An orthogonality relation for (with an appendix by Bingrong Huang)

Orthogonality is a fundamental theme in representation theory and Fourier analysis. An orthogonality relation for characters of finite abelian groups (now recognized as an orthogonality relation on $\mathrm {GL}(1)$ ) was used by Dirichlet to prove infinitely many primes in arithmetic progressions....

Full description

Saved in:
Bibliographic Details
Published inForum of mathematics. Sigma Vol. 9
Main Authors Goldfeld, Dorian, Stade, Eric, Woodbury, Michael
Format Journal Article
LanguageEnglish
Published Cambridge Cambridge University Press 2021
Subjects
Online AccessGet full text
ISSN2050-5094
2050-5094
DOI10.1017/fms.2021.39

Cover

Loading…
Abstract Orthogonality is a fundamental theme in representation theory and Fourier analysis. An orthogonality relation for characters of finite abelian groups (now recognized as an orthogonality relation on $\mathrm {GL}(1)$ ) was used by Dirichlet to prove infinitely many primes in arithmetic progressions. Orthogonality relations for $\mathrm {GL}(2)$ and $\mathrm {GL}(3)$ have been worked on by many researchers with a broad range of applications to number theory. We present here, for the first time, very explicit orthogonality relations for the real group $\mathrm {GL}(4, \mathbb R)$ with a power savings error term. The proof requires novel techniques in the computation of the geometric side of the Kuznetsov trace formula.
AbstractList Orthogonality is a fundamental theme in representation theory and Fourier analysis. An orthogonality relation for characters of finite abelian groups (now recognized as an orthogonality relation on $\mathrm {GL}(1)$ ) was used by Dirichlet to prove infinitely many primes in arithmetic progressions. Orthogonality relations for $\mathrm {GL}(2)$ and $\mathrm {GL}(3)$ have been worked on by many researchers with a broad range of applications to number theory. We present here, for the first time, very explicit orthogonality relations for the real group $\mathrm {GL}(4, \mathbb R)$ with a power savings error term. The proof requires novel techniques in the computation of the geometric side of the Kuznetsov trace formula.
Orthogonality is a fundamental theme in representation theory and Fourier analysis. An orthogonality relation for characters of finite abelian groups (now recognized as an orthogonality relation on \(\mathrm {GL}(1)\)) was used by Dirichlet to prove infinitely many primes in arithmetic progressions. Orthogonality relations for \(\mathrm {GL}(2)\) and \(\mathrm {GL}(3)\) have been worked on by many researchers with a broad range of applications to number theory. We present here, for the first time, very explicit orthogonality relations for the real group \(\mathrm {GL}(4, \mathbb R)\) with a power savings error term. The proof requires novel techniques in the computation of the geometric side of the Kuznetsov trace formula.
