Vortex Cordis as a Mechanism of Postshock Activation

Introduction: The ventricular apex has a helical arrangement of myocardial fibers called the “vortex cordis.” Experimental studies have demonstrated that the first postshock activation originates from the ventricular apex, regardless of the electrical shock outcome; however, the related underlying m...

Full description

Saved in:
Bibliographic Details
Published inJournal of cardiovascular electrophysiology Vol. 14; no. 3; pp. 295 - 302
Main Authors ASHIHARA, TAKASHI, NAMBA, TSUNETOYO, YAO, TAKENORI, OZAWA, TOMOYA, KAWASE, AYAKA, IKEDA, TAKANORI, NAKAZAWA, KAZUO, ITO, MAKOTO
Format Journal Article
LanguageEnglish
Published 350 Main Street , Malden , MA 02148 , USA , and 9600 Garsington Road , Oxford OX4 2DQ , UK Blackwell Science Inc 01.03.2003
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Introduction: The ventricular apex has a helical arrangement of myocardial fibers called the “vortex cordis.” Experimental studies have demonstrated that the first postshock activation originates from the ventricular apex, regardless of the electrical shock outcome; however, the related underlying mechanism is unclear. We hypothesized that the vortex cordis contributes to the initiation of postshock activation. To clarify this issue, we numerically studied the transmembrane potential distribution produced by various electrical shocks. Methods and Results: Using an active membrane model, we simulated a two‐dimensional bidomain myocardial tissue incorporating a typical fiber orientation of the vortex cordis. Monophasic or biphasic shock was delivered via two line electrodes located at opposite tissue borders. Transmembrane potential distribution during the monophasic shock at the center of the vortex cordis showed a gradient high enough to initiate postshock activation. The postshock activation from the center of the vortex cordis was not suppressed, regardless of the initiation of spiral wave reentry. Spiral wave reentry was induced by the monophasic shock when the center area of the vortex cordis was partially excited by the nonuniform virtual electrode polarization. Postshock activation following the biphasic shock also originated from the center of the vortex cordis, but it tended to be suppressed due to the narrower excitable gap around the center of the vortex cordis. The electroporation effect, which was maximal at the center of the vortex cordis, is another possible mechanism of postshock activation. Conclusion: Our simulations suggest that the vortex cordis may cause postshock activation. (J Cardiovasc Electrophysiol, Vol. 14, pp. 295‐302, March 2003)
AbstractList Introduction: The ventricular apex has a helical arrangement of myocardial fibers called the “vortex cordis.” Experimental studies have demonstrated that the first postshock activation originates from the ventricular apex, regardless of the electrical shock outcome; however, the related underlying mechanism is unclear. We hypothesized that the vortex cordis contributes to the initiation of postshock activation. To clarify this issue, we numerically studied the transmembrane potential distribution produced by various electrical shocks. Methods and Results: Using an active membrane model, we simulated a two‐dimensional bidomain myocardial tissue incorporating a typical fiber orientation of the vortex cordis. Monophasic or biphasic shock was delivered via two line electrodes located at opposite tissue borders. Transmembrane potential distribution during the monophasic shock at the center of the vortex cordis showed a gradient high enough to initiate postshock activation. The postshock activation from the center of the vortex cordis was not suppressed, regardless of the initiation of spiral wave