Cicada species recognition based on acoustic signals using dynamic time warping-graph based GraphMix, graph convolution network

Cicadas, known for their distinctive acoustic signals, have been subjects of classification research for years. Recent researches elaborated the species composition as effect of climate change, further raising the need of effective classification system. Tra- ditional methods rely on manual classifi...

Full description

Saved in:
Bibliographic Details
Published inProcedia computer science Vol. 245; pp. 508 - 517
Main Authors Yohanes, Gabriel, Prabowo, Abram Setyo, Kurniadi, Felix Indra
Format Journal Article
LanguageEnglish
Published Elsevier B.V 2024
Subjects
Online AccessGet full text
ISSN1877-0509
1877-0509
DOI10.1016/j.procs.2024.10.277

Cover

Loading…
Abstract Cicadas, known for their distinctive acoustic signals, have been subjects of classification research for years. Recent researches elaborated the species composition as effect of climate change, further raising the need of effective classification system. Tra- ditional methods rely on manual classification by domain experts, while recent trends favor Artificial Intelligence (AI)-assisted approaches due to their efficiency. However, image-based recognition faces challenges due to cicadas’ varied appearances and environmental factors. Deep learning approaches, particularly utilizing Mel-frequency cepstral coefficients (MFCC) spectrograms, have been effective but are limited by dataset size. Graph Neural Networks (GNN) have surfaced as a promising alternative, lever- aging graph represen- tations to provide additional information like data relationships. In this study, we address the challenge of efficient classification with a small dataset while maximizing feature representation. We explore the effectiveness of MFCC and Chromagram features in a noisy environment, constructing unique graphs for each. Dynamic Time Warping (DTW) is employed to establish connec- tions between nodes. Our experiments on the cicada audio dataset demonstrate the superiority of Chroma- gram over MFCC, with graph-based approaches outperforming graph-less methods such as Recurrent Neural Networks (RNN). Our findings suggest the potential of graph neural networks in audio classification tasks and contribute to advancing the field's methodologies.
AbstractList Cicadas, known for their distinctive acoustic signals, have been subjects of classification research for years. Recent researches elaborated the species composition as effect of climate change, further raising the need of effective classification system. Tra- ditional methods rely on manual classification by domain experts, while recent trends favor Artificial Intelligence (AI)-assisted approaches due to their efficiency. However, image-based recognition faces challenges due to cicadas’ varied appearances and environmental factors. Deep learning approaches, particularly utilizing Mel-frequency cepstral coefficients (MFCC) spectrograms, have been effective but are limited by dataset size. Graph Neural Networks (GNN) have surfaced as a promising alternative, lever- aging graph represen- tations to provide additional information like data relationships. In this study, we address the challenge of efficient classification with a small dataset while maximizing feature representation. We explore the effectiveness of MFCC and Chromagram features in a noisy environment, constructing unique graphs for each. Dynamic Time Warping (DTW) is employed to establish connec- tions between nodes. Our experiments on the cicada audio dataset demonstrate the superiority of Chroma- gram over MFCC, with graph-based approaches outperforming graph-less methods such as Recurrent Neural Networks (RNN). Our findings suggest the potential of graph neural networks in audio classification tasks and contribute to advancing the field's methodologies.
Author Yohanes, Gabriel
Prabowo, Abram Setyo
Kurniadi, Felix Indra
Author_xml – sequence: 1
  givenname: Gabriel
  surname: Yohanes
  fullname: Yohanes, Gabriel
  organization: Computer Science Department Department, School of Computer Science, Bina Nusantara University, Jakarta, 11530, Indonesia
– sequence: 2
  givenname: Abram Setyo
  surname: Prabowo
  fullname: Prabowo, Abram Setyo
  email: abram.setyo@binus.ac.id
  organization: Computer Science Department Department, School of Computer Science, Bina Nusantara University, Jakarta, 11530, Indonesia
– sequence: 3
  givenname: Felix Indra
  surname: Kurniadi
  fullname: Kurniadi, Felix Indra
  organization: Computer Science Department Department, School of Computer Science, Bina Nusantara University, Jakarta, 11530, Indonesia
BookMark eNp9kLtOwzAYhS1UJErpE7D4AUjwpYmTgQFVUJCKWGC2fEtwae3ITls68eo4LQMTXnz0Sefo13cJRs47A8A1RjlGuLxd5V3wKuYEkVkiOWHsDIxxxViGClSP_uQLMI1xhdKjVVVjNgbfc6uEFjB2RlkTYTDKt8721jsoRTQapiCU38beKhht68Q6wm20roX64MQm0d5uDNyL0CWYtUF0H7_VxZBf7NcNPFHl3c6vt8dxZ_q9D59X4LxJi2b6-0_A--PD2_wpW74unuf3y0wRTFlGqcESFYzqdHdjZMlYTURTN0qUhZFSyxLrSmlMcFHUGIliJikpGkZKTYUidALoaVcFH2MwDe-C3Yhw4BjxQSNf8aNGPmgcYNKYWnenlkmn7awJPCZLThltk6iea2__7f8AFpiBZw
Cites_doi 10.3390/a15100358
10.1016/j.jvolgeores.2022.107616
10.1109/JSTSP.2022.3190083
10.1111/phen.12283
10.1609/aaai.v35i11.17203
ContentType Journal Article
Copyright 2024
Copyright_xml – notice: 2024
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.procs.2024.10.277
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1877-0509
EndPage 517
ExternalDocumentID 10_1016_j_procs_2024_10_277
S1877050924030850
GroupedDBID --K
0R~
0SF
1B1
457
5VS
6I.