ArticleNumber e47
Author Goldfeld, Dorian
Stade, Eric
Woodbury, Michael
Author_xml – sequence: 1
  givenname: Dorian
  surname: Goldfeld
  fullname: Goldfeld, Dorian
– sequence: 2
  givenname: Eric
  surname: Stade
  fullname: Stade, Eric
– sequence: 3
  givenname: Michael
  surname: Woodbury
  fullname: Woodbury, Michael
BookMark eNptkD1PwzAQhi1UJErpxB-wxAJCKf5I6nhsK6BIlVhgtpzEl7pK7WCnov33pJQBIaa74XlP9z6XaOC8MwhdUzKhhIoH2MYJI4xOuDxDQ0YykmREpoNf-wUax7ghhFDKRCbEEM1nDvvQrX3tnW5sd8DBNLqz3mHwAd9-2m6NtcO6bY2r7B4XBzy3rg7e1Xi5066-u0LnoJtoxj9zhN6fHt8Wy2T1-vyymK2SklEuEwmmoCVhGsDkOs2LgrMqyyTIPE8BaCWl0BVUfRcOMKWSV4UWbAq5ZgQKxkfo5nS3Df5jZ2KnNn4X-q-jYhkXaZ5xKXrq_kSVwccYDKg22K0OB0WJOnpSvSd19KS47Gn6hy5t912_C9o2_2a-ADjsbO0
CitedBy_id crossref_primary_10_1007_s00013_024_01996_w
crossref_primary_10_1007_s00208_023_02777_6
crossref_primary_10_1090_tran_9012
crossref_primary_10_1007_s40993_024_00575_w
crossref_primary_10_1016_j_jfa_2024_110657
crossref_primary_10_2140_ant_2024_18_1817
Cites_doi 10.1007/BF02570491
10.1006/jnth.1998.2301
10.4064/aa-80-1-1-48
10.1016/j.jfa.2020.108808
10.1090/S0894-0347-97-00220-8
10.1007/BF01406220
10.1155/S1073792895000225
10.24033/bsmf.1654
10.1090/pspum/066.2/1703764
10.1007/s00222-015-0583-y
10.4064/aa-78-4-405-409
10.1215/S0012-9074-02-11213-7
10.1093/imrn/rny061
10.4064/aa155-1-2
10.1007/s00222-013-0454-3
10.1073/pnas.34.5.204
10.1353/ajm.2001.0004
10.1007/s11139-013-9535-6
10.1007/s00209-018-2136-8
10.1017/CBO9780511470905
10.1142/S1793042115501031
10.1090/coll/058
10.1016/j.crma.2004.04.024
10.2307/2374461
10.1007/BF01390063
10.1007/BF01457276
10.4171/CMH/337
10.24033/bsmf.2201
10.2307/2118543
10.4153/CJM-1996-066-3
10.1007/BF01163653
10.1007/BFb0079929
10.1093/imrn/rnx087
10.1007/BF02784531
10.4064/aa-50-1-31-89
ContentType Journal Article
Copyright The Author(s), 2021. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution – Non-Commercial – No Derivatives License http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s), 2021. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution – Non-Commercial – No Derivatives License http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1017/fms.2021.39
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (New)
Engineering Collection
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Engineering Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2050-5094
ExternalDocumentID 10_1017_fms_2021_39
GroupedDBID 09C
09E
0E1
0R~
5VS
8FE
8FG
AABES
AABWE
AACJH
AAGFV
AAKTX
AANRG
AARAB
AASVR
AAYXX
ABBXD
ABDBF
ABGDZ
ABJCF
ABKKG
ABMWE
ABQTM
ABROB
ABVKB
ABXHF
ACAJB
ACBMC
ACDLN
ACGFS
ACIMK
ACIWK
ACUHS
ACUIJ
ACZBM
ACZUX
ACZWT
ADBBV
ADCGK
ADDNB
ADFEC
ADKIL
ADOVH
ADVJH
AEBAK
AEGXH
AEHGV
AENGE
AFFUJ
AFKQG
AFKRA
AFLOS
AFLVW
AFUTZ
AFZFC
AGABE
AGBYD
AGJUD
AHQXX
AHRGI
AIGNW
AIHIV
AIOIP
AISIE
AJCYY
AJPFC
AJQAS
AKMAY
ALMA_UNASSIGNED_HOLDINGS
ALVPG
ALWZO
AMVHM
AQJOH
ARABE
AUXHV
BBLKV
BCNDV
BENPR
BGHMG
BGLVJ
BLZWO
BMAJL
C0O
CBIIA
CCPQU
CCQAD
CFAFE
CHEAL
CITATION
CJCSC
DOHLZ
EBS
EJD
GROUPED_DOAJ
HCIFZ
HG-
HZ~
I.6
IKXGN
IOEEP
IPYYG
IS6
I~P
JHPGK
JQKCU
KCGVB
KFECR
