Superior Optimization for a Hybrid PEMFC Power System Employing Model Predictions
This research investigated the impacts of model prediction on the optimization of hybrid energy systems using a system consisting of solar panels, batteries, a proton exchange membrane fuel cell (PEMFC), and a chemical hydrogen generation system. A PEMFC has several advantages, such as low operating...
Saved in:
Published in | International journal of energy research Vol. 2023; pp. 1 - 16 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Bognor Regis
Hindawi
2023
John Wiley & Sons, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This research investigated the impacts of model prediction on the optimization of hybrid energy systems using a system consisting of solar panels, batteries, a proton exchange membrane fuel cell (PEMFC), and a chemical hydrogen generation system. A PEMFC has several advantages, such as low operating temperatures, fast response times, high power density, and environmental friendliness, and it can convert hydrogen into electricity. However, because hydrogen costs are an important consideration, the PEMFC is usually integrated with hybrid energy systems to guarantee system sustainability. Therefore, in this study, a whole-year household load and solar radiation data were applied to optimize the system components and power management, thereby reducing the system cost by 42.43% and improving system sustainability by 7.05%. The system responses showed that some hydrogen consumption might be saved if the solar and load profiles could be foreseen. Two prediction models were developed that could accurately forecast the radiation and load profiles. Next, a second-year dataset was employed to verify the effectiveness of the model prediction. The results showed that the system cost was reduced by 40.20% without model prediction and by 44.06% with model prediction compared to the original system settings. Finally, experiments to illustrate the feasibility of the hybrid energy system were conducted using prediction models. Based on the results, the model prediction was deemed effective in improving the performance of hybrid energy systems. |
---|---|
AbstractList | This research investigated the impacts of model prediction on the optimization of hybrid energy systems using a system consisting of solar panels, batteries, a proton exchange membrane fuel cell (PEMFC), and a chemical hydrogen generation system. A PEMFC has several advantages, such as low operating temperatures, fast response times, high power density, and environmental friendliness, and it can convert hydrogen into electricity. However, because hydrogen costs are an important consideration, the PEMFC is usually integrated with hybrid energy systems to guarantee system sustainability. Therefore, in this study, a whole-year household load and solar radiation data were applied to optimize the system components and power management, thereby reducing the system cost by 42.43% and improving system sustainability by 7.05%. The system responses showed that some hydrogen consumption might be saved if the solar and load profiles could be foreseen. Two prediction models were developed that could accurately forecast the radiation and load profiles. Next, a second-year dataset was employed to verify the effectiveness of the model prediction. The results showed that the system cost was reduced by 40.20% without model prediction and by 44.06% with model prediction compared to the original system settings. Finally, experiments to illustrate the feasibility of the hybrid energy system were conducted using prediction models. Based on the results, the model prediction was deemed effective in improving the performance of hybrid energy systems. |
