Cicada species recognition based on acoustic signals using dynamic time warping-graph based GraphMix, graph convolution network
Cicadas, known for their distinctive acoustic signals, have been subjects of classification research for years. Recent researches elaborated the species composition as effect of climate change, further raising the need of effective classification system. Tra- ditional methods rely on manual classifi...
Saved in:
Published in | Procedia computer science Vol. 245; pp. 508 - 517 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1877-0509 1877-0509 |
DOI | 10.1016/j.procs.2024.10.277 |
Cover
Loading…
Abstract | Cicadas, known for their distinctive acoustic signals, have been subjects of classification research for years. Recent researches elaborated the species composition as effect of climate change, further raising the need of effective classification system. Tra- ditional methods rely on manual classification by domain experts, while recent trends favor Artificial Intelligence (AI)-assisted approaches due to their efficiency. However, image-based recognition faces challenges due to cicadas’ varied appearances and environmental factors. Deep learning approaches, particularly utilizing Mel-frequency cepstral coefficients (MFCC) spectrograms, have been effective but are limited by dataset size. Graph Neural Networks (GNN) have surfaced as a promising alternative, lever- aging graph represen- tations to provide additional information like data relationships. In this study, we address the challenge of efficient classification with a small dataset while maximizing feature representation. We explore the effectiveness of MFCC and Chromagram features in a noisy environment, constructing unique graphs for each. Dynamic Time Warping (DTW) is employed to establish connec- tions between nodes. Our experiments on the cicada audio dataset demonstrate the superiority of Chroma- gram over MFCC, with graph-based approaches outperforming graph-less methods such as Recurrent Neural Networks (RNN). Our findings suggest the potential of graph neural networks in audio classification tasks and contribute to advancing the field's methodologies. |
---|---|
AbstractList | Cicadas, known for their distinctive acoustic signals, have been subjects of classification research for years. Recent researches elaborated the species composition as effect of climate change, further raising the need of effective classification system. Tra- ditional methods rely on manual classification by domain experts, while recent trends favor Artificial Intelligence (AI)-assisted approaches due to their efficiency. However, image-based recognition faces challenges due to cicadas’ varied appearances and environmental factors. Deep learning approaches, particularly utilizing Mel-frequency cepstral coefficients (MFCC) spectrograms, have been effective but are limited by dataset size. Graph Neural Networks (GNN) have surfaced as a promising alternative, lever- aging graph represen- tations to provide additional information like data relationships. In this study, we address the challenge of efficient classification with a small dataset while maximizing feature representation. We explore the effectiveness of MFCC and Chromagram features in a noisy environment, constructing unique graphs for each. Dynamic Time Warping (DTW) is employed to establish connec- tions between nodes. Our experiments on the cicada audio dataset demonstrate the superiority of Chroma- gram over MFCC, with graph-based approaches outperforming graph-less methods such as Recurrent Neural Networks (RNN). Our findings suggest the potential of graph neural networks in audio classification tasks and contribute to advancing the field's methodologies. |
