SOME IMPLICATIONS OF THE LAPLACE TRANSFORM INVERSION ON SEM COUPLING COEFFICIENTS IN THE TIME DOMAIN

The issues associated with the choice of.coupling coefficient forms in the singularity expansion and the closely-related subject of whether expansions may be written without an entire function present have persisted as major points of concern and confusion in the development of singularity expansion...

Full description

Saved in:
Bibliographic Details
Published inElectromagnetics Vol. 2; no. 3; pp. 181 - 200
Main Authors Wilson Pearson, L., Wilton, Donald R., Mittra, Raj
Format Journal Article
LanguageEnglish
Published Taylor & Francis Group 01.01.1982
Online AccessGet full text
ISSN0272-6343
1532-527X
DOI10.1080/02726348208915164

Cover

Loading…
Abstract The issues associated with the choice of.coupling coefficient forms in the singularity expansion and the closely-related subject of whether expansions may be written without an entire function present have persisted as major points of concern and confusion in the development of singularity expansion method theory. In this paper we show that the variety of choices available to one in constructing a singularity expansion relates directly to the large-s asymptotic behavior of the resolvent kernel for the integral equation from which the expansion is derived. The choices range from a cautious extreme in which causality is enforced explicitly to a bold extreme where one depends upon the expansion to sum to a causal result well ahead of the time of arrival of the excitation. By appealing to recently-reported estimates of this asymptotic behavior we define what the acceptable constructions are and discuss them on a comparative basis. A geometrical interpretation of the domain of integration for specific useful choices is provided. It is shown that one may choose the so-called turn-on time outside the acceptable range of choices, but at the expense of including an entire function contribution in the representation. The contribution of this entire function is generally significant enough that it cannot be neglected. It is shown, too, that the ordering of the pole series so that all poles associated with a given eigenvalue of the integral operator are grouped can admit to a choice of a bold coupling coefficient construction. The practicality of this eigenset summation, however, is questionable since the availability of eigenset information hinges on the separability of Maxwell's equations for a particular object shape and since for all but simply rotationally symmetric shapes the pole series may require augmentation by a branch integral for a given eigenvalue. An appendix is provided illustrating a number of the points made in the body of the paper for the simple example of a voltage wave excited on a uniform lossless transmission line.
AbstractList The issues associated with the choice of.coupling coefficient forms in the singularity expansion and the closely-related subject of whether expansions may be written without an entire function present have persisted as major points of concern and confusion in the development of singularity expansion method theory. In this paper we show that the variety of choices available to one in constructing a singularity expansion relates directly to the large-s asymptotic behavior of the resolvent kernel for the integral equation from which the expansion is derived. The choices range from a cautious extreme in which causality is enforced explicitly to a bold extreme where one depends upon the expansion to sum to a causal result well ahead of the time of arrival of the excitation. By appealing to recently-reported estimates of this asymptotic behavior we define what the acceptable constructions are and discuss them on a comparative basis. A geometrical interpretation of the domain of integration for specific useful choices is provided. It is shown that one may choose the so-called turn-on time outside the acceptable range of choices, but at the expense of including an entire function contribution in the representation. The contribution