SOME IMPLICATIONS OF THE LAPLACE TRANSFORM INVERSION ON SEM COUPLING COEFFICIENTS IN THE TIME DOMAIN
The issues associated with the choice of.coupling coefficient forms in the singularity expansion and the closely-related subject of whether expansions may be written without an entire function present have persisted as major points of concern and confusion in the development of singularity expansion...
Saved in:
Published in | Electromagnetics Vol. 2; no. 3; pp. 181 - 200 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Taylor & Francis Group
01.01.1982
|
Online Access | Get full text |
ISSN | 0272-6343 1532-527X |
DOI | 10.1080/02726348208915164 |
Cover
Loading…
Abstract | The issues associated with the choice of.coupling coefficient forms in the singularity expansion and the closely-related subject of whether expansions may be written without an entire function present have persisted as major points of concern and confusion in the development of singularity expansion method theory. In this paper we show that the variety of choices available to one in constructing a singularity expansion relates directly to the large-s asymptotic behavior of the resolvent kernel for the integral equation from which the expansion is derived. The choices range from a cautious extreme in which causality is enforced explicitly to a bold extreme where one depends upon the expansion to sum to a causal result well ahead of the time of arrival of the excitation. By appealing to recently-reported estimates of this asymptotic behavior we define what the acceptable constructions are and discuss them on a comparative basis. A geometrical interpretation of the domain of integration for specific useful choices is provided. It is shown that one may choose the so-called turn-on time outside the acceptable range of choices, but at the expense of including an entire function contribution in the representation. The contribution of this entire function is generally significant enough that it cannot be neglected. It is shown, too, that the ordering of the pole series so that all poles associated with a given eigenvalue of the integral operator are grouped can admit to a choice of a bold coupling coefficient construction. The practicality of this eigenset summation, however, is questionable since the availability of eigenset information hinges on the separability of Maxwell's equations for a particular object shape and since for all but simply rotationally symmetric shapes the pole series may require augmentation by a branch integral for a given eigenvalue. An appendix is provided illustrating a number of the points made in the body of the paper for the simple example of a voltage wave excited on a uniform lossless transmission line. |
---|---|
AbstractList | The issues associated with the choice of.coupling coefficient forms in the singularity expansion and the closely-related subject of whether expansions may be written without an entire function present have persisted as major points of concern and confusion in the development of singularity expansion method theory. In this paper we show that the variety of choices available to one in constructing a singularity expansion relates directly to the large-s asymptotic behavior of the resolvent kernel for the integral equation from which the expansion is derived. The choices range from a cautious extreme in which causality is enforced explicitly to a bold extreme where one depends upon the expansion to sum to a causal result well ahead of the time of arrival of the excitation. By appealing to recently-reported estimates of this asymptotic behavior we define what the acceptable constructions are and discuss them on a comparative basis. A geometrical interpretation of the domain of integration for specific useful choices is provided. It is shown that one may choose the so-called turn-on time outside the acceptable range of choices, but at the expense of including an entire function contribution in the representation. The contribution of this entire function is generally