An orthogonality relation for (with an appendix by Bingrong Huang)
Orthogonality is a fundamental theme in representation theory and Fourier analysis. An orthogonality relation for characters of finite abelian groups (now recognized as an orthogonality relation on $\mathrm {GL}(1)$ ) was used by Dirichlet to prove infinitely many primes in arithmetic progressions....
Saved in:
Published in | Forum of mathematics. Sigma Vol. 9 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Cambridge University Press
2021
|
Subjects | |
Online Access | Get full text |
ISSN | 2050-5094 2050-5094 |
DOI | 10.1017/fms.2021.39 |
Cover
Loading…
Abstract | Orthogonality is a fundamental theme in representation theory and Fourier analysis. An orthogonality relation for characters of finite abelian groups (now recognized as an orthogonality relation on
$\mathrm {GL}(1)$
) was used by Dirichlet to prove infinitely many primes in arithmetic progressions. Orthogonality relations for
$\mathrm {GL}(2)$
and
$\mathrm {GL}(3)$
have been worked on by many researchers with a broad range of applications to number theory. We present here, for the first time, very explicit orthogonality relations for the real group
$\mathrm {GL}(4, \mathbb R)$
with a power savings error term. The proof requires novel techniques in the computation of the geometric side of the Kuznetsov trace formula. |
---|---|
AbstractList | Orthogonality is a fundamental theme in representation theory and Fourier analysis. An orthogonality relation for characters of finite abelian groups (now recognized as an orthogonality relation on
$\mathrm {GL}(1)$
) was used by Dirichlet to prove infinitely many primes in arithmetic progressions. Orthogonality relations for
$\mathrm {GL}(2)$
and
$\mathrm {GL}(3)$
have been worked on by many researchers with a broad range of applications to number theory. We present here, for the first time, very explicit orthogonality relations for the real group
$\mathrm {GL}(4, \mathbb R)$
with a power savings error term. The proof requires novel techniques in the computation of the geometric side of the Kuznetsov trace formula. Orthogonality is a fundamental theme in representation theory and Fourier analysis. An orthogonality relation for characters of finite abelian groups (now recognized as an orthogonality relation on \(\mathrm {GL}(1)\)) was used by Dirichlet to prove infinitely many primes in arithmetic progressions. Orthogonality relations for \(\mathrm {GL}(2)\) and \(\mathrm {GL}(3)\) have been worked on by many researchers with a broad range of applications to number theory. We present here, for the first time, very explicit orthogonality relations for the real group \(\mathrm {GL}(4, \mathbb R)\) with a power savings error term. The proof requires novel techniques in the computation of the geometric side of the Kuznetsov trace formula. |
ArticleNumber | e47 |