reentry. Spiral wave reentry was induced by the monophasic shock when the center area of the vortex cordis was partially excited by the nonuniform virtual electrode polarization. Postshock activation following the biphasic shock also originated from the center of the vortex cordis, but it tended to be suppressed due to the narrower excitable gap around the center of the vortex cordis. The electroporation effect, which was maximal at the center of the vortex cordis, is another possible mechanism of postshock activation. Conclusion: Our simulations suggest that the vortex cordis may cause postshock activation. (J Cardiovasc Electrophysiol, Vol. 14, pp. 295‐302, March 2003)
Author OZAWA, TOMOYA
NAKAZAWA, KAZUO
KAWASE, AYAKA
NAMBA, TSUNETOYO
YAO, TAKENORI
ASHIHARA, TAKASHI
IKEDA, TAKANORI
ITO, MAKOTO
Author_xml – sequence: 1
  givenname: TAKASHI
  surname: ASHIHARA
  fullname: ASHIHARA, TAKASHI
  organization: Division of Cardiology, Shiga University of Medical Science, Otsu, Japan
– sequence: 2
  givenname: TSUNETOYO
  surname: NAMBA
  fullname: NAMBA, TSUNETOYO
  organization: Japanese Working Group on Cardiac Simulation and Mapping, Japan
– sequence: 3
  givenname: TAKENORI
  surname: YAO
  fullname: YAO, TAKENORI
  organization: Division of Cardiology, Shiga University of Medical Science, Otsu, Japan
– sequence: 4
  givenname: TOMOYA
  surname: OZAWA
  fullname: OZAWA, TOMOYA
  organization: Division of Cardiology, Shiga University of Medical Science, Otsu, Japan
– sequence: 5
  givenname: AYAKA
  surname: KAWASE
  fullname: KAWASE, AYAKA
  organization: Japanese Working Group on Cardiac Simulation and Mapping, Japan
– sequence: 6
  givenname: TAKANORI
  surname: IKEDA
  fullname: IKEDA, TAKANORI
  organization: Japanese Working Group on Cardiac Simulation and Mapping, Japan
– sequence: 7
  givenname: KAZUO
  surname: NAKAZAWA
  fullname: NAKAZAWA, KAZUO
  organization: Japanese Working Group on Cardiac Simulation and Mapping, Japan
– sequence: 8
  givenname: MAKOTO
  surname: ITO
  fullname: ITO, MAKOTO
  organization: Division of Cardiology, Shiga University of Medical Science, Otsu, Japan
BookMark eNo9j2tLwzAUhoNMcJv-h_6B1tya9JMwy5zu4gXm_BhOk5Rll0aaotu_t91k8ML7cg488AxQr_KVRSgiOCGYi_tNQlKO44wImVCMWYIpx1lyuEL9y6PXbszTmGWS3aBBCBuMCRM47SO-8nVjD1Hua-NCBG2ihdVrqFzYR76M3n1owtrrbTTSjfuBxvnqFl2XsAv27r-H6PNpvMyf4_nb5CUfzWNNCc9iw0UmsBSMUmwhtbokwgAIkEDbOwdTCl1oowkUhaEUtKRgbFESKDnIkg3Rw5n763b2qL5rt4f6qAhWnbraqM5QdYaqU1cndXVQ03x8mi0gPgNcaCUvAKi3SkgmU_X1OlGz2ePiI1tO1Yr9AaGjYSI
CitedBy_id crossref_primary_10_1111_pace_14832
crossref_primary_10_1016_j_hrthm_2004_06_008
crossref_primary_10_1046_j_1540_8167_2003_03048_x
crossref_primary_10_1529_biophysj_104_043091
crossref_primary_10_1016_j_bpj_2009_02_019
crossref_primary_10_1016_j_compbiomed_2021_104217
crossref_primary_10_1016_j_eupc_2005_03_020
crossref_primary_10_2170_physiolsci_RP008108
crossref_primary_10_1016_j_bbadis_2011_07_011
crossref_primary_10_1016_j_vascn_2016_08_007
crossref_primary_10_1142_S0219519406002023
crossref_primary_10_1253_circj_69_345
crossref_primary_10_1196_annals_1380_024
crossref_primary_10_1111_j_1540_8167_2005_40651_x
crossref_primary_10_1161_CIRCRESAHA_111_255026
crossref_primary_10_1098_rsta_2008_0306
crossref_primary_10_1038_aps_2012_96
crossref_primary_10_1161_01_CIR_0000118331_13524_75
crossref_primary_10_1046_j_1540_8167_2004_03381_x
crossref_primary_10_1093_cvr_cvr304
ContentType Journal Article
DBID BSCLL
DOI 10.1046/j.1540-8167.2003.02408.x
DatabaseName Istex
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
Biology
EISSN 1540-8167
EndPage 302
ExternalDocumentID JCE02408
ark_67375_WNG_KKBMQ8TJ_V
Genre article
GroupedDBID ---
.3N
.GA
.GJ
.Y3
04C
05W
0R~
10A
1OB
1OC
29K
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAJUZ
AANLZ
AAONW
AASGY
AAVGM
AAWTL
AAXRX
AAZKR
ABCQN
ABCUV
ABCVL
ABDBF
ABEML
ABHUG
ABJNI
ABPTK
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADBTR
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AHBTC
AHEFC
AHMBA
AIACR
AIAGR
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMSDO
BMXJE
BPMNR
BROTX
BRXPI
BSCLL
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
D-I
DC6
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EAD
EAP
EAS
EBC
EBD
EBS
ECF
ECT
ECV
EIHBH
EJD
EMB
EMK
EMOBN
ENC
EPT
ESX
EX3
F00
F01
F04
F5P
FEDTE
FUBAC
FZ0
G-S
G.N
GODZA
H.X
HF~
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
Q~Q
R.K
RIWAO
ROL
RX1
SAMSI
SUPJJ
SV3
TEORI
TUS
UB1
V8K
VVN
W8V
W99
WBKPD
WHWMO
WIH
WIJ
WIK
WOHZO
WOW
WQ9
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
XG1
ZGI
ZXP
ZZTAW
~IA
~WT
ADOJX
AITYG
HGLYW
OIG
ID FETCH-LOGICAL-c2148-d46860763220ea5ecf16daa6a7a26074adf6cbcdc1abbd22ac72adebf1af4a7f3
IEDL.DBID DR2
ISSN 1045-3873
IngestDate Sat Aug 24 00:50:22 EDT 2024
Wed Jan 17 05:06:09 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2148-d46860763220ea5ecf16daa6a7a26074adf6cbcdc1abbd22ac72adebf1af4a7f3
Notes istex:DA1D014E351D6C654D0277C9F442EDDBBF1D25D8
ArticleID:JCE02408
ark:/67375/WNG-KKBMQ8TJ-V
This study was supported in part by Grants‐in‐Aid 12308046, 12670698, 14580843, and 14780658 for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology; Grant‐in‐Aid 12B‐1 for Research and Development for Applying Advanced Computational Science and Technology; and the Halberg Prize of the 2nd International Symposium, Workshop on Chronoastrobiology and Chronotherapy to Dr. Ashihara.
Manuscript received 13 September 2002; Accepted for publication 20 December 2002.
PageCount 8
ParticipantIDs wiley_primary_10_1046_j_1540_8167_2003_02408_x_JCE02408
istex_primary_ark_67375_WNG_KKBMQ8TJ_V
PublicationCentury 2000
PublicationDate 2003-03
March 2003
PublicationDateYYYYMMDD 2003-03-01
PublicationDate_xml – month: 03
  year: 2003
  text: 2003-03
PublicationDecade 2000
PublicationPlace 350 Main Street , Malden , MA 02148 , USA , and 9600 Garsington Road , Oxford OX4 2DQ , UK
PublicationPlace_xml – name: 350 Main Street , Malden , MA 02148 , USA , and 9600 Garsington Road , Oxford OX4 2DQ , UK
PublicationTitle Journal of cardiovascular electrophysiology
PublicationYear 2003
Publisher Blackwell Science Inc
Publisher_xml – name: Blackwell Science Inc
References Usui M, Callihan RL, Walker RG, Walcott GP, Rollins DL, Wolf PD, Smith WM, Ideker RE: Epicardial sock mapping following monophasic and biphasic shocks of equal voltage with an endocardial lead system. J Cardiovasc Electrophysiol 1996;7: 322-334.
Cates AW, Wolf PD, Hillsley RE, Souza JJ, Smith WM, Ideker RE: The probability of defibrillation success and the incidence of postshock arrhythmia as a function of shock strength. Pacing Clin Electrophysiol 1994;17: 1208-1217.
Yabe S, Smith WM, Daubert JP, Wolf PD, Rollins DL, Ideker RE: Conduction disturbances caused by high current density electric fields. Circ Res 1990;66: 1190-1203.
Ashihara T, Yao T, Namba T, Kawase A, Ikeda T, Nakazawa K, Ito M: Differences in sympathetic and vagal effects on paroxysmal atrial fibrillation: A simulation study. Biomed Pharmacother 2002;56(Suppl 2):359-363.
Trayanova NA: Effects of the tissue-bath interface on the induced transmembrane potential: A modeling study in cardiac stimulation. Ann Biomed Eng 1997;25: 783-792.
Namba T, Ashihara T, Nakazawa K, Ohe T: Spatial heterogeneity in refractoriness as a proarrhythmic substrate: Theoretical evaluation by numerical simulation. Jpn Circ J 2000;64: 121-129.
Ashihara T, Namba T, Ito M, Kinoshita M, Nakazawa K: The dynamics of vortex-like reentry wave filaments in three-dimensional computer models. J Electrocardiol 1999;32(Suppl):129-138.