significant enough that it cannot be neglected. It is shown, too, that the ordering of the pole series so that all poles associated with a given eigenvalue of the integral operator are grouped can admit to a choice of a bold coupling coefficient construction. The practicality of this eigenset summation, however, is questionable since the availability of eigenset information hinges on the separability of Maxwell's equations for a particular object shape and since for all but simply rotationally symmetric shapes the pole series may require augmentation by a branch integral for a given eigenvalue. An appendix is provided illustrating a number of the points made in the body of the paper for the simple example of a voltage wave excited on a uniform lossless transmission line. |
Author | Mittra, Raj Wilton, Donald R. Wilson Pearson, L. |
Author_xml | – sequence: 1 givenname: L. surname: Wilson Pearson fullname: Wilson Pearson, L. organization: Department of Electrical Engineering , University of Mississippi, University – sequence: 2 givenname: Donald R. surname: Wilton fullname: Wilton, Donald R. organization: Department of Electrical Engineering , University of Mississippi, University – sequence: 3 givenname: Raj surname: Mittra fullname: Mittra, Raj organization: Electromagnetics Laboratory, Department of Electrical Engineering , University of Illinois |
BookMark | eNp9kNtKw0AQhhepYFt9AO_2BaJ7yBG8CXHTLuRQmlS8C5tNFiJpIpuA9O3dWq8UhYEZmP_7Z_hXYDGMQwvAPUYPGPnoERGPuNT2CfID7GDXvgJL7FBiOcR7XYDleW8ZAb0Bq2l6QwgRStESNEWeMsjTXcKjsOR5VsA8huWWwSTcJWHEYLkPsyLO9ynk2QvbF0YDTRUshVF-MFy2MQOLYx5xlpWFkX3xJTfGz3ka8uwWXCvRT-3dd1-DQ8zKaGsl-cacTSxJMJ0t3Lo-tlFQm1-9NsC1qqUgjU0aITysZBAoSkjt-rVyHFlLp2mUWyvUNlI2qA7oGuCLr9TjNOlWVe-6Owp9qjCqzjFVv2IyjPeDkd0s5m4cZi26_l_y6UJ2gxr1UXyMum-qWZz6USstBtlNFf0b_wS5BXiC |
CitedBy_id | crossref_primary_10_1051_m2an_2007040 crossref_primary_10_1109_MAP_1986_27868 crossref_primary_10_1029_RS020i001p00020 crossref_primary_10_1109_TAP_1986_1143884 crossref_primary_10_1109_TAP_1984_1143350 crossref_primary_10_1109_TAP_1986_1143883 crossref_primary_10_1109_TAP_1983_1143087 crossref_primary_10_1016_0165_2125_83_90021_5 crossref_primary_10_1016_0165_2125_83_90022_7 crossref_primary_10_1109_TAP_1985_1143669 crossref_primary_10_1109_TAP_1984_1143429 crossref_primary_10_1109_TAP_1984_1143335 crossref_primary_10_1109_TAP_1984_1143345 |
Cites_doi | 10.1109/TAP.1983.1143016 10.1109/TAP.1973.1140603 10.1080/02726348108915145 10.1080/02726348108915132 10.1109/TAP.1980.1142416 |
ContentType | Journal Article |
Copyright | Copyright Taylor & Francis Group, LLC 1982 |
Copyright_xml | – notice: Copyright Taylor & Francis Group, LLC 1982 |
DBID | AAYXX CITATION |
DOI | 10.1080/02726348208915164 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1532-527X |
EndPage | 200 |
ExternalDocumentID | 10_1080_02726348208915164 8915164 |
GroupedDBID | 07I 0R~ 1TA 4.4 4B5 5GY 5VS 8VB ABJNI ACGEJ ACGFS ACGOD ACIWK ADCVX ADXEU ADXPE AEHZU AEMOZ AENEX AEPSL AEYOC AEZBV AFION AGBLW AKHJE AKMBP ALMA_UNASSIGNED_HOLDINGS ALXIB AWYRJ BGSSV C0- C5H CS3 DEXXA DU5 EBR EBS EBU EJD FETWF H13 HZ~ IFELN L8C NA5 NUSFT O9- P2P PQQKQ QWB TAJZE TAP TDBHL TFL TFW UB6 ZL0 .4S .7F .DC .QJ 0BK 29G 2DF 30N AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR AAYXX ABCCY ABDBF ABFIM ABHAV ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACTIO ACTTO ACUHS ADGTB ADMLS ADUMR AEISY AEOZL AFBWG AFFNX AFKVX AFRVT AGDLA AGMYJ AGVKY AGWUF AGYFW AHDZW AHQJS AIJEM AIYEW AJWEG AKBVH AKOOK AKVCP ALQZU ALRRR AQRUH ARCSS AVBZW BLEHA BWMZZ CAG CCCUG CE4 CITATION COF CYRSC DAOYK DGEBU DKSSO EAP ECS EDO EMK EPL EST ESX E~A E~B FYQZC GTTXZ HF~ H~P I-F IPNFZ J.P K1G KYCEM LJTGL M4Z ML~ NX~ OPCYK RIG RNANH ROSJB RTWRZ S-T SNACF TASJS TBQAZ TEN TFT TH9 TNC TTHFI TUROJ TUS TWF UT5 UU3 XSW ZGOLN ~S~ |
ID | FETCH-LOGICAL-c213t-1e681409b2727e91bfbca2d42daa71fc99f322b68bf55cbc5ddf6bf0edccd0b93 |
ISSN | 0272-6343 |
IngestDate | Thu Apr 24 22:57:21 EDT 2025 Mon Aug 04 15:02:55 EDT 2025 Wed Dec 25 09:00:05 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c213t-1e681409b2727e91bfbca2d42daa71fc99f322b68bf55cbc5ddf6bf0edccd0b93 |