KQ8
L6V
M-V
M48
M7S
M~E
NIKVX
O9-
OK1
PHGZM
PHGZT
PTHSS
PYCCK
RAMDC
RCA
ROL
RR0
S6-
S6U
SAAAG
T9M
UT1
WFFJZ
ZYDXJ
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c2139-9feb1c02affe8a48bb32d559f9884ff1d997adfd1013ff6193dba726f8a20fb23
IEDL.DBID BENPR
ISSN 2050-5094
IngestDate Fri Jul 25 11:51:57 EDT 2025
Thu Apr 24 22:59:53 EDT 2025
Tue Jul 01 01:24:20 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2139-9feb1c02affe8a48bb32d559f9884ff1d997adfd1013ff6193dba726f8a20fb23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1017/fms.2021.39
PQID 2537485397
PQPubID 2035935
ParticipantIDs proquest_journals_2537485397
crossref_primary_10_1017_fms_2021_39
crossref_citationtrail_10_1017_fms_2021_39
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-00-00
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021-00-00
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Forum of mathematics. Sigma
PublicationYear 2021
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
References S2050509421000396_r38
S2050509421000396_r39
S2050509421000396_r33
S2050509421000396_r34
S2050509421000396_r35
S2050509421000396_r36
S2050509421000396_r30
S2050509421000396_r31
S2050509421000396_r32
S2050509421000396_r5
S2050509421000396_r4
S2050509421000396_r7
S2050509421000396_r6
S2050509421000396_r9
S2050509421000396_r48
S2050509421000396_r49
S2050509421000396_r44
S2050509421000396_r45
S2050509421000396_r46
S2050509421000396_r40
S2050509421000396_r41
S2050509421000396_r42
S2050509421000396_r43
S2050509421000396_r19
S2050509421000396_r15
S2050509421000396_r16
S2050509421000396_r17
Sarnak (S2050509421000396_r37) 1984; 70
S2050509421000396_r18
S2050509421000396_r11
S2050509421000396_r12
S2050509421000396_r13
S2050509421000396_r14
S2050509421000396_r51
S2050509421000396_r10
Deligne (S2050509421000396_r8) 1977
S2050509421000396_r50
S2050509421000396_r1
S2050509421000396_r26
S2050509421000396_r27
S2050509421000396_r3
S2050509421000396_r28
S2050509421000396_r29
S2050509421000396_r2
S2050509421000396_r22
S2050509421000396_r23
S2050509421000396_r24
S2050509421000396_r25
S2050509421000396_r20
S2050509421000396_r21
Vinogradov (S2050509421000396_r47) 1958; 22
References_xml – ident: S2050509421000396_r43
  doi: 10.1007/BF02570491
– volume: 70
  start-page: 321
  volume-title: Statistical properties of eigenvalues of the Hecke operators
  year: 1984
  ident: S2050509421000396_r37
– ident: S2050509421000396_r10
  doi: 10.1006/jnth.1998.2301
– ident: S2050509421000396_r9
  doi: 10.4064/aa-80-1-1-48
– ident: S2050509421000396_r42
  doi: 10.1016/j.jfa.2020.108808
– ident: S2050509421000396_r20
– ident: S2050509421000396_r39
  doi: 10.1090/S0894-0347-97-00220-8
– ident: S2050509421000396_r5
  doi: 10.1007/BF01406220
– ident: S2050509421000396_r26
  doi: 10.1155/S1073792895000225
– ident: S2050509421000396_r27
  doi: 10.24033/bsmf.1654
– volume: 22
  start-page: 161
  year: 1958
  ident: S2050509421000396_r47
  article-title: A new estimate of the function $\zeta \left(1+\mathrm{it}\right)$
  publication-title: Izv. Akad. Nauk SSSR. Ser. Mat.