Author | Goldfeld, Dorian Stade, Eric Woodbury, Michael |
Author_xml | – sequence: 1 givenname: Dorian surname: Goldfeld fullname: Goldfeld, Dorian – sequence: 2 givenname: Eric surname: Stade fullname: Stade, Eric – sequence: 3 givenname: Michael surname: Woodbury fullname: Woodbury, Michael |
BookMark | eNptkD1PwzAQhi1UJErpxB-wxAJCKf5I6nhsK6BIlVhgtpzEl7pK7WCnov33pJQBIaa74XlP9z6XaOC8MwhdUzKhhIoH2MYJI4xOuDxDQ0YykmREpoNf-wUax7ghhFDKRCbEEM1nDvvQrX3tnW5sd8DBNLqz3mHwAd9-2m6NtcO6bY2r7B4XBzy3rg7e1Xi5066-u0LnoJtoxj9zhN6fHt8Wy2T1-vyymK2SklEuEwmmoCVhGsDkOs2LgrMqyyTIPE8BaCWl0BVUfRcOMKWSV4UWbAq5ZgQKxkfo5nS3Df5jZ2KnNn4X-q-jYhkXaZ5xKXrq_kSVwccYDKg22K0OB0WJOnpSvSd19KS47Gn6hy5t912_C9o2_2a-ADjsbO0 |
CitedBy_id | crossref_primary_10_1007_s00013_024_01996_w crossref_primary_10_1007_s00208_023_02777_6 crossref_primary_10_1090_tran_9012 crossref_primary_10_1007_s40993_024_00575_w crossref_primary_10_1016_j_jfa_2024_110657 crossref_primary_10_2140_ant_2024_18_1817 |
Cites_doi | 10.1007/BF02570491 10.1006/jnth.1998.2301 10.4064/aa-80-1-1-48 10.1016/j.jfa.2020.108808 10.1090/S0894-0347-97-00220-8 10.1007/BF01406220 10.1155/S1073792895000225 10.24033/bsmf.1654 10.1090/pspum/066.2/1703764 10.1007/s00222-015-0583-y 10.4064/aa-78-4-405-409 10.1215/S0012-9074-02-11213-7 10.1093/imrn/rny061 10.4064/aa155-1-2 10.1007/s00222-013-0454-3 10.1073/pnas.34.5.204 10.1353/ajm.2001.0004 10.1007/s11139-013-9535-6 10.1007/s00209-018-2136-8 10.1017/CBO9780511470905 10.1142/S1793042115501031 10.1090/coll/058 10.1016/j.crma.2004.04.024 10.2307/2374461 10.1007/BF01390063 10.1007/BF01457276 10.4171/CMH/337 10.24033/bsmf.2201 10.2307/2118543 10.4153/CJM-1996-066-3 10.1007/BF01163653 10.1007/BFb0079929 10.1093/imrn/rnx087 10.1007/BF02784531 10.4064/aa-50-1-31-89 |
ContentType | Journal Article |
Copyright | The Author(s), 2021. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution – Non-Commercial – No Derivatives License http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s), 2021. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution – Non-Commercial – No Derivatives License http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 8FE 8FG ABJCF AFKRA BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
DOI | 10.1017/fms.2021.39 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
DatabaseTitle | CrossRef Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (New) Engineering Collection ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Engineering Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2050-5094 |
ExternalDocumentID | 10_1017_fms_2021_39 |
