Arrhythmic Mitral Valve Prolapse Phenotype: An Unsupervised Machine Learning Analysis Using a Multicenter Cardiac MRI Registry

Purpose To use unsupervised machine learning to identify phenotypic clusters with increased risk of arrhythmic mitral valve prolapse (MVP). Materials and Methods This retrospective study included patients with MVP without hemodynamically significant mitral regurgitation or left ventricular (LV) dysf...

Full description

Saved in:
Bibliographic Details
Published inRadiology. Cardiothoracic imaging Vol. 6; no. 3; p. e230247
Main Authors Akyea, Ralph Kwame, Figliozzi, Stefano, Lopes, Pedro M, Bauer, Klemens B, Moura-Ferreira, Sara, Tondi, Lara, Mushtaq, Saima, Censi, Stefano, Pavon, Anna Giulia, Bassi, Ilaria, Galian-Gay, Laura, Teske, Arco J, Biondi, Federico, Filomena, Domenico, Stylianidis, Vasileios, Torlasco, Camilla, Muraru, Denisa, Monney, Pierre, Quattrocchi, Giuseppina, Maestrini, Viviana, Agati, Luciano, Monti, Lorenzo, Pedrotti, Patrizia, Vandenberk, Bert, Squeri, Angelo, Lombardi, Massimo, Ferreira, António M, Schwitter, Juerg, Aquaro, Giovanni Donato, Pontone, Gianluca, Chiribiri, Amedeo, Rodríguez Palomares, José F, Yilmaz, Ali, Andreini, Daniele, Florian, Anca-Rezeda, Francone, Marco, Leiner, Tim, Abecasis, João, Badano, Luigi Paolo, Bogaert, Jan, Georgiopoulos, Georgios, Masci, Pier-Giorgio
Format Journal Article
LanguageEnglish
Published United States 01.06.2024
Subjects
Online AccessGet full text

Cover

Loading…