– ident: S2050509421000396_r32
  doi: 10.1090/pspum/066.2/1703764
– ident: S2050509421000396_r41
  doi: 10.1007/s00222-015-0583-y
– ident: S2050509421000396_r7
  doi: 10.4064/aa-78-4-405-409
– ident: S2050509421000396_r16
– ident: S2050509421000396_r33
  doi: 10.1215/S0012-9074-02-11213-7
– ident: S2050509421000396_r6
  doi: 10.1093/imrn/rny061
– ident: S2050509421000396_r15
  doi: 10.4064/aa155-1-2
– ident: S2050509421000396_r4
  doi: 10.1007/s00222-013-0454-3
– ident: S2050509421000396_r49
  doi: 10.1073/pnas.34.5.204
– ident: S2050509421000396_r44
  doi: 10.1353/ajm.2001.0004
– ident: S2050509421000396_r38
– ident: S2050509421000396_r51
  doi: 10.1007/s11139-013-9535-6
– ident: S2050509421000396_r24
  doi: 10.1007/s00209-018-2136-8
– ident: S2050509421000396_r19
– ident: S2050509421000396_r31
– ident: S2050509421000396_r50
– ident: S2050509421000396_r12
– ident: S2050509421000396_r36
  doi: 10.1017/CBO9780511470905
– ident: S2050509421000396_r23
  doi: 10.1142/S1793042115501031
– ident: S2050509421000396_r40
  doi: 10.1090/coll/058
– ident: S2050509421000396_r18
  doi: 10.1016/j.crma.2004.04.024
– ident: S2050509421000396_r28
– ident: S2050509421000396_r34
  doi: 10.2307/2374461
– ident: S2050509421000396_r22
– ident: S2050509421000396_r48
  doi: 10.1007/BF01390063
– ident: S2050509421000396_r46
  doi: 10.1007/BF01457276
– ident: S2050509421000396_r2
  doi: 10.4171/CMH/337
– ident: S2050509421000396_r14
– ident: S2050509421000396_r11
  doi: 10.24033/bsmf.2201
– start-page: 154
  volume-title: Dualité
  year: 1977
  ident: S2050509421000396_r8
– ident: S2050509421000396_r1
– ident: S2050509421000396_r25
  doi: 10.2307/2118543
– ident: S2050509421000396_r35
– ident: S2050509421000396_r29
  doi: 10.4153/CJM-1996-066-3
– ident: S2050509421000396_r13
  doi: 10.1007/BF01163653
– ident: S2050509421000396_r30
  doi: 10.1007/BFb0079929
– ident: S2050509421000396_r21
– ident: S2050509421000396_r17
  doi: 10.1093/imrn/rnx087
– ident: S2050509421000396_r45
  doi: 10.1007/BF02784531
– ident: S2050509421000396_r3
  doi: 10.4064/aa-50-1-31-89
SSID ssj0001127577
Score 2.1459484
Snippet Orthogonality is a fundamental theme in representation theory and Fourier analysis. An orthogonality relation for characters of finite abelian groups (now...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
SubjectTerms Dirichlet problem
Fourier analysis
Group theory
Number theory
Numbers
Orthogonality
Progressions