71M
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAQFI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
ADVLN
AEXQZ
AFTJW
AGHFR
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
E3Z
EBS
EJD
EP3
FDB
FNPLU
HZ~
IXB
KQ8
M41
M~E
NCXOZ
O-L
O9-
OK1
P2P
RIG
ROL
SES
SSZ
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
CITATION
ID FETCH-LOGICAL-c2137-33e1b0573d889feb67792af9fca65ebbdb61d8cd12155910a54b325f726d3ac23
IEDL.DBID IXB
ISSN 1877-0509
IngestDate Tue Jul 01 01:53:52 EDT 2025
Sat Nov 16 15:59:56 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Speech Recognition
Acoustic Signal
GCN
RNN
GraphMix
Insect Classification
GAT
Audio
Graph Representation
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2137-33e1b0573d889feb67792af9fca65ebbdb61d8cd12155910a54b325f726d3ac23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1877050924030850
PageCount 10
ParticipantIDs crossref_primary_10_1016_j_procs_2024_10_277
elsevier_sciencedirect_doi_10_1016_j_procs_2024_10_277
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024
2024-00-00
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 2024
PublicationDecade 2020
PublicationTitle Procedia computer science
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Shirian, Somandepalli, Guha (bib0006) 2022; 16
T. Cai, S. Luo, K. Xu, D. He, T.-Y. Liu, and L. Wang, GraphNorm: A Principled Approach to Accelerating Graph Neural Network Training. 2021.
Zhang, Yan, Luo, Li, Liu, Zhang (bib0004) 2021
Ida, Fujita, Hirose (bib0008) 2022; 429
T. N. Kipf and M. Welling, Semi-Supervised Classification with Graph Convolutional Networks. 2017
Tey, Connie, Choo, Goh (bib0002) 2022; 15
Moriyama, Numata (bib0001) 2019; 44
Arpitha, Kavya Rani, Lavanya (bib0003) 2021
K. Xu, W. Hu, J. Leskovec, and S. Jegelka, How Powerful are Graph Neural Networks? 2019.
V. Verma, M. Qu, K. Kawaguchi, A. Lamb, Y. Bengio, J. Tang GraphMix: Improved Training of GNNs for Semi-Supervised Learning. 2020.
Yu, Zhang, Liu, Wan, Yang (bib0007) 2010
Petar Velicˇkovic´, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio`, Yoshua Bengio. (2018). Graph Attention Networks. https://doi.org/10.48550/arXiv.1710.10903
Dokania, S., Singh, V. (2019). Graph Representation learning for Audio Music genre Classification.
10.1016/j.procs.2024.10.277_bib0005
10.1016/j.procs.2024.10.277_bib0009
Zhang (10.1016/j.procs.2024.10.277_bib0004) 2021
Shirian (10.1016/j.procs.2024.10.277_bib0006) 2022; 16
Tey (10.1016/j.procs.2024.10.277_bib0002) 2022; 15
Ida (10.1016/j.procs.2024.10.277_bib0008) 2022; 429
Arpitha (10.1016/j.procs.2024.10.277_bib0003) 2021
10.1016/j.procs.2024.10.277_bib0010
Moriyama (10.1016/j.procs.2024.10.277_bib0001) 2019; 44
Yu (10.1016/j.procs.2024.10.277_bib0007) 2010
10.1016/j.procs.2024.10.277_bib0012
10.1016/j.procs.2024.10.277_bib0011
10.1016/j.procs.2024.10.277_bib0013
References_xml – reference: T. Cai, S. Luo, K. Xu, D. He, T.-Y. Liu, and L. Wang, GraphNorm: A Principled Approach to Accelerating Graph Neural Network Training. 2021.