Ashihara T, Yao T, Namba T, Ito M, Ikeda T, Kawase A, Toda S, Suzuki T, Inagaki M, Sugimachi M, Kinoshita M, Nakazawa K: Electroporation in a model of cardiac defibrillation. J Cardiovasc Electrophysiol 2001;12: 1393-1403.
Ashihara T, Namba T, Ikeda T, Ito M, Kinoshita M, Nakazawa K: Breakthrough waves during ventricular fibrillation depend on the degree of rotational anisotropy and the boundary conditions: A simulation study. J Cardiovasc Electrophysiol 2001;12: 312-322.
Chattipakorn N, Fotuhi PC, Ideker RE: Prediction of defibrillation outcome by epicardial activation patterns following shocks near the defibrillation threshold. J Cardiovasc Electrophysiol 2000;11: 1014-1021.
Wharton JM, Wolf PD, Smith WM, Chen PS, Frazier DW, Yabe S, Danieley N, Ideker RE: Cardiac potential and potential gradient fields generated by single, combined, and sequential shocks during ventricular defibrillation. Circulation 1992;85: 1510-1523.
Hooks DA, Tomlinson KA, Marsden SG, LeGrice IJ, Smaill BH, Pullan AJ, Hunter PJ: Cardiac microstructure: Implications for electrical propagation and defibrillation in the heart. Circ Res 2002;91: 331-338.
Fast VG, Rohr S, Gillis AM, Kléber AG: Activation of cardiac tissue by extracellular electrical shocks: Formulation of "secondary sources" at intercellular clefts in monolayers of cultured myocytes. Circ Res 1998;82: 375-385.
Krauthamer V, Jones JL: Calcium dynamics in cultured heart cells exposed to defibrillator-type electric shocks. Life Sci 1997;60: 1977-1985.
Ohuchi K, Fukui Y, Sakuma I, Shibata N, Honjo H, Kodama I: A dynamic action potential model analysis of shock-induced aftereffects in ventricular muscle by reversible breakdown of cell membrane. IEEE Trans Biomed Eng 2002;49: 18-30.
Fabritz CL, Kirchhof PF, Behrens S, Zabel M, Franz MR: Myocardial vulnerability to T wave shocks: Relation to shock strength, shock coupling interval, and dispersion of ventricular repolarization. J Cardiovasc Electrophysiol 1996;7: 231-242.
Pettigrew J: On the arrangement of the muscular fibres of the ventricular portion of the heart of the mammal. Proc Roy Soc Lond 1860;10: 433-440.
Luo CH, Rudy Y: A dynamic model of the cardiac ventricular action potential. II. Afterdepolarizations, triggered activity, and potentiation. Circ Res 1994;74: 1097-1113.
Torrent-Guasp F, Buckberg GD, Clemente C, Cox JL, Coghlan HC, Gharib M: The structure and function of the helical heart and its buttress wrapping. I. The normal macroscopic structure of the heart. Semin Thorac Cardiovasc Surg 2001;13: 301-319.
Luo CH, Rudy Y: A model of the ventricular cardiac action potential: Depolarization, repolarization, and their interaction. Circ Res 1991;68: 1501-1526.
Tovar O, Tung L: Electroporation of cardiac cell membranes with monophasic or biphasic rectangular pulses. Pacing Clin Electrophysiol 1991;14: 1887-1892.
Chattipakorn N, Banville I, Gray RA, Ideker RE: Mechanism of ventricular defibrillation for near-defibrillation threshold shocks: A whole-heart optical mapping study in swine. Circulation 2001;104: 1313-1319.
Henriquez CS: Simulating the electrical behavior of cardiac tissue using the bidomain model. Crit Rev Biomed Eng 1993;21: 1-77.
Knisley SB, Trayanova N, Aguel F: Roles of electric field and fiber structure in cardiac electric stimulation. Biophys J 1999;77: 1404-1417.
Jones JL, Lepeschkin E, Jones RE, Rush S: Response of cultured myocardial cells to countershock-type electric field stimulation. Am J Physiol 1978;235: H214-H222.
Krassowska W: Effects of electroporation on transmembrane potential induced by defibrillation shocks. Pacing Clin Electrophysiol 1995;18: 1644-1660.
DeBruin KA, Krassowska W: Modeling electroporation in a single cell. I. Effects of field strength and rest potential. Biophys J 1999;77: 1213-1224.
Kodama I, Shibata N, Sakuma I, Mitsui K, Iida M, Suzuki R, Fukui Y, Hosoda S, Toyama J: Aftereffects of high-intensity DC stimulation on the electromechanical performance of ventricular muscle. Am J Physiol 1994;267: H248-H258.