Author | Wang, Fu-Cheng Wang, Jian-Zhi |
Author_xml | – sequence: 1 givenname: Fu-Cheng orcidid: 0000-0001-5011-7934 surname: Wang fullname: Wang, Fu-Cheng organization: Department of Mechanical EngineeringNational Taiwan UniversityTaipei 106Taiwanntu.edu.tw – sequence: 2 givenname: Jian-Zhi surname: Wang fullname: Wang, Jian-Zhi organization: Department of Mechanical EngineeringNational Taiwan UniversityTaipei 106Taiwanntu.edu.tw |
BookMark | eNp9kNFLwzAQxoMouE3f_AMCPmpdrmmb5lHG5oSNTaawt5KmiWZ0TU06Rv3r7dyeBH06uPt9d_d9fXRe2UohdAPkASCOhyEJ6ZDzNOIJnKEeEM4DgGh9jnqEJjTghK0vUd_7DSHdDFgPvax2tXLGOryoG7M1X6IxtsK6awg8bXNnCrwczycjvLR75fCq9Y3a4vG2Lm1rqnc8t4Uq8dKpwsiD1F-hCy1Kr65PdYDeJuPX0TSYLZ6eR4-zQIYQQ6DjPC1yQRkoRXMiWMJEyjRPdArAIiK774u0kKBFFNGQRhEQqfO8s6ikYJwO0O1xb-3s5075JtvYnau6k1mYAklYkgLrqPBISWe9d0pn0jQ_HhsnTJkByQ7RZYfoslN0nej-l6h2Zitc-xd-d8Q_TFWIvfmf_gZorn0e |
CitedBy_id | crossref_primary_10_3390_technologies12010006 crossref_primary_10_1016_j_enconman_2024_119358 |
Cites_doi | 10.1016/j.rser.2014.11.103 10.1016/j.ijhydene.2015.06.081 10.1109/TPEL.2004.833449 10.1016/j.jpowsour.2007.11.051 10.1243/09544119JEIM609 10.1016/j.ijhydene.2015.12.019 10.1002/er.3258 10.1080/15567036.2022.2100015 10.1109/ACCESS.2018.2869780 10.1109/iciea.2007.4318677 10.1016/j.egyr.2020.11.071 10.1016/j.ijhydene.2020.09.254 10.1016/S0378-7753(02)00565-7 10.1016/j.enconman.2021.115064 10.3390/en12010057 10.3390/su13042393 10.1016/S0960-1481(02)00070-8 10.1145/2939672.2939785 10.3390/en11081948 10.1002/aic.690370805 10.1016/j.ijhydene.2010.07.111 10.1016/j.ijhydene.2016.05.247 10.1002/er.5728 10.1002/er.7831 10.1016/j.jpowsour.2006.11.047 10.3390/s20113129 10.3390/en15010128 10.1016/j.seta.2014.04.005 10.1016/j.ijhydene.2017.12.020 10.1002/er.5628 10.1016/j.ijhydene.2015.01.169 10.1109/TSTE.2012.2228509 |
ContentType | Journal Article |
Copyright | Copyright © 2023 Fu-Cheng Wang and Jian-Zhi Wang. Copyright © 2023 Fu-Cheng Wang and Jian-Zhi Wang. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 |
Copyright_xml | – notice: Copyright © 2023 Fu-Cheng Wang and Jian-Zhi Wang. – notice: Copyright © 2023 Fu-Cheng Wang and Jian-Zhi Wang. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 |
DBID | RHU RHW RHX AAYXX CITATION 7SP 7ST 7TB 7TN 8FD 8FE 8FG ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W F28 FR3 GNUQQ H96 HCIFZ KR7 L.G L6V L7M M7S P5Z P62 PATMY PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS PYCSY SOI |
DOI | 10.1155/2023/9984961 |
DatabaseName | Hindawi Publishing Complete Hindawi Publishing Subscription Journals Hindawi Publishing Open Access CrossRef Electronics & Communications Abstracts Environment Abstracts Mechanical & Transportation Engineering Abstracts Oceanic Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Advanced Technologies Database with Aerospace Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection Environmental Science Collection Environment Abstracts |
DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Oceanic Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Environmental Science Collection Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection Environmental Science Database Engineering Research Database ProQuest One Academic Environment Abstracts ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: RHX name: Hindawi Publishing Open Access url: http://www.hindawi.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1099-114X |
Editor | Abdollahzadehsangroudi, Mohammadmahdi |
Editor_xml | – sequence: 1 givenname: Mohammadmahdi surname: Abdollahzadehsangroudi fullname: Abdollahzadehsangroudi, Mohammadmahdi |
EndPage | 16 |
ExternalDocumentID | 10_1155_2023_9984961 |
GrantInformation_xml | – fundername: Ministry of Science and Technology of the People's Republic of China grantid: MOST 109-2622-E-002-011-CC3; MOST 108-2221-E-002-086; MOST 107-2221-E-002-174; MOST 106-2221-E-002-165 |
GroupedDBID | .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAJEY AAONW AAXRX AAZKR ABCQN ABCUV ABIJN ABJCF ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXME ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFGKR AFKRA AFPWT AFRAH AFZJQ AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS AMBMR AMYDB ARAPS ATCPS ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BENPR BGLVJ BHBCM BHPHI BKSAR BMNLL BMXJE BNHUX BROTX BRXPI BY8 CCPQU CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 G-S G.N GNP GODZA GROUPED_DOAJ H.T H.X HCIFZ HHY HZ~ H~9 IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LITHE LOXES LP6 LP7 LUTES LYRES M7S MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D PATMY PCBAR PIMPY PTHSS PYCSY Q.N Q11 QB0 QRW R.K RHU RHW RHX RWI RX1 RYL SUPJJ TN5 UB1 V2E W8V W99 WBKPD WH7 WIH WIK WLBEL WOHZO WQJ WWI WXSBR WYISQ XG1 XPP XV2 ZZTAW ~02 ~IA ~WT 24P AAYXX ACCMX ADMLS AEUYN CITATION H13 PHGZM PHGZT ROL 7SP 7ST 7TB 7TN 8FD 8FE 8FG AAMMB ABUWG AEFGJ AGXDD AIDQK AIDYY AZQEC C1K DWQXO F1W F28 FR3 GNUQQ H96 KR7 L.G L6V L7M P62 PKEHL PQEST PQGLB PQQKQ PQUKI SOI |
ID | FETCH-LOGICAL-c2151-f5b8dba371ee3b0a767a87f96f811740c109d8dc1fa443234410cfbb023eca793 |
IEDL.DBID | RHX |
ISSN | 0363-907X |
IngestDate | Fri Jul 25 12:16:47 EDT 2025 Tue Jul 01 01:34:49 EDT 2025 Thu Apr 24 23:04:09 EDT 2025 Sun Jun 02 19:20:23 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2151-f5b8dba371ee3b0a767a87f96f811740c109d8dc1fa443234410cfbb023eca793 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5011-7934 |
OpenAccessLink | https://dx.doi.org/10.1155/2023/9984961 |
PQID | 2810676817 |
PQPubID | 996365 |
PageCount | 16 |
ParticipantIDs | proquest_journals_2810676817 crossref_citationtrail_10_1155_2023_9984961 crossref_primary_10_1155_2023_9984961 hindawi_primary_10_1155_2023_9984961 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-00-00 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – year: 2023 text: 2023-00-00 |
PublicationDecade | 2020 |
PublicationPlace | Bognor Regis |
PublicationPlace_xml | – name: Bognor Regis |
PublicationTitle | International journal of energy research |
PublicationYear | 2023 |
Publisher | Hindawi John Wiley & Sons, Inc |
Publisher_xml | – name: Hindawi – name: John Wiley & Sons, Inc |
References | 22 23 P. Lissa (28) 2019 Energy (1) 2021 24 25 26 27 (42) 2023 R. Abbasi (29) Consultants CE (35) 2023 Bureau of Energy (4) Agency (2) 2021 30 31 M. M. Rahman (34) 2022; 8 10 32 11 33 12 13 14 36 15 37 16 38 17 18 19 5 6 7 8 9 Executive Yuan, ROCT (39) 2023 Taipei (3) 40 41 20 21 |