Author | Yohanes, Gabriel Prabowo, Abram Setyo Kurniadi, Felix Indra |
Author_xml | – sequence: 1 givenname: Gabriel surname: Yohanes fullname: Yohanes, Gabriel organization: Computer Science Department Department, School of Computer Science, Bina Nusantara University, Jakarta, 11530, Indonesia – sequence: 2 givenname: Abram Setyo surname: Prabowo fullname: Prabowo, Abram Setyo email: abram.setyo@binus.ac.id organization: Computer Science Department Department, School of Computer Science, Bina Nusantara University, Jakarta, 11530, Indonesia – sequence: 3 givenname: Felix Indra surname: Kurniadi fullname: Kurniadi, Felix Indra organization: Computer Science Department Department, School of Computer Science, Bina Nusantara University, Jakarta, 11530, Indonesia |
BookMark | eNp9kLtOwzAYhS1UJErpE7D4AUjwpYmTgQFVUJCKWGC2fEtwae3ITls68eo4LQMTXnz0Sefo13cJRs47A8A1RjlGuLxd5V3wKuYEkVkiOWHsDIxxxViGClSP_uQLMI1xhdKjVVVjNgbfc6uEFjB2RlkTYTDKt8721jsoRTQapiCU38beKhht68Q6wm20roX64MQm0d5uDNyL0CWYtUF0H7_VxZBf7NcNPFHl3c6vt8dxZ_q9D59X4LxJi2b6-0_A--PD2_wpW74unuf3y0wRTFlGqcESFYzqdHdjZMlYTURTN0qUhZFSyxLrSmlMcFHUGIliJikpGkZKTYUidALoaVcFH2MwDe-C3Yhw4BjxQSNf8aNGPmgcYNKYWnenlkmn7awJPCZLThltk6iea2__7f8AFpiBZw |
Cites_doi | 10.3390/a15100358 10.1016/j.jvolgeores.2022.107616 10.1109/JSTSP.2022.3190083 10.1111/phen.12283 10.1609/aaai.v35i11.17203 |
ContentType | Journal Article |
Copyright | 2024 |
Copyright_xml | – notice: 2024 |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.procs.2024.10.277 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1877-0509 |
EndPage | 517 |
ExternalDocumentID | 10_1016_j_procs_2024_10_277 S1877050924030850 |
GroupedDBID | --K 0R~ 0SF 1B1 457 5VS 6I. 71M AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAQFI AAXUO ABMAC ACGFS ADBBV ADEZE ADVLN AEXQZ AFTJW AGHFR AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ E3Z EBS EJD EP3 FDB FNPLU HZ~ IXB KQ8 M41 M~E NCXOZ O-L O9- OK1 P2P RIG ROL SES SSZ AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEUPX AFPUW AIGII AKBMS AKYEP CITATION |
ID | FETCH-LOGICAL-c2137-33e1b0573d889feb67792af9fca65ebbdb61d8cd12155910a54b325f726d3ac23 |
IEDL.DBID | IXB |
ISSN | 1877-0509 |
IngestDate | Tue Jul 01 01:53:52 EDT 2025 Sat Nov 16 15:59:56 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Speech Recognition Acoustic Signal GCN RNN GraphMix Insect Classification GAT Audio Graph Representation |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2137-33e1b0573d889feb67792af9fca65ebbdb61d8cd12155910a54b325f726d3ac23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1877050924030850 |
PageCount | 10 |
ParticipantIDs | crossref_primary_10_1016_j_procs_2024_10_277 elsevier_sciencedirect_doi_10_1016_j_procs_2024_10_277 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024 2024-00-00 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – year: 2024 text: 2024 |
PublicationDecade | 2020 |
PublicationTitle | Procedia computer science |
PublicationYear | 2024 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Shirian, Somandepalli, Guha (bib0006) 2022; 16 T. Cai, S. Luo, K. Xu, D. He, T.-Y. Liu, and L. Wang, GraphNorm: A Principled Approach to Accelerating Graph Neural Network Training. 2021. Zhang, Yan, Luo, Li, Liu, Zhang (bib0004) 2021 Ida, Fujita, Hirose (bib0008) 2022; 429 T. N. Kipf and M. Welling, Semi-Supervised Classification with Graph Convolutional Networks. 2017 Tey, Connie, Choo, Goh (bib0002) 2022; 15 Moriyama, Numata (bib0001) 2019; 44 Arpitha, Kavya Rani, Lavanya (bib0003) 2021 K. Xu, W. Hu, J. Leskovec, and S. Jegelka, How Powerful are Graph Neural Networks? 2019. V. Verma, M. Qu, K. Kawaguchi, A. Lamb, Y. Bengio, J. Tang GraphMix: Improved Training of GNNs for Semi-Supervised Learning. 