-0509&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-0509&client=summon