Zipes DP, Fischer J, King RM, Nicoll A, Jolly WW: Termination of ventricular fibrillation in dogs by depolarizing a critical amount of myocardium. Am J Cardiol 1975;36: 37-44.
Roth BJ: Action potential propagation in a thick strand of cardiac muscle. Circ Res 1991;68: 162-173.
Anderson C, Trayanova NA, Skouibine K: Termination of spiral wave with biphasic shocks: Role of virtual electrode polarization. J Cardiovasc Electrophysiol 2000;11: 1386-1396.
Fast VG, Cheek ER: Optical mapping of arrhythmias induced by strong electrical shocks in myocyte cultures. Circ Res 2002;90: 664-670.
Chattipakorn N, Rogers JM, Ideker RE: Influence of postshock epicardial activation patterns on initiation of ventricular fibrillation by upper limit of vulnerability shocks. Circulation 2000;101: 1329-1336.
Latimer DC, Roth BJ: Effect of a bath on the epicardial transmembrane potential during internal defibrillation shocks. IEEE Trans Biomed Eng 1999;46: 612-614.
DeBruin KA, Krassowska W: Modeling electroporation in a single cell. II. Effects of ionic concentrations. Biophys J 1999;77: 1225-1233.
Efimov IR, Cheng YN, Van Wagoner DR, Mazgalev TN, Tchou PJ: Virtual electrode-induced phase singularity: A basic mechanism of defibrillation failure. Circ Res 1998;82: 918-925.
Roth BJ: An S1 gradient of refractoriness is not essential for reentry induction by an S2 stimulus. IEEE Trans Biomed Eng 2000;47: 820-821.
Skouibine K, Trayanova NA, Moore P: Success and failure of the defibrillation shock: Insights from a simulation study. J Cardiovasc Electrophysiol 2000;11: 785-796.
Zeng J, Laurita KR, Rosenbaum DS, Rudy Y: Two components of the delayed rectifier K+ current in ventricular myocytes of the guinea pig type: Theoretical formulation and their role in repolarization. Circ Res 1995;77: 140-152.
Toldt C: Anatomischer Atlas. Seventh Edition. Berlin : Urban & Schwarzenberg, 1911, pp. 564-577.
Kirchhof PF, Fabritz CL, Behrens S, Franz MR: Induction of ventricular fibrillation by T-wave field-shocks in the isolated perfused rabbit heart: Role of nonuniform shock responses. Basic Res Cardiol 1997;92: 35-44.
Gillis AM, Fast VG, Rohr S, Kléber AG: Mechanism of ventricular defibrillation: The role of tissue geometry in the changes in transmembrane potential in patterned myocyte cultures. Circulation 2000;101: 2438-2445.
Lindblom AE, Aguel F, Trayanova NA: Virtual electrode polarization leads to reentry in the far field. J Cardiovasc Electrophysiol 2001;12: 946-956.
Luo CH, Rudy Y: A dynamic model of the cardiac ventricular action potential. I. Simulations of ionic currents and concentration changes. Circ Res 1994;74: 1071-1096.