SummonAdditionalLinks – databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NS8MwFA9zXvQgfuJ0Sg4eNrGyJu3aHESmOIc4D-Jgh0FJmmQKs5vdBhvi_-5LmwoT8Vj6Wuj7yPu91-T3EDqLFXiNIspxufAdz1XaCRVVTkyl5xLhMz82B4W7T81Oz3vo-_0SKoZxWgVO_yztzDypXjq6XHwsryHgryxLEFjA8G4TF-r3NbQOKSkwEdq1OD9rthga8yCw5_N-PbOakVYX5CzLtLfRloWHuJXbcweVVLKLNrs_3KrTPSRaCTY_W8ZDC6Jxaje0YQCgeFAbgORr-o4_7x-_at4Fzq6FwM91PKjjmum8Yp5gPjHjb98WWCzxDSSwdJwMcWfOk2F9H_Xady-3HcdOSnBiAhDOYRqW3LhBuNYq5F4oBCUSagXNwtDT2pWMBVxqCZ9OtYaaiUrBA9LUIScNLQg9QOVknKhDhH1NmZShAiAmAayAuTRTcYNrLqjX9IMKOi-0FcWWRtxMsxhF-X6xAKJjGhnVRpRVwBkK4UnOnvG3WLVQe1R4QER8w4zjA146-v_2Mdow78n7IlVUnqVzdQJIYSZOMy_4Bq88vf4
  priority: 102
  providerName: Scholars Portal
Title An orthogonality relation for (with an appendix by Bingrong Huang)
URI https://www.proquest.com/docview/2537485397
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwEA9uvuiD-InTOfLgwyZW16Rd0yfZZB-IGzIc7GFQkiaZgmvnPkAR_3cvWzYVxJdCSSj07nL3u0vyO4TOYwVWo4hyXC58x3OVdpiiyomp9Fwi_NCPzUXhdqfS6nl3fb9vC25Te6xy5RMXjlqmsamRXxPfEKX4ED5vxq-O6RpldldtC40M2gQXzCD52qzVOw_d7yqL4S8PAnsxz3BF65Eh6SbulWkP_jMU_fbEi_DS2EU7Fhfi6lKRe2hDJftou70mVZ0eIFFNsNllSYcWPeOJPcmGAXniQXEAM58mI_zRvP8sepd48S4E7pbwoISLpuSKeYL52PS9fX7D4h3XIHJN0mSIW3OeDEuHqNeoP962HNsiwYkJYDcn1OBr4zLhWivGPSYEJRKSBB0y5mntyjAMuNQSfp1qDckSlYIHpKIZJ2UtCD1C2SRN1DHCvqahlEwBApOAUkBPOlRxmWsuqFfxgxy6WEkrii1_uGlj8RItD4oFsCymkRFtRMMcWMFq8nhJm_H3tPxK7JFdOzC21vTJ_8OnaMt8Z1kQyaPsbDJXZwARZqKAMqzRLFhrKCwSbXi2PfYFSiS_-w
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NbxMxELWi9kB7QAVatbSFOYCUILZk7d3s-oBQ-UgTmvSAGimHSFt7bQckuknzoVJV_Uv8Rmayu2mRELccV7Z8mH0z8zy23zD2KrWIGsut5ysdeoFvnRdbYb1UmMDnOpRhSg-Fu2eNVi_42g_7Ffa7fAtD1yrLmLgI1GaUUo38HQ9JKCXE9PlhfOVR1yg6XS1baOSwOLU317hlm75vf8b_-5rz5pfzTy2v6CrgpRzpjicdhqe0zpVzNlZBrLXgBnm1k3EcOOcbKSNlnEGsCudwfyGMVhFvuFjxutMkdIAhfz0QQpJHxc2T-5oOqaVHUfEMkJSp3SVJgnP_iJqRP0x8f8f9RTJrbrHHBQuF4xw2T1jFZk_ZZncp4Tp9xvRxBnSmMxoWXB0mxb05QJ4Lg-oAZ36fXMLtSeeuGryFxbfW8K0GgxpUqcALKgM1pi67P36BvoGPmCcno2wIrbnKhrVt1luJ6XbYWjbK7C6D0AlpTGyR7xnkRIgKJ21aV05pETTCaI-9Ka2VpIVaOTXN-Jnk19IidMJpQqZNhNxDzJWTx7lIx7-nHZRmTwpPxbElrp7_f_gle9Q673aSTvvsdJ9t0Jp5KeaArc0mc3uI5GSmXywQAexi1RD8A-NV-gg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+orthogonality+relation+for+%28with+an+appendix+by+Bingrong+Huang%29&rft.jtitle=Forum+of+mathematics.+Sigma&rft.au=Goldfeld%2C+Dorian&rft.au=Stade%2C+Eric&rft.au=Woodbury%2C+Michael&rft.date=2021&rft.issn=2050-5094&rft.eissn=2050-5094&rft.volume=9&rft_id=info:doi/10.1017%2Ffms.2021.39&rft.externalDBID=n%2Fa&rft.externalDocID=10_1017_fms_2021_39
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-5094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-5094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-5094&client=summon