PageCount | 20 |
ParticipantIDs | crossref_citationtrail_10_1080_02726348208915164 informaworld_taylorfrancis_310_1080_02726348208915164 crossref_primary_10_1080_02726348208915164 |
PublicationCentury | 1900 |
PublicationDate | 1/1/1982 1982-01-00 |
PublicationDateYYYYMMDD | 1982-01-01 |
PublicationDate_xml | – month: 01 year: 1982 text: 1/1/1982 day: 01 |
PublicationDecade | 1980 |
PublicationTitle | Electromagnetics |
PublicationYear | 1982 |
Publisher | Taylor & Francis Group |
Publisher_xml | – name: Taylor & Francis Group |
References | Ramm A. (CIT0008) 1980; 28 Martinez J. P. (CIT0011) 1979 Pearson L. W. (CIT0003); 1 Wilton D. R. (CIT0005) 1981; 1 Baum C. E. (CIT0002) 1978 Wilton D. R. (CIT0009) 1983; 31 Baum C. E. (CIT0010); 1 Umashankar K. R. (CIT0012) 1974 Michalski K. A. (CIT0006) Baum C. E. (CIT0001) 1976 Marin L. (CIT0004) 1973; 21 Dolph C. L. (CIT0007) |
References_xml | – ident: CIT0006 publication-title: Electromagnetics – volume: 31 issue: 1 year: 1983 ident: CIT0009 publication-title: IEEE Trans. Ant. & Prop. doi: 10.1109/TAP.1983.1143016 – volume-title: Transient Electromagnetic Fields year: 1976 ident: CIT0001 – volume-title: Recent Developments in Classical Wave Scattering ident: CIT0007 – volume: 21 start-page: 809 year: 1973 ident: CIT0004 publication-title: IEEE Trans. Antennas Propagat. doi: 10.1109/TAP.1973.1140603 – volume: 1 issue: 4 ident: CIT0003 publication-title: Electromagnetics – volume: 1 issue: 4 year: 1981 ident: CIT0005 publication-title: Electromagnetics doi: 10.1080/02726348108915145 – volume-title: Electromagnetic Scattering year: 1978 ident: CIT0002 – volume: 1 start-page: 209 issue: 2 ident: CIT0010 publication-title: Electromagnetics doi: 10.1080/02726348108915132 – volume-title: Interaction Note 112 year: 1979 ident: CIT0011 – volume-title: Interaction Note 259 year: 1974 ident: CIT0012 – volume: 28 start-page: 897 year: 1980 ident: CIT0008 publication-title: IEEE Trans. Ant. & Prop. doi: 10.1109/TAP.1980.1142416 |
SSID | ssj0002330 |
Score | 1.2608027 |
Snippet | The issues associated with the choice of.coupling coefficient forms in the singularity expansion and the closely-related subject of whether expansions may be... |
SourceID | crossref informaworld |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 181 |
Title | SOME IMPLICATIONS OF THE LAPLACE TRANSFORM INVERSION ON SEM COUPLING COEFFICIENTS IN THE TIME DOMAIN |
URI | https://www.tandfonline.com/doi/abs/10.1080/02726348208915164 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELagKyQ4IFhALC_5wIkoVWLneYy6WW1Q067aFPVW2Y69AkFBJVz49YxjJ027gGClKIrijNNmvozHE883CL1Nk5oGIo5cCmOBqx1el3FCXcKCkKqYyLjNci1n0eUqeL8O1_vPBW12ScPH4udv80puo1U4B3rVWbL_odm-UzgBx6Bf2IOGYf9POl7Oy9wpyqt9OrBdwzPNrqbZJHeqRTZbwjyvdIrZh3yhDacD2zIvncl8BXJtqAp81ULHmiqdTtzKVwV0fD4vs2J2ELo3NXO-sOutzn3s3XHD-eiAed3ZBK7peNBmV-ibMLSz6JvKj02zM84r-7QPP_hpQo7CD9WNSiCDoJkxYyQmbkQNGdNYdmZWT4Hj9dAOkwHc6MCm-qamix2eDbHpTctvl0rCzSLN1-MlKfgyhiD9iFDbttxFJwSmFt4InWTn5XTZj9-EUhOZs7-7-xauGdmPuz_wZg64bgdeSvUIPbTTC5wZrDxGd-T2FD0YkE6eonvtol_x_QmqNX7wED94foFB_9jiB_f4wT1-MGyAH9zhBw_xA5e18ho_2ODnKVpd5NXk0rVVN1xBfNq4voxaFjQO_zWWqc8VF4zUAakZi30l0lTBIMCjhKswFFyEda0irjxZC1F7PKXP0Gj7dSufIwwWXUkegJHnJAhFzGXKYkZ5IlksFeVnyOue3kZYSnpdGeXzxu-Ya48f-Bl614t8M3wsf7s4HKpk07RgVQanG_pHuRe3lHuJ7u9fkVdo1Ox-yNfgszb8jQXZL1Pgf9U |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SOME+IMPLICATIONS+OF+THE+LAPLACE+TRANSFORM+INVERSION+ON+SEM+COUPLING+COEFFICIENTS+IN+THE+TIME+DOMAIN&rft.jtitle=Electromagnetics&rft.au=Wilson+Pearson%2C+L.&rft.au=Wilton%2C+Donald+R.&rft.au=Mittra%2C+Raj&rft.date=1982-01-01&rft.pub=Taylor+%26+Francis+Group&rft.issn=0272-6343&rft.eissn=1532-527X&rft.volume=2&rft.issue=3&rft.spage=181&rft.epage=200&rft_id=info:doi/10.1080%2F02726348208915164&rft.externalDocID=8915164 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0272-6343&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0272-6343&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0272-6343&client=summon |