1997; 60
1991; 14
2000; 47
2002; 56
1993; 21
1997; 25
1995; 77
2000; 64
1999; 46
1975; 36
1993
1998; 82
1995; 18
1978; 235
2001; 104
1860; 10
1911
2002; 49
1994; 267
1990; 66
1997; 92
1991; 68
2000; 11
1999; 77
1999; 32
2002; 90
2000; 101
1994; 17
2002; 91
2001; 12
2001; 13
1994; 74
1996; 7
1992; 85
References_xml – volume: 101
  start-page: 2438
  year: 2000
  end-page: 2445
  article-title: Mechanism of ventricular defibrillation: The role of tissue geometry in the changes in transmembrane potential in patterned myocyte cultures
  publication-title: Circulation
– volume: 91
  start-page: 331
  year: 2002
  end-page: 338
  article-title: Cardiac microstructure: Implications for electrical propagation and defibrillation in the heart
  publication-title: Circ Res
– volume: 64
  start-page: 121
  year: 2000
  end-page: 129
  article-title: Spatial heterogeneity in refractoriness as a proarrhythmic substrate: Theoretical evaluation by numerical simulation
  publication-title: Jpn Circ J
– volume: 82
  start-page: 918
  year: 1998
  end-page: 925
  article-title: Virtual electrode‐induced phase singularity: A basic mechanism of defibrillation failure
  publication-title: Circ Res
– volume: 74
  start-page: 1071
  year: 1994
  end-page: 1096
  article-title: A dynamic model of the cardiac ventricular action potential. I. Simulations of ionic currents and concentration changes
  publication-title: Circ Res
– volume: 77
  start-page: 1213
  year: 1999
  end-page: 1224
  article-title: Modeling electroporation in a single cell. I. Effects of field strength and rest potential
  publication-title: Biophys J
– volume: 68
  start-page: 162
  year: 1991
  end-page: 173
  article-title: Action potential propagation in a thick strand of cardiac muscle
  publication-title: Circ Res
– volume: 85
  start-page: 1510
  year: 1992
  end-page: 1523
  article-title: Cardiac potential and potential gradient fields generated by single, combined, and sequential shocks during ventricular defibrillation
  publication-title: Circulation
– volume: 60
  start-page: 1977
  year: 1997
  end-page: 1985
  article-title: Calcium dynamics in cultured heart cells exposed to defibrillator‐type electric shocks
  publication-title: Life Sci
– volume: 68
  start-page: 1501
  year: 1991
  end-page: 1526
  article-title: A model of the ventricular cardiac action potential: Depolarization, repolarization, and their interaction
  publication-title: Circ Res
– start-page: pp. 359
  year: 1993
  end-page: 401
– volume: 36
  start-page: 37
  year: 1975
  end-page: 44
  article-title: Termination of ventricular fibrillation in dogs by depolarizing a critical amount of myocardium
  publication-title: Am J Cardiol
– volume: 101
  start-page: 1329
  year: 2000
  end-page: 1336
  article-title: Influence of postshock epicardial activation patterns on initiation of ventricular fibrillation by upper limit of vulnerability shocks
  publication-title: Circulation
– start-page: pp. 564
  year: 1911
  end-page: 577
– volume: 21
  start-page: 1
  year: 1993
  end-page: 77
  article-title: Simulating the electrical behavior of cardiac tissue using the bidomain model
  publication-title: Crit Rev Biomed Eng
– volume: 235
  start-page: H214
  year: 1978
  end-page: H222
  article-title: Response of cultured myocardial cells to countershock‐type electric field stimulation
  publication-title: Am J Physiol
– volume: 77
  start-page: 1225
  year: 1999
  end-page: 1233
  article-title: Modeling electroporation in a single cell. II. Effects of ionic concentrations
  publication-title: Biophys J
– volume: 11
  start-page: 1014
  year: 2000
  end-page: 1021
  article-title: Prediction of defibrillation outcome by epicardial activation patterns following shocks near the defibrillation threshold
  publication-title: J Cardiovasc Electrophysiol
– volume: 12
  start-page: 312
  year: 2001
  end-page: 322
  article-title: Breakthrough waves during ventricular fibrillation depend on the degree of rotational anisotropy and the boundary conditions: A simulation study
  publication-title: J Cardiovasc Electrophysiol
– volume: 74
  start-page: 1097
  year: 1994
  end-page: 1113
  article-title: A dynamic model of the cardiac ventricular action potential. II. Afterdepolarizations, triggered activity, and potentiation
  publication-title: Circ Res
– volume: 14
  start-page: 1887
  year: 1991
  end-page: 1892
  article-title: Electroporation of cardiac cell membranes with monophasic or biphasic rectangular pulses
  publication-title: Pacing Clin Electrophysiol
– volume: 77
  start-page: 1404
  year: 1999
  end-page: 1417
  article-title: Roles of electric field and fiber structure in cardiac electric stimulation
  publication-title: Biophys J
– volume: 32
  start-page: 129
  issue: Suppl
  year: 1999
  end-page: 138
  article-title: The dynamics of vortex‐like reentry wave filaments in three‐dimensional computer models
  publication-title: J Electrocardiol
– volume: 25
  start-page: 783
  year: 1997
  end-page: 792