GroupedDBID | 09C 09E 0E1 0R~ 5VS 8FE 8FG AABES AABWE AACJH AAGFV AAKTX AANRG AARAB AASVR AAYXX ABBXD ABDBF ABGDZ ABJCF ABKKG ABMWE ABQTM ABROB ABVKB ABXHF ACAJB ACBMC ACDLN ACGFS ACIMK ACIWK ACUHS ACUIJ ACZBM ACZUX ACZWT ADBBV ADCGK ADDNB ADFEC ADKIL ADOVH ADVJH AEBAK AEGXH AEHGV AENGE AFFUJ AFKQG AFKRA AFLOS AFLVW AFUTZ AFZFC AGABE AGBYD AGJUD AHQXX AHRGI AIGNW AIHIV AIOIP AISIE AJCYY AJPFC AJQAS AKMAY ALMA_UNASSIGNED_HOLDINGS ALVPG ALWZO AMVHM AQJOH ARABE AUXHV BBLKV BCNDV BENPR BGHMG BGLVJ BLZWO BMAJL C0O CBIIA CCPQU CCQAD CFAFE CHEAL CITATION CJCSC DOHLZ EBS EJD GROUPED_DOAJ HCIFZ HG- HZ~ I.6 IKXGN IOEEP IPYYG IS6 I~P JHPGK JQKCU KCGVB KFECR KQ8 L6V M-V M48 M7S M~E NIKVX O9- OK1 PHGZM PHGZT PTHSS PYCCK RAMDC RCA ROL RR0 S6- S6U SAAAG T9M UT1 WFFJZ ZYDXJ DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c2139-9feb1c02affe8a48bb32d559f9884ff1d997adfd1013ff6193dba726f8a20fb23 |
IEDL.DBID | BENPR |
ISSN | 2050-5094 |
IngestDate | Fri Jul 25 11:51:57 EDT 2025 Thu Apr 24 22:59:53 EDT 2025 Tue Jul 01 01:24:20 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2139-9feb1c02affe8a48bb32d559f9884ff1d997adfd1013ff6193dba726f8a20fb23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1017/fms.2021.39 |
PQID | 2537485397 |
PQPubID | 2035935 |
ParticipantIDs | proquest_journals_2537485397 crossref_primary_10_1017_fms_2021_39 crossref_citationtrail_10_1017_fms_2021_39 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-00-00 20210101 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – year: 2021 text: 2021-00-00 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Forum of mathematics. Sigma |
PublicationYear | 2021 |
Publisher | Cambridge University Press |
Publisher_xml | – name: Cambridge University Press |
References | S2050509421000396_r38 S2050509421000396_r39 S2050509421000396_r33 S2050509421000396_r34 S2050509421000396_r35 S2050509421000396_r36 S2050509421000396_r30 S2050509421000396_r31 S2050509421000396_r32 S2050509421000396_r5 S2050509421000396_r4 S2050509421000396_r7 S2050509421000396_r6 S2050509421000396_r9 S2050509421000396_r48 S2050509421000396_r49 S2050509421000396_r44 S2050509421000396_r45 S2050509421000396_r46 S2050509421000396_r40 S2050509421000396_r41 S2050509421000396_r42 S2050509421000396_r43 S2050509421000396_r19 S2050509421000396_r15 S2050509421000396_r16 S2050509421000396_r17 Sarnak (S2050509421000396_r37) 1984; 70 S2050509421000396_r18 S2050509421000396_r11 S2050509421000396_r12 S2050509421000396_r13 S2050509421000396_r14 S2050509421000396_r51 S2050509421000396_r10 Deligne (S2050509421000396_r8) 1977 S2050509421000396_r50 S2050509421000396_r1 S2050509421000396_r26 S2050509421000396_r27 S2050509421000396_r3 S2050509421000396_r28 S2050509421000396_r29 S2050509421000396_r2 S2050509421000396_r22 S2050509421000396_r23 S2050509421000396_r24 S2050509421000396_r25 S2050509421000396_r20 S2050509421000396_r21 Vinogradov (S2050509421000396_r47) 1958; 22 |