of this entire function is generally significant enough that it cannot be neglected. It is shown, too, that the ordering of the pole series so that all poles associated with a given eigenvalue of the integral operator are grouped can admit to a choice of a bold coupling coefficient construction. The practicality of this eigenset summation, however, is questionable since the availability of eigenset information hinges on the separability of Maxwell's equations for a particular object shape and since for all but simply rotationally symmetric shapes the pole series may require augmentation by a branch integral for a given eigenvalue. An appendix is provided illustrating a number of the points made in the body of the paper for the simple example of a voltage wave excited on a uniform lossless transmission line.
Author Mittra, Raj
Wilton, Donald R.
Wilson Pearson, L.
Author_xml – sequence: 1
  givenname: L.
  surname: Wilson Pearson
  fullname: Wilson Pearson, L.
  organization: Department of Electrical Engineering , University of Mississippi, University
– sequence: 2
  givenname: Donald R.
  surname: Wilton
  fullname: Wilton, Donald R.
  organization: Department of Electrical Engineering , University of Mississippi, University
– sequence: 3
  givenname: Raj
  surname: Mittra
  fullname: Mittra, Raj
  organization: Electromagnetics Laboratory, Department of Electrical Engineering , University of Illinois
BookMark eNp9kNtKw0AQhhepYFt9AO_2BaJ7yBG8CXHTLuRQmlS8C5tNFiJpIpuA9O3dWq8UhYEZmP_7Z_hXYDGMQwvAPUYPGPnoERGPuNT2CfID7GDXvgJL7FBiOcR7XYDleW8ZAb0Bq2l6QwgRStESNEWeMsjTXcKjsOR5VsA8huWWwSTcJWHEYLkPsyLO9ynk2QvbF0YDTRUshVF-MFy2MQOLYx5xlpWFkX3xJTfGz3ka8uwWXCvRT-3dd1-DQ8zKaGsl-cacTSxJMJ0t3Lo-tlFQm1-9NsC1qqUgjU0aITysZBAoSkjt-rVyHFlLp2mUWyvUNlI2qA7oGuCLr9TjNOlWVe-6Owp9qjCqzjFVv2IyjPeDkd0s5m4cZi26_l_y6UJ2gxr1UXyMum-qWZz6USstBtlNFf0b_wS5BXiC
CitedBy_id crossref_primary_10_1051_m2an_2007040
crossref_primary_10_1109_MAP_1986_27868
crossref_primary_10_1029_RS020i001p00020
crossref_primary_10_1109_TAP_1986_1143884
crossref_primary_10_1109_TAP_1984_1143350
crossref_primary_10_1109_TAP_1986_1143883
crossref_primary_10_1109_TAP_1983_1143087
crossref_primary_10_1016_0165_2125_83_90021_5
crossref_primary_10_1016_0165_2125_83_90022_7
crossref_primary_10_1109_TAP_1985_1143669
crossref_primary_10_1109_TAP_1984_1143429
crossref_primary_10_1109_TAP_1984_1143335
crossref_primary_10_1109_TAP_1984_1143345
Cites_doi 10.1109/TAP.1983.1143016
10.1109/TAP.1973.1140603
10.1080/02726348108915145
10.1080/02726348108915132
10.1109/TAP.1980.1142416
ContentType Journal Article
Copyright Copyright Taylor & Francis Group, LLC 1982
Copyright_xml – notice: Copyright Taylor & Francis Group, LLC 1982
DBID AAYXX
CITATION
DOI 10.1080/02726348208915164
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1532-527X
EndPage 200
ExternalDocumentID 10_1080_02726348208915164
8915164
GroupedDBID 07I
0R~
1TA
4.4
4B5
5GY
5VS
8VB
ABJNI
ACGEJ
ACGFS
ACGOD
ACIWK
ADCVX
ADXEU
ADXPE
AEHZU
AEMOZ
AENEX
AEPSL
AEYOC
AEZBV
AFION
AGBLW
AKHJE
AKMBP
ALMA_UNASSIGNED_HOLDINGS
ALXIB
AWYRJ
BGSSV
C0-
C5H
CS3
DEXXA
DU5
EBR
EBS
EBU
EJD
FETWF
H13
HZ~
IFELN
L8C
NA5
NUSFT
O9-
P2P
PQQKQ
QWB
TAJZE
TAP
TDBHL
TFL
TFW
UB6
ZL0
.4S
.7F
.DC
.QJ
0BK
29G
2DF
30N
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
AAYXX
ABCCY
ABDBF
ABFIM
ABHAV
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACTIO
ACTTO
ACUHS
ADGTB
ADMLS
ADUMR
AEISY
AEOZL
AFBWG
AFFNX
AFKVX
AFRVT
AGDLA
AGMYJ
AGVKY
AGWUF
AGYFW
AHDZW
AHQJS
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
AKVCP
ALQZU
ALRRR
AQRUH
ARCSS
AVBZW
BLEHA
BWMZZ
CAG
CCCUG
CE4
CITATION
COF
CYRSC
DAOYK
DGEBU
DKSSO
EAP
ECS
EDO
EMK
EPL
EST
ESX
E~A
E~B
FYQZC
GTTXZ
HF~
H~P
I-F
IPNFZ
J.P
K1G
KYCEM
LJTGL
M4Z
ML~
NX~
OPCYK
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TEN
TFT
TH9
TNC
TTHFI
TUROJ
TUS
TWF
UT5
UU3
XSW
ZGOLN
~S~
ID FETCH-LOGICAL-c213t-1e681409b2727e91bfbca2d42daa71fc99f322b68bf55cbc5ddf6bf0edccd0b93
ISSN 0272-6343
IngestDate Thu Apr 24 22:57:21 EDT 2025
Mon Aug 04 15:02:55 EDT 2025