2020. Yu, Zhang, Liu, Wan, Yang (bib0007) 2010 Petar Velicˇkovic´, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio`, Yoshua Bengio. (2018). Graph Attention Networks. https://doi.org/10.48550/arXiv.1710.10903 Dokania, S., Singh, V. (2019). Graph Representation learning for Audio Music genre Classification. 10.1016/j.procs.2024.10.277_bib0005 10.1016/j.procs.2024.10.277_bib0009 Zhang (10.1016/j.procs.2024.10.277_bib0004) 2021 Shirian (10.1016/j.procs.2024.10.277_bib0006) 2022; 16 Tey (10.1016/j.procs.2024.10.277_bib0002) 2022; 15 Ida (10.1016/j.procs.2024.10.277_bib0008) 2022; 429 Arpitha (10.1016/j.procs.2024.10.277_bib0003) 2021 10.1016/j.procs.2024.10.277_bib0010 Moriyama (10.1016/j.procs.2024.10.277_bib0001) 2019; 44 Yu (10.1016/j.procs.2024.10.277_bib0007) 2010 10.1016/j.procs.2024.10.277_bib0012 10.1016/j.procs.2024.10.277_bib0011 10.1016/j.procs.2024.10.277_bib0013 |
References_xml | – reference: T. Cai, S. Luo, K. Xu, D. He, T.-Y. Liu, and L. Wang, GraphNorm: A Principled Approach to Accelerating Graph Neural Network Training. 2021. – reference: Petar Velicˇkovic´, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio`, Yoshua Bengio. (2018). Graph Attention Networks. https://doi.org/10.48550/arXiv.1710.10903 – volume: 15 start-page: 358 year: 2022 ident: bib0002 article-title: Cicada Species Recognition Based on Acoustic Signals publication-title: Algorithms: Special Issue Machine Learning for Time Series Analysis – start-page: 1 year: 2021 end-page: 5 ident: bib0003 article-title: CNN based Framework for Classification of Mosquitoes based on its Wingbeats publication-title: 2021 Third International Conference on Intelligent Communication Technologies and Virtual Mobile Networks (ICICV) – start-page: 289 year: 2021 end-page: 294 ident: bib0004 article-title: A Novel Insect Sound Recognition Algorithm Based on MFCC and CNN publication-title: 2021 6th International Conference on Communication, Image and Signal Processing (CCISP) – volume: 44 year: 2019 ident: bib0001 article-title: Ecophysiological responses to climate change in cicadas publication-title: Physiological Entomology – volume: 16 start-page: 1391 year: 2022 end-page: 1401 ident: bib0006 article-title: Self-Supervised Graphs for Audio Representation Learning With Limited Labeled Data publication-title: IEEE Journal of Selected Topics in Signal Processing – reference: T. N. Kipf and M. Welling, Semi-Supervised Classification with Graph Convolutional Networks. 2017, – reference: V. Verma, M. Qu, K. Kawaguchi, A. Lamb, Y. Bengio, J. Tang GraphMix: Improved Training of GNNs for Semi-Supervised Learning. 2020. – reference: Dokania, S., Singh, V. (2019). Graph Representation learning for Audio Music genre Classification. – year: 2010 ident: bib0007 article-title: An audio retrieval method based on chromagram and distance metrics publication-title: 2010 International Conference on Audio, Language and Image Processing – volume: 429 year: 2022 ident: bib0008 article-title: Classification of volcano-seismic events using waveforms in the method of k-means clustering and dynamic time warping publication-title: Journal of Volcanology and Geothermal Research – reference: K. Xu, W. Hu, J. Leskovec, and S. Jegelka, How Powerful are Graph Neural Networks? 2019. – volume: 15 start-page: 358 issue: 10 year: 2022 ident: 10.1016/j.procs.2024.10.277_bib0002 article-title: Cicada Species Recognition Based on Acoustic Signals publication-title: Algorithms: Special Issue Machine Learning for Time Series Analysis doi: 10.3390/a15100358 – volume: 429 year: 2022 ident: 10.1016/j.procs.2024.10.277_bib0008 article-title: Classification of volcano-seismic events using waveforms in the method of k-means clustering and dynamic time warping publication-title: Journal of Volcanology and Geothermal Research doi: 10.1016/j.jvolgeores.2022.107616 – ident: 