– reference: Petar Velicˇkovic´, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio`, Yoshua Bengio. (2018). Graph Attention Networks. https://doi.org/10.48550/arXiv.1710.10903
– volume: 15
  start-page: 358
  year: 2022
  ident: bib0002
  article-title: Cicada Species Recognition Based on Acoustic Signals
  publication-title: Algorithms: Special Issue Machine Learning for Time Series Analysis
– start-page: 1
  year: 2021
  end-page: 5
  ident: bib0003
  article-title: CNN based Framework for Classification of Mosquitoes based on its Wingbeats
  publication-title: 2021 Third International Conference on Intelligent Communication Technologies and Virtual Mobile Networks (ICICV)
– start-page: 289
  year: 2021
  end-page: 294
  ident: bib0004
  article-title: A Novel Insect Sound Recognition Algorithm Based on MFCC and CNN
  publication-title: 2021 6th International Conference on Communication, Image and Signal Processing (CCISP)
– volume: 44
  year: 2019
  ident: bib0001
  article-title: Ecophysiological responses to climate change in cicadas
  publication-title: Physiological Entomology
– volume: 16
  start-page: 1391
  year: 2022
  end-page: 1401
  ident: bib0006
  article-title: Self-Supervised Graphs for Audio Representation Learning With Limited Labeled Data
  publication-title: IEEE Journal of Selected Topics in Signal Processing
– reference: T. N. Kipf and M. Welling, Semi-Supervised Classification with Graph Convolutional Networks. 2017,
– reference: V. Verma, M. Qu, K. Kawaguchi, A. Lamb, Y. Bengio, J. Tang GraphMix: Improved Training of GNNs for Semi-Supervised Learning. 2020.
– reference: Dokania, S., Singh, V. (2019). Graph Representation learning for Audio Music genre Classification.
– year: 2010
  ident: bib0007
  article-title: An audio retrieval method based on chromagram and distance metrics
  publication-title: 2010 International Conference on Audio, Language and Image Processing
– volume: 429
  year: 2022
  ident: bib0008
  article-title: Classification of volcano-seismic events using waveforms in the method of k-means clustering and dynamic time warping
  publication-title: Journal of Volcanology and Geothermal Research
– reference: K. Xu, W. Hu, J. Leskovec, and S. Jegelka, How Powerful are Graph Neural Networks? 2019.
– volume: 15
  start-page: 358
  issue: 10
  year: 2022
  ident: 10.1016/j.procs.2024.10.277_bib0002
  article-title: Cicada Species Recognition Based on Acoustic Signals
  publication-title: Algorithms: Special Issue Machine Learning for Time Series Analysis
  doi: 10.3390/a15100358
– volume: 429
  year: 2022
  ident: 10.1016/j.procs.2024.10.277_bib0008
  article-title: Classification of volcano-seismic events using waveforms in the method of k-means clustering and dynamic time warping
  publication-title: Journal of Volcanology and Geothermal Research
  doi: 10.1016/j.jvolgeores.2022.107616
– ident: 10.1016/j.procs.2024.10.277_bib0005
– start-page: 1
  year: 2021
  ident: 10.1016/j.procs.2024.10.277_bib0003
  article-title: CNN based Framework for Classification of Mosquitoes based on its Wingbeats
– ident: 10.1016/j.procs.2024.10.277_bib0009
– volume: 16
  start-page: 1391
  issue: 6
  year: 2022
  ident: 10.1016/j.procs.2024.10.277_bib0006
  article-title: Self-Supervised Graphs for Audio Representation Learning With Limited Labeled Data