Wed Dec 25 09:00:05 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c213t-1e681409b2727e91bfbca2d42daa71fc99f322b68bf55cbc5ddf6bf0edccd0b93
PageCount 20
ParticipantIDs crossref_citationtrail_10_1080_02726348208915164
informaworld_taylorfrancis_310_1080_02726348208915164
crossref_primary_10_1080_02726348208915164
PublicationCentury 1900
PublicationDate 1/1/1982
1982-01-00
PublicationDateYYYYMMDD 1982-01-01
PublicationDate_xml – month: 01
  year: 1982
  text: 1/1/1982
  day: 01
PublicationDecade 1980
PublicationTitle Electromagnetics
PublicationYear 1982
Publisher Taylor & Francis Group
Publisher_xml – name: Taylor & Francis Group
References Ramm A. (CIT0008) 1980; 28
Martinez J. P. (CIT0011) 1979
Pearson L. W. (CIT0003); 1
Wilton D. R. (CIT0005) 1981; 1
Baum C. E. (CIT0002) 1978
Wilton D. R. (CIT0009) 1983; 31
Baum C. E. (CIT0010); 1
Umashankar K. R. (CIT0012) 1974
Michalski K. A. (CIT0006)
Baum C. E. (CIT0001) 1976
Marin L. (CIT0004) 1973; 21
Dolph C. L. (CIT0007)
References_xml – ident: CIT0006
  publication-title: Electromagnetics
– volume: 31
  issue: 1
  year: 1983
  ident: CIT0009
  publication-title: IEEE Trans. Ant. & Prop.
  doi: 10.1109/TAP.1983.1143016
– volume-title: Transient Electromagnetic Fields
  year: 1976
  ident: CIT0001
– volume-title: Recent Developments in Classical Wave Scattering
  ident: CIT0007
– volume: 21
  start-page: 809
  year: 1973
  ident: CIT0004
  publication-title: IEEE Trans. Antennas Propagat.
  doi: 10.1109/TAP.1973.1140603
– volume: 1
  issue: 4
  ident: CIT0003
  publication-title: Electromagnetics
– volume: 1
  issue: 4
  year: 1981
  ident: CIT0005
  publication-title: Electromagnetics
  doi: 10.1080/02726348108915145
– volume-title: Electromagnetic Scattering
  year: 1978
  ident: CIT0002
– volume: 1
  start-page: 209
  issue: 2
  ident: CIT0010
  publication-title: Electromagnetics
  doi: 10.1080/02726348108915132
– volume-title: Interaction Note 112
  year: 1979
  ident: CIT0011
– volume-title: Interaction Note 259
  year: 1974
  ident: CIT0012
– volume: 28
  start-page: 897
  year: 1980
  ident: CIT0008
  publication-title: IEEE Trans. Ant. & Prop.
  doi: 10.1109/TAP.1980.1142416
SSID ssj0002330
Score 1.2608027
Snippet The issues associated with the choice of.coupling coefficient forms in the singularity expansion and the closely-related subject of whether expansions may be...
SourceID crossref
informaworld
SourceType Enrichment Source
Index Database
Publisher
StartPage 181
Title SOME IMPLICATIONS OF THE LAPLACE TRANSFORM INVERSION ON SEM COUPLING COEFFICIENTS IN THE TIME DOMAIN
URI https://www.tandfonline.com/doi/abs/10.1080/02726348208915164
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELagKyQ4IFhALC_5wIkoVWLneYy6WW1Q067aFPVW2Y69AkFBJVz49YxjJ027gGClKIrijNNmvozHE883CL1Nk5oGIo5cCmOBqx1el3FCXcKCkKqYyLjNci1n0eUqeL8O1_vPBW12ScPH4udv80puo1U4B3rVWbL_odm-UzgBx6Bf2IOGYf9POl7Oy9wpyqt9OrBdwzPNrqbZJHeqRTZbwjyvdIrZh3yhDacD2zIvncl8BXJtqAp81ULHmiqdTtzKVwV0fD4vs2J2ELo3NXO-sOutzn3s3XHD-eiAed3ZBK7peNBmV-ibMLSz6JvKj02zM84r-7QPP_hpQo7CD9WNSiCDoJkxYyQmbkQNGdNYdmZWT4Hj9dAOkwHc6MCm-qamix2eDbHpTctvl0rCzSLN1-MlKfgyhiD9iFDbttxFJwSmFt4InWTn5XTZj9-EUhOZs7-7-xauGdmPuz_wZg64bgdeSvUIPbTTC5wZrDxGd-T2FD0YkE6eonvtol_x_QmqNX7wED94foFB_9jiB_f4wT1-MGyAH9zhBw_xA5e18ho_2ODnKVpd5NXk0rVVN1xBfNq4voxaFjQO_zWWqc8VF4zUAakZi30l0lTBIMCjhKswFFyEda0irjxZC1F7PKXP0Gj7dSufIwwWXUkegJHnJAhFzGXKYkZ5IlksFeVnyOue3kZYSnpdGeXzxu-Ya48f-Bl614t8M3wsf7s4HKpk07RgVQanG_pHuRe3lHuJ7u9fkVdo1Ox-yNfgszb8jQXZL1Pgf9U
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SOME+IMPLICATIONS+OF+THE+LAPLACE+TRANSFORM+INVERSION+ON+SEM+COUPLING+COEFFICIENTS+IN+THE+TIME+DOMAIN&rft.jtitle=Electromagnetics&rft.au=Wilson+Pearson%2C+L.&rft.au=Wilton%2C+Donald+R.&rft.au=Mittra%2C+Raj&rft.date=1982-01-01&rft.pub=Taylor+%26+Francis+Group&rft.issn=0272-6343&rft.eissn=1532-527X&rft.volume=2&rft.issue=3&rft.spage=181&rft.epage=200&rft_id=info:doi/10.1080%2F02726348208915164&rft.externalDocID=8915164
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0272-6343&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0272-6343&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0272-6343&client=summon