References_xml | – ident: S2050509421000396_r43 doi: 10.1007/BF02570491 – volume: 70 start-page: 321 volume-title: Statistical properties of eigenvalues of the Hecke operators year: 1984 ident: S2050509421000396_r37 – ident: S2050509421000396_r10 doi: 10.1006/jnth.1998.2301 – ident: S2050509421000396_r9 doi: 10.4064/aa-80-1-1-48 – ident: S2050509421000396_r42 doi: 10.1016/j.jfa.2020.108808 – ident: S2050509421000396_r20 – ident: S2050509421000396_r39 doi: 10.1090/S0894-0347-97-00220-8 – ident: S2050509421000396_r5 doi: 10.1007/BF01406220 – ident: S2050509421000396_r26 doi: 10.1155/S1073792895000225 – ident: S2050509421000396_r27 doi: 10.24033/bsmf.1654 – volume: 22 start-page: 161 year: 1958 ident: S2050509421000396_r47 article-title: A new estimate of the function $\zeta \left(1+\mathrm{it}\right)$ publication-title: Izv. Akad. Nauk SSSR. Ser. Mat. – ident: S2050509421000396_r32 doi: 10.1090/pspum/066.2/1703764 – ident: S2050509421000396_r41 doi: 10.1007/s00222-015-0583-y – ident: S2050509421000396_r7 doi: 10.4064/aa-78-4-405-409 – ident: S2050509421000396_r16 – ident: S2050509421000396_r33 doi: 10.1215/S0012-9074-02-11213-7 – ident: S2050509421000396_r6 doi: 10.1093/imrn/rny061 – ident: S2050509421000396_r15 doi: 10.4064/aa155-1-2 – ident: S2050509421000396_r4 doi: 10.1007/s00222-013-0454-3 – ident: S2050509421000396_r49 doi: 10.1073/pnas.34.5.204 – ident: S2050509421000396_r44 doi: 10.1353/ajm.2001.0004 – ident: S2050509421000396_r38 – ident: S2050509421000396_r51 doi: 10.1007/s11139-013-9535-6 – ident: S2050509421000396_r24 doi: 10.1007/s00209-018-2136-8 – ident: S2050509421000396_r19 – ident: S2050509421000396_r31 – ident: S2050509421000396_r50 – ident: S2050509421000396_r12 – ident: S2050509421000396_r36 doi: 10.1017/CBO9780511470905 – ident: S2050509421000396_r23 doi: 10.1142/S1793042115501031 – ident: S2050509421000396_r40 doi: 10.1090/coll/058 – ident: S2050509421000396_r18 doi: 10.1016/j.crma.2004.04.024 – ident: S2050509421000396_r28 – ident: S2050509421000396_r34 doi: 10.2307/2374461 – ident: S2050509421000396_r22 – ident: S2050509421000396_r48 doi: 10.1007/BF01390063 – ident: S2050509421000396_r46 doi: 10.1007/BF01457276 – ident: S2050509421000396_r2 doi: 10.4171/CMH/337 – ident: S2050509421000396_r14 – ident: S2050509421000396_r11 doi: 10.24033/bsmf.2201 – start-page: 154 volume-title: Dualité year: 1977 ident: S2050509421000396_r8 – ident: S2050509421000396_r1 – ident: S2050509421000396_r25 doi: 10.2307/2118543 – ident: S2050509421000396_r35 – ident: S2050509421000396_r29 doi: 10.4153/CJM-1996-066-3 – ident: S2050509421000396_r13 doi: 10.1007/BF01163653 – ident: S2050509421000396_r30 doi: 10.1007/BFb0079929 – ident: S2050509421000396_r21 – ident: S2050509421000396_r17 doi: 10.1093/imrn/rnx087 – ident: S2050509421000396_r45 doi: 10.1007/BF02784531 – ident: S2050509421000396_r3 doi: 10.4064/aa-50-1-31-89 |
SSID | ssj0001127577 |
Score | 2.1459484 |
Snippet | Orthogonality is a fundamental theme in representation theory and Fourier analysis. An orthogonality relation for characters of finite abelian groups (now... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