  publication-title: IEEE Journal of Selected Topics in Signal Processing
  doi: 10.1109/JSTSP.2022.3190083
– year: 2010
  ident: 10.1016/j.procs.2024.10.277_bib0007
  article-title: An audio retrieval method based on chromagram and distance metrics
– ident: 10.1016/j.procs.2024.10.277_bib0013
– volume: 44
  year: 2019
  ident: 10.1016/j.procs.2024.10.277_bib0001
  article-title: Ecophysiological responses to climate change in cicadas
  publication-title: Physiological Entomology
  doi: 10.1111/phen.12283
– ident: 10.1016/j.procs.2024.10.277_bib0010
– ident: 10.1016/j.procs.2024.10.277_bib0011
  doi: 10.1609/aaai.v35i11.17203
– ident: 10.1016/j.procs.2024.10.277_bib0012
– start-page: 289
  year: 2021
  ident: 10.1016/j.procs.2024.10.277_bib0004
  article-title: A Novel Insect Sound Recognition Algorithm Based on MFCC and CNN
SSID ssj0000388917
Score 2.308103
Snippet Cicadas, known for their distinctive acoustic signals, have been subjects of classification research for years. Recent researches elaborated the species...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 508
SubjectTerms Acoustic Signal
Audio
GAT
GCN
Graph Representation
GraphMix
Insect Classification
RNN
Speech Recognition
Title Cicada species recognition based on acoustic signals using dynamic time warping-graph based GraphMix, graph convolution network
URI https://dx.doi.org/10.1016/j.procs.2024.10.277
Volume 245
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwED1VZWHhG9EClQfGhhLbiZOxVJSKqgxARbfIdhxUhrSqimDjr-NznAokxEAmx8pJ0elyd7HevQdwwZSOlDZFoFHVhLOYB2kuVUALlmiW2JhyWoeT-3g05XezaNaAQT0Lg7BKn_urnO6ytd_peW_2lvN57zFMhED2EmSUQ-I1m4cZT9wQ3-x6c86CbCepE97F5wM0qMmHHMwL6wTSdlN-ibBoIX4vUN-KznAPdny3SPrVC-1Dw5QHsFsrMRD_YR7C5wAnQyTBuUn760s2sKBFSbBO5cQubO5z0l0EMRs26ghi3l9IXmnSE1SZJ-9yhQNUgeOx9qa3uJ7MP7qk2kWgug9YUlYo8iOYDm-eBqPASysEmobMphVmQoVciLn1TmFULERKZZEWWsaRUSpXcYi6Rsg9EdmOQkZcMRoVgsY5k5qyY2iWi9KcAJH20mEqbaPDuVE6KUKTXCXcSEpFrqIWdGt_ZsuKQSOroWWvmXN_hu7HTev-FsS1z7MfgZDZHP-XYfu_hqewjXfVucoZNNerN3NuO4216sBWf_zwPO64kPoCWaDWPg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwED2VMsDCN6J8emBsKLEdOxmhorTQdqGVukW246AyBISKYOOv40ucCiTEQCbL0UnR6Xx3sd69B3DOtIm0sXlgUNWEM8GDJFM6oDmLDYtdTJVah6Ox6E_53SyaNaBbz8IgrNLn_iqnl9na73S8Nzsv83nnIYylRPYSZJRD4rUVWHXdgMDQHsyulxctSHeSlMq7aBCgRc0-VOK8sFAgbzflF4iLlvL3CvWt6vS2YMO3i-Sq-qJtaNhiBzZrKQbiT-YufHZxNEQRHJx0_75kiQt6LggWqoy4hUt-pXYXQdCGCzuCoPdHklWi9ARl5sm7esUJqqAksvamt7gezT_apNpFpLqPWFJUMPI9mPZuJt1-4LUVAkND5vIKs6FGMsTMeSe3WkiZUJUnuVEislpnWoQobITkE5FrKVTENaNRLqnImDKU7UOzeC7sARDlHhMmynU6nFtt4jy08WXMraJUZjpqQbv2Z_pSUWikNbbsKS3dn6L7cdO5vwWi9nn6IxJSl-T_Mjz8r-EZrPUno2E6HIzvj2Ad31SXLMfQXLy-2RPXdiz0aRlWX3pW18I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cicada+species+recognition+based+on+acoustic+signals+using+dynamic+time+warping-graph+based+GraphMix%2C+graph+convolution+network&rft.jtitle=Procedia+computer+science&rft.au=Yohanes%2C+Gabriel&rft.au=Prabowo%2C+Abram+Setyo&rft.au=Kurniadi%2C+Felix+Indra&rft.date=2024&rft.pub=Elsevier+B.V&rft.issn=1877-0509&rft.eissn=1877-0509&rft.volume=245&rft.spage=508&rft.epage=517&rft_id=info:doi/10.1016%2Fj.procs.2024.10.277&rft.externalDocID=S1877050924030850
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-0509&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-0509&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-0509&client=summon