  article-title: Effects of the tissue‐bath interface on the induced transmembrane potential: A modeling study in cardiac stimulation
  publication-title: Ann Biomed Eng
– volume: 18
  start-page: 1644
  year: 1995
  end-page: 1660
  article-title: Effects of electroporation on transmembrane potential induced by defibrillation shocks
  publication-title: Pacing Clin Electrophysiol
– volume: 267
  start-page: H248
  year: 1994
  end-page: H258
  article-title: Aftereffects of high‐intensity DC stimulation on the electromechanical performance of ventricular muscle
  publication-title: Am J Physiol
– volume: 46
  start-page: 612
  year: 1999
  end-page: 614
  article-title: Effect of a bath on the epicardial transmembrane potential during internal defibrillation shocks
  publication-title: IEEE Trans Biomed Eng
– volume: 10
  start-page: 433
  year: 1860
  end-page: 440
  article-title: On the arrangement of the muscular fibres of the ventricular portion of the heart of the mammal
  publication-title: Proc Roy Soc Lond
– volume: 82
  start-page: 375
  year: 1998
  end-page: 385
  article-title: Activation of cardiac tissue by extracellular electrical shocks: Formulation of “secondary sources” at intercellular clefts in monolayers of cultured myocytes
  publication-title: Circ Res
– volume: 77
  start-page: 140
  year: 1995
  end-page: 152
  article-title: Two components of the delayed rectifier K current in ventricular myocytes of the guinea pig type: Theoretical formulation and their role in repolarization
  publication-title: Circ Res
– volume: 104
  start-page: 1313
  year: 2001
  end-page: 1319
  article-title: Mechanism of ventricular defibrillation for near‐defibrillation threshold shocks: A whole‐heart optical mapping study in swine
  publication-title: Circulation
– volume: 11
  start-page: 1386
  year: 2000
  end-page: 1396
  article-title: Termination of spiral wave with biphasic shocks: Role of virtual electrode polarization
  publication-title: J Cardiovasc Electrophysiol
– volume: 56
  start-page: 359
  issue: Suppl 2
  year: 2002
  end-page: 363
  article-title: Differences in sympathetic and vagal effects on paroxysmal atrial fibrillation: A simulation study
  publication-title: Biomed Pharmacother
– volume: 47
  start-page: 820
  year: 2000
  end-page: 821
  article-title: An S1 gradient of refractoriness is not essential for reentry induction by an S2 stimulus
  publication-title: IEEE Trans Biomed Eng
– volume: 13
  start-page: 301
  year: 2001
  end-page: 319
  article-title: The structure and function of the helical heart and its buttress wrapping. I. The normal macroscopic structure of the heart
  publication-title: Semin Thorac Cardiovasc Surg
– volume: 17
  start-page: 1208
  year: 1994
  end-page: 1217
  article-title: The probability of defibrillation success and the incidence of postshock arrhythmia as a function of shock strength
  publication-title: Pacing Clin Electrophysiol
– volume: 12
  start-page: 946
  year: 2001
  end-page: 956
  article-title: Virtual electrode polarization leads to reentry in the far field
  publication-title: J Cardiovasc Electrophysiol
– volume: 12
  start-page: 1393
  year: 2001
  end-page: 1403
  article-title: Electroporation in a model of cardiac defibrillation
  publication-title: J Cardiovasc Electrophysiol
– volume: 7
  start-page: 231
  year: 1996
  end-page: 242
  article-title: Myocardial vulnerability to T wave shocks: Relation to shock strength, shock coupling interval, and dispersion of ventricular repolarization
  publication-title: J Cardiovasc Electrophysiol
– volume: 49
  start-page: 18
  year: 2002
  end-page: 30
  article-title: A dynamic action potential model analysis of shock‐induced aftereffects in ventricular muscle by reversible breakdown of cell membrane
  publication-title: IEEE Trans Biomed Eng
– volume: 90
  start-page: 664
  year: 2002
  end-page: 670
  article-title: Optical mapping of arrhythmias induced by strong electrical shocks in myocyte cultures
  publication-title: Circ Res
– volume: 11
  start-page: 785
  year: 2000
  end-page: 796
  article-title: Success and failure of the defibrillation shock: Insights from a simulation study
  publication-title: J Cardiovasc Electrophysiol
– volume: 7
  start-page: 322
  year: 1996
  end-page: 334
  article-title: Epicardial sock mapping following monophasic and biphasic shocks of equal voltage with an endocardial lead system
  publication-title: J Cardiovasc Electrophysiol
– volume: 92
  start-page: 35
  year: 1997
  end-page: 44
  article-title: Induction of ventricular fibrillation by T‐wave field‐shocks in the isolated perfused rabbit heart: Role of nonuniform shock responses
  publication-title: Basic Res Cardiol
– volume: 66
  start-page: 1190
  year: 1990
  end-page: 1203
  article-title: Conduction disturbances caused by high current density electric fields
  publication-title: Circ Res
SSID ssj0013605
Score 1.7147636
Snippet Introduction: The ventricular apex has a helical arrangement of myocardial fibers called the “vortex cordis.” Experimental studies have demonstrated that the...