10.1016/j.procs.2024.10.277_bib0005 – start-page: 1 year: 2021 ident: 10.1016/j.procs.2024.10.277_bib0003 article-title: CNN based Framework for Classification of Mosquitoes based on its Wingbeats – ident: 10.1016/j.procs.2024.10.277_bib0009 – volume: 16 start-page: 1391 issue: 6 year: 2022 ident: 10.1016/j.procs.2024.10.277_bib0006 article-title: Self-Supervised Graphs for Audio Representation Learning With Limited Labeled Data publication-title: IEEE Journal of Selected Topics in Signal Processing doi: 10.1109/JSTSP.2022.3190083 – year: 2010 ident: 10.1016/j.procs.2024.10.277_bib0007 article-title: An audio retrieval method based on chromagram and distance metrics – ident: 10.1016/j.procs.2024.10.277_bib0013 – volume: 44 year: 2019 ident: 10.1016/j.procs.2024.10.277_bib0001 article-title: Ecophysiological responses to climate change in cicadas publication-title: Physiological Entomology doi: 10.1111/phen.12283 – ident: 10.1016/j.procs.2024.10.277_bib0010 – ident: 10.1016/j.procs.2024.10.277_bib0011 doi: 10.1609/aaai.v35i11.17203 – ident: 10.1016/j.procs.2024.10.277_bib0012 – start-page: 289 year: 2021 ident: 10.1016/j.procs.2024.10.277_bib0004 article-title: A Novel Insect Sound Recognition Algorithm Based on MFCC and CNN |
SSID | ssj0000388917 |
Score | 2.308103 |
Snippet | Cicadas, known for their distinctive acoustic signals, have been subjects of classification research for years. Recent researches elaborated the species... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 508 |
SubjectTerms | Acoustic Signal Audio GAT GCN Graph Representation GraphMix Insect Classification RNN Speech Recognition |
Title | Cicada species recognition based on acoustic signals using dynamic time warping-graph based GraphMix, graph convolution network |
URI | https://dx.doi.org/10.1016/j.procs.2024.10.277 |
Volume | 245 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwED1VZWHhG9EClQfGhhLbiZOxVJSKqgxARbfIdhxUhrSqimDjr-NznAokxEAmx8pJ0elyd7HevQdwwZSOlDZFoFHVhLOYB2kuVUALlmiW2JhyWoeT-3g05XezaNaAQT0Lg7BKn_urnO6ytd_peW_2lvN57zFMhED2EmSUQ-I1m4cZT9wQ3-x6c86CbCepE97F5wM0qMmHHMwL6wTSdlN-ibBoIX4vUN-KznAPdny3SPrVC-1Dw5QHsFsrMRD_YR7C5wAnQyTBuUn760s2sKBFSbBO5cQubO5z0l0EMRs26ghi3l9IXmnSE1SZJ-9yhQNUgeOx9qa3uJ7MP7qk2kWgug9YUlYo8iOYDm-eBqPASysEmobMphVmQoVciLn1TmFULERKZZEWWsaRUSpXcYi6Rsg9EdmOQkZcMRoVgsY5k5qyY2iWi9KcAJH20mEqbaPDuVE6KUKTXCXcSEpFrqIWdGt_ZsuKQSOroWWvmXN_hu7HTev-FsS1z7MfgZDZHP-XYfu_hqewjXfVucoZNNerN3NuO4216sBWf_zwPO64kPoCWaDWPg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwED2VMsDCN6J8emBsKLEdOxmhorTQdqGVukW246AyBISKYOOv40ucCiTEQCbL0UnR6Xx3sd69B3DOtIm0sXlgUNWEM8GDJFM6oDmLDYtdTJVah6Ox6E_53SyaNaBbz8IgrNLn_iqnl9na73S8Nzsv83nnIYylRPYSZJRD4rUVWHXdgMDQHsyulxctSHeSlMq7aBCgRc0-VOK8sFAgbzflF4iLlvL3CvWt6vS2YMO3i-Sq-qJtaNhiBzZrKQbiT-YufHZxNEQRHJx0_75kiQt6LggWqoy4hUt-pXYXQdCGCzuCoPdHklWi9ARl5sm7esUJqqAksvamt7gezT_apNpFpLqPWFJUMPI9mPZuJt1-4LUVAkND5vIKs6FGMsTMeSe3WkiZUJUnuVEislpnWoQobITkE5FrKVTENaNRLqnImDKU7UOzeC7sARDlHhMmynU6nFtt4jy08WXMraJUZjpqQbv2Z_pSUWikNbbsKS3dn6L7cdO5vwWi9nn6IxJSl-T_Mjz8r-EZrPUno2E6HIzvj2Ad31SXLMfQXLy-2RPXdiz0aRlWX3pW18I |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cicada+species+recognition+based+on+acoustic+signals+using+dynamic+time+warping-graph+based+GraphMix%2C+graph+convolution+network&rft.jtitle=Procedia+computer+science&rft.au=Yohanes%2C+Gabriel&rft.au=Prabowo%2C+Abram+Setyo&rft.au=Kurniadi%2C+Felix+Indra&rft.date=2024&rft.pub=Elsevier+B.V&rft.issn=1877-0509&rft.eissn=1877-0509&rft.volume=245&rft.spage=508&rft.epage=517&rft_id=info:doi/10.1016%2Fj.procs.2024.10.277&rft.externalDocID=S1877050924030850 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-0509&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-0509&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-0509&client=summon |