SubjectTerms | Dirichlet problem Fourier analysis Group theory Number theory Numbers Orthogonality Progressions |
SummonAdditionalLinks | – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NS8MwFA9zXvQgfuJ0Sg4eNrGyJu3aHESmOIc4D-Jgh0FJmmQKs5vdBhvi_-5LmwoT8Vj6Wuj7yPu91-T3EDqLFXiNIspxufAdz1XaCRVVTkyl5xLhMz82B4W7T81Oz3vo-_0SKoZxWgVO_yztzDypXjq6XHwsryHgryxLEFjA8G4TF-r3NbQOKSkwEdq1OD9rthga8yCw5_N-PbOakVYX5CzLtLfRloWHuJXbcweVVLKLNrs_3KrTPSRaCTY_W8ZDC6Jxaje0YQCgeFAbgORr-o4_7x-_at4Fzq6FwM91PKjjmum8Yp5gPjHjb98WWCzxDSSwdJwMcWfOk2F9H_Xady-3HcdOSnBiAhDOYRqW3LhBuNYq5F4oBCUSagXNwtDT2pWMBVxqCZ9OtYaaiUrBA9LUIScNLQg9QOVknKhDhH1NmZShAiAmAayAuTRTcYNrLqjX9IMKOi-0FcWWRtxMsxhF-X6xAKJjGhnVRpRVwBkK4UnOnvG3WLVQe1R4QER8w4zjA146-v_2Mdow78n7IlVUnqVzdQJIYSZOMy_4Bq88vf4 priority: 102 providerName: Scholars Portal |
Title | An orthogonality relation for (with an appendix by Bingrong Huang) |
URI | https://www.proquest.com/docview/2537485397 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwEA9uvuiD-InTOfLgwyZW16Rd0yfZZB-IGzIc7GFQkiaZgmvnPkAR_3cvWzYVxJdCSSj07nL3u0vyO4TOYwVWo4hyXC58x3OVdpiiyomp9Fwi_NCPzUXhdqfS6nl3fb9vC25Te6xy5RMXjlqmsamRXxPfEKX4ED5vxq-O6RpldldtC40M2gQXzCD52qzVOw_d7yqL4S8PAnsxz3BF65Eh6SbulWkP_jMU_fbEi_DS2EU7Fhfi6lKRe2hDJftou70mVZ0eIFFNsNllSYcWPeOJPcmGAXniQXEAM58mI_zRvP8sepd48S4E7pbwoISLpuSKeYL52PS9fX7D4h3XIHJN0mSIW3OeDEuHqNeoP962HNsiwYkJYDcn1OBr4zLhWivGPSYEJRKSBB0y5mntyjAMuNQSfp1qDckSlYIHpKIZJ2UtCD1C2SRN1DHCvqahlEwBApOAUkBPOlRxmWsuqFfxgxy6WEkrii1_uGlj8RItD4oFsCymkRFtRMMcWMFq8nhJm_H3tPxK7JFdOzC21vTJ_8OnaMt8Z1kQyaPsbDJXZwARZqKAMqzRLFhrKCwSbXi2PfYFSiS_-w |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NbxMxELWi9kB7QAVatbSFOYCUILZk7d3s-oBQ-UgTmvSAGimHSFt7bQckuknzoVJV_Uv8Rmayu2mRELccV7Z8mH0z8zy23zD2KrWIGsut5ysdeoFvnRdbYb1UmMDnOpRhSg-Fu2eNVi_42g_7Ffa7fAtD1yrLmLgI1GaUUo38HQ9JKCXE9PlhfOVR1yg6XS1baOSwOLU317hlm75vf8b_-5rz5pfzTy2v6CrgpRzpjicdhqe0zpVzNlZBrLXgBnm1k3EcOOcbKSNlnEGsCudwfyGMVhFvuFjxutMkdIAhfz0QQpJHxc2T-5oOqaVHUfEMkJSp3SVJgnP_iJqRP0x8f8f9RTJrbrHHBQuF4xw2T1jFZk_ZZncp4Tp9xvRxBnSmMxoWXB0mxb05QJ4Lg-oAZ36fXMLtSeeuGryFxbfW8K0GgxpUqcALKgM1pi67P36BvoGPmCcno2wIrbnKhrVt1luJ6XbYWjbK7C6D0AlpTGyR7xnkRIgKJ21aV05pETTCaI-9Ka2VpIVaOTXN-Jnk19IidMJpQqZNhNxDzJWTx7lIx7-nHZRmTwpPxbElrp7_f_gle9Q673aSTvvsdJ9t0Jp5KeaArc0mc3uI5GSmXywQAexi1RD8A-NV-gg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+orthogonality+relation+for+%28with+an+appendix+by+Bingrong+Huang%29&rft.jtitle=Forum+of+mathematics.+Sigma&rft.au=Goldfeld%2C+Dorian&rft.au=Stade%2C+Eric&rft.au=Woodbury%2C+Michael&rft.date=2021&rft.issn=2050-5094&rft.eissn=2050-5094&rft.volume=9&rft_id=info:doi/10.1017%2Ffms.2021.39&rft.externalDBID=n%2Fa&rft.externalDocID=10_1017_fms_2021_39 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-5094&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-5094&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-5094&client=summon |