SourceID wiley
istex
SourceType Publisher
StartPage 295
SubjectTerms computer simulation
electrical shock
electroporation
spiral wave
ventricular defibrillation
virtual electrode
Title Vortex Cordis as a Mechanism of Postshock Activation
URI https://api.istex.fr/ark:/67375/WNG-KKBMQ8TJ-V/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1046%2Fj.1540-8167.2003.02408.x
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA8yULz4sSnOL3KQ3VratE3rcRubY6MDZZu7hSRNcY51sg-Y_vXmpd1E8SRCDzk0pX1NXt7H7_0eQnf6zBRCEWUpLpR2ULi0hCshUyi12-N7JDGtE-I-7Qz97jgYF_gnqIXJ-SF2ATfYGUZfwwbnIu9C4hh221cIijhW5NLQ0Hrahq3LBnsSePXAPnoiXwmFvERSzw2ATtYrQD1FgvPXB2lzFSS9-W62mnOnfYym2zfO4SZTe70Stvz4Qeb4P590go4K8xTX8_V0ivZUVkaVeqZd89k7rmEDGDWR-DLab2xHB3GRoa8gfwTo3Q1uaqd2ssRcXzhWUF48Wc7wPMXQHXj5orUwrstta7UzNGy3Bs2OVXRmsCSBCGTi04g6WjUR4igeKJm6NOGc8pBr_yj0eZJSKWQiXS5EQgiXIeGJEqnLU5-HqXeOStk8UxcIK3GvqBA-VYH2FCPtr6WRBCKuNIiIVLSKauYvsLecfYPxxRTAaGHAnvsPrNdrxI_RoMtGVRQa2e5uNOl1H0rRQKoMpApNNz1mpMo2rNtsmeHln2deoUMD7jOYtGtUWi3W6kYbKStxa5bfJ67W2Og
link.rule.ids 315,786,790,1382,27955,27956,46751
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bT8IwFG4MxsuLF9CI1z4Y3kDWbd18BAQRGIkGkLem7bpIEDBcEvTX29MNjMYnY7KHPqzLdtbTnst3voPQtT4zhVBE5RUXSjsoXOaFJSFTKLXb49gkNK0Tgjatd51G3-0n7YCgFibmh1gH3EAzzH4NCg4B6ZskLRlrOWT1fYt6htezYOi6Ctqg3NTa74KW3j2Rr5RCXCSpJ7tAKGsnsJ4kxfnrk7TBCrJefjdczclT20evq3eOASfDwmIuCvLjB53jP33UAdpLLFRcipfUIdpQ4zTKlMbaOx-94xw2mFETjE-jrfJqtB0kSfoMcnoA4F3iivZrBzPM9YUDBRXGg9kITyIMDYJnL3ojxiW56q52hLq1aqdSzyfNGfKSQBAydKhPi3p3IqSouKtkZNGQc8o9rl0kz-FhRKWQobS4ECEhXHqEh0pEFo8c7kX2MUqNJ2N1grASt4oK4VDlamfR1y5b5Evg4opcn0hFsyhnfgN7iwk4GJ8OAY_muey5fc-azXLw6HcarJdFnhHu-kaTYXegGg2kykCq0HfTZkaqbMkalaoZnv555hXaqXeCFms9tJtnaNdg_QxE7Ryl5tOFutA2y1xcmrX4CW4c3Qg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vortex+Cordis+as+a+Mechanism+of+Postshock+Activation&rft.jtitle=Journal+of+cardiovascular+electrophysiology&rft.au=ASHIHARA%2C+TAKASHI&rft.au=NAMBA%2C+TSUNETOYO&rft.au=YAO%2C+TAKENORI&rft.au=OZAWA%2C+TOMOYA&rft.date=2003-03-01&rft.pub=Blackwell+Science+Inc&rft.issn=1045-3873&rft.eissn=1540-8167&rft.volume=14&rft.issue=3&rft.spage=295&rft.epage=302&rft_id=info:doi/10.1046%2Fj.1540-8167.2003.02408.x&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_KKBMQ8TJ_V
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1045-3873&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1045-3873&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1045-3873&client=summon