References_xml | – ident: 21 doi: 10.1016/j.rser.2014.11.103 – ident: 27 doi: 10.1016/j.ijhydene.2015.06.081 – year: 2021 ident: 1 article-title: Solar futures study – ident: 7 doi: 10.1109/TPEL.2004.833449 – ident: 10 doi: 10.1016/j.jpowsour.2007.11.051 – start-page: 33 ident: 29 article-title: Short term load forecasting using XGBoost. in Web, artificial intelligence and network applications – ident: 11 doi: 10.1243/09544119JEIM609 – ident: 36 doi: 10.1016/j.ijhydene.2015.12.019 – year: 2023 ident: 39 article-title: Annual growth rate of CPI – ident: 16 doi: 10.1002/er.3258 – ident: 18 doi: 10.1080/15567036.2022.2100015 – year: 2021 ident: 2 article-title: Japan 2021 Energy policy review – ident: 41 doi: 10.1109/ACCESS.2018.2869780 – ident: 4 article-title: Ministry of Economic Affair, Taiwan – ident: 15 doi: 10.1109/iciea.2007.4318677 – ident: 31 doi: 10.1016/j.egyr.2020.11.071 – ident: 38 doi: 10.1016/j.ijhydene.2020.09.254 – ident: 6 doi: 10.1016/S0378-7753(02)00565-7 – ident: 23 doi: 10.1016/j.enconman.2021.115064 – ident: 25 doi: 10.3390/en12010057 – year: 2023 ident: 35 article-title: Green building project introduction – ident: 32 doi: 10.3390/su13042393 – ident: 14 doi: 10.1016/S0960-1481(02)00070-8 – ident: 40 doi: 10.1145/2939672.2939785 – ident: 22 doi: 10.3390/en11081948 – ident: 5 doi: 10.1002/aic.690370805 – ident: 12 doi: 10.1016/j.ijhydene.2010.07.111 – ident: 37 doi: 10.1016/j.ijhydene.2016.05.247 – ident: 26 doi: 10.1002/er.5728 – ident: 8 doi: 10.1002/er.7831 – ident: 9 doi: 10.1016/j.jpowsour.2006.11.047 – ident: 30 doi: 10.3390/s20113129 – ident: 33 doi: 10.3390/en15010128 – ident: 20 doi: 10.1016/j.seta.2014.04.005 – ident: 24 doi: 10.1016/j.ijhydene.2017.12.020 – volume: 8 start-page: 1 issue: 1 year: 2022 ident: 34 article-title: A comprehensive study and performance analysis of deep neural network-based approaches in wind time-series forecasting publication-title: Journal of Reliable Intelligent Environments – ident: 3 article-title: The expansion of renewable energy sources (RES) – ident: 17 doi: 10.1002/er.5628 – volume-title: Machine learning methods applied to building energy production and consumption prediction year: 2019 ident: 28 – year: 2023 ident: 42 article-title: CWB Observation Data Inquire System – ident: 13 doi: 10.1016/j.ijhydene.2015.01.169 – ident: 19 doi: 10.1109/TSTE.2012.2228509 |
SSID | ssj0009917 |
Score | 2.3412719 |
Snippet | This research investigated the impacts of model prediction on the optimization of hybrid energy systems using a system consisting of solar panels, batteries, a... |
SourceID | proquest crossref hindawi |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Accuracy Algorithms Alternative energy sources Batteries Costs Design Electrical loads Electricity Energy Energy consumption Energy costs Energy resources Fuel cells Hybrid systems Hydrogen Hydrogen production Low temperature Machine learning Neural networks Operating temperature Optimization Power management Prediction models Proton exchange membrane fuel cells Radiation Renewable resources Robust control Solar energy Solar panels Solar radiation Sustainability System effectiveness Wind power |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LSwMxEA7aIuhBfGK1Sg71JEv3lWxyEi0tRWhdH4XelmQfKNS29oH4753ZzVpF1POGwE6Sme-bZOYjpOFnWsgAvR9T0vIhIFsiE9pituaegpCWJpiH7PV5d-DfDNnQJNzm5lll6RNzR51MYsyRN12Bzc64cILL6auFqlF4u2okNNZJFVywAPJVvW73w_tV212Za-7mt5VAA4fl03fGkPV7TSAbvuTOt6C08YRs-O35h3fOQ05nh2wbrEivisXdJWvpeI9sfekguE_uHpbYqngyo7dw9l9MUSUFJEoV7b5jORYN271Oi4Yoh0aLBuW00PmFGShqoY1oOMP7mnwLHpBBp_3Y6lpGJcGKMVxbGdMi0coLnDT1tK0CHigRZJJnWEPq27Fjy0QksZMpWArXA_xjx5nW8PtprOB4HpLKeDJOjwiVwFc5dxOZMO0DLtKI9gDQahdoGCCrGrkozRTFpoU4KlmMopxKMBahUSNj1Bo5_xw9LVpn_DKuYSz-z7B6uRyROWfzaLUrjv_-fEI2cbIieVInlcVsmZ4CnFjoM7NnPgCFUsPn priority: 102 providerName: ProQuest |
Title | Superior Optimization for a Hybrid PEMFC Power System Employing Model Predictions |
URI | https://dx.doi.org/10.1155/2023/9984961 https://www.proquest.com/docview/2810676817 |
Volume | 2023 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA46EfRBvOJ0ljzMJyl2vedRx2oRNutl0LeStA0Kc5NuQ_z3npNm3oboYyEN7clJzvflJN8hpO1KEbIAVz-PM9OFgGyGMhSmZwnf4RDSygL3IfsDPx6616mXapGk6XIKH6Id0nPnHFiBy5DmrIKDISmP009tXaYK66qUJHC9dHG-_ce73yLP-iNS3tenpSVYxZVom2xpQEgv6hHcISvleJdsfpEJ3CO393PUI55U9AYm-LO-OUkBblJO4ze8c0WTXj_q0gRrntFahZzWxXyhB4oFz0Y0qTApo_xsnwyj3kM3NnUpBDPHmGxKT4SF4E7QKUtHWDzwAx4GkvkSL4q6Vt6xWBEWeUdysLftAMixcikE_H6Zc5iDB6QxnozLQ0IZkFLftwtWeMIF8CMQ0gFqFTZwLYBPTXK2MFOWa51wLFcxyhRf8LwMjZppozbJ6Ufrl1of45d2bW3xP5q1FsOR6ck0zewQde7gG4Oj__VyTDbwsd4paZHGrJqXJ4AdZsIA_4muDLJ22Rskd4Zi4IbypnemVrvK |
linkProvider | Hindawi Publishing |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LSwMxEA5FEfUgPvFtDvYki_tKNjmISG2t2taKCr2tyW4WBW21D8Q_5W90Zh9WEfXkeUNYJpOZb5LM9xGy6ydayACjH1PS8iEhWyIR2mK25p6ClGZiPIdstnj9xj_rsE6JvBW9MPissoiJaaCOexGeke-7AsnOuHCCw6dnC1Wj8Ha1kNDI3OLcvL5AyTY4OD2G9S27bq16XalbuaqAFWF6sxKmRayVFzjGeNpWAQ-UCBLJE-y59O3IsWUs4shJFPy66wFesKNEa0huJlIBki9ByJ_0PU_ijhK1kzHJr0wVftO7USg6O8VDe8bwjMHbh9LGl9z5kgKn7rD2frn_lgvSBFebJ3M5MqVHmSstkJLpLpLZT3yFS-TyaoTEyL0-vYBI85i3cFLAvVTR-is2f9F2tVmr0DaKr9GMDp1mqsIwA0XltQfa7uPtUOrwy-TmX6y3Qia6va5ZJVRCdcy5G8uYaR9QmEZsCfBZu1D0AY5bI3uFmcIoJyxH3YyHMC1cGAvRqGFu1DVS_hj9lBF1_DBuN7f4H8M2i-UI8109CMc-uP775x0yXb9uNsLGaet8g8zgxNmxzSaZGPZHZguAzFBvp95Dye1_u-s7uS3-4w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEB6kouhBfGJ97qE9SWhem8dBRGtLa22Nj0JvMZsHCtpqtUj_mr_OmWRjFVFPPWcIZHYy883uzvcBlMxEOK5N2Y8HrmJiQVacxBEKV4VlBFjS4oj2Idsdq9E1z3q8NwPv-SwMXavMc2KaqKNBSHvkFd0hsjPL0exKIq9FeKf1o6dnhRSk6KQ1l9PIQqQVj9-wfXs5bJ7iWpd1vV67qTYUqTCghFTqlIQLJxKBYWtxbAg1sC07cOzEtRKavzTVUFPdyIlCLQnwM3QDsYMaJkJgoYvDwCYiJkz_s2hpqwWYPal1vKsJ5a-b6v2mJ6XYgvbya_ec046DUcFGx3Qt7VtBnLujTvzt_kdlSMtdfRmWJE5lx1lgrcBM3F-FxS_shWtweT0imuTBkF1g3nmUA50MUTALWGNMo2DMq7XrVeaRFBvLyNFZpjGMb2Ckw_bAvCGdFaXhvw7dqfhvAwr9QT_eBOZir2xZeuRGXJiIyQQhTQTTQscWEFFdEQ5yN_mhpC8nFY0HP21jOPfJqb50ahHKn9ZPGW3HL3Yl6fF_zHby5fDlP_7iTyJy6-_H-zCPoeqfNzutbVig92Z7ODtQeB2O4l1ENa9iT4YPg9tpR-wHDZ4EhA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Superior+Optimization+for+a+Hybrid+PEMFC+Power+System+Employing+Model+Predictions&rft.jtitle=International+journal+of+energy+research&rft.au=Wang%2C+Fu-Cheng&rft.au=Wang%2C+Jian-Zhi&rft.date=2023&rft.pub=Hindawi&rft.issn=0363-907X&rft.eissn=1099-114X&rft.volume=2023&rft_id=info:doi/10.1155%2F2023%2F9984961&rft.externalDocID=10_1155_2023_9984961 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0363-907X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0363-907X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0363-907X&client=summon |