Unveiling Underwater Structures: MobileNet vs. EfficientNet in Sonar Image Detection
Deep learning techniques have led to an increased use of Convolutional Neural Networks (CNN) in recognizing images for marine surveys and classifying underwater objects. Applying CNN for the automatic identification of targets in side-scan sonar (SSS) images can boost accuracy and efficiency. Using...
Saved in:
Published in | Procedia computer science Vol. 233; pp. 518 - 527 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Deep learning techniques have led to an increased use of Convolutional Neural Networks (CNN) in recognizing images for marine surveys and classifying underwater objects. Applying CNN for the automatic identification of targets in side-scan sonar (SSS) images can boost accuracy and efficiency. Using transfer learning and deep learning as lenses, this work explores the field of underwater item detection. Comparing performance of MobileNet and EfficientNet in performing the task of underwater item classification from sonar images is the central research objective of this study. These two well-known convolutional neural networks were the subject of a thorough investigation to help explain this. In order to fine-tune pre-trained models on a dataset of sonar images, the study approach used the transfer learning technique. We conducted tests on MobileNet and EfficientNet and thoroughly assessed each of their accuracy levels. This study has two main conclusions. First, showing promise as a strong model for underwater object identification, EfficientNet performed exceptionally well in the classification challenge. |
---|---|
AbstractList | Deep learning techniques have led to an increased use of Convolutional Neural Networks (CNN) in recognizing images for marine surveys and classifying underwater objects. Applying CNN for the automatic identification of targets in side-scan sonar (SSS) images can boost accuracy and efficiency. Using transfer learning and deep learning as lenses, this work explores the field of underwater item detection. Comparing performance of MobileNet and EfficientNet in performing the task of underwater item classification from sonar images is the central research objective of this study. These two well-known convolutional neural networks were the subject of a thorough investigation to help explain this. In order to fine-tune pre-trained models on a dataset of sonar images, the study approach used the transfer learning technique. We conducted tests on MobileNet and EfficientNet and thoroughly assessed each of their accuracy levels. This study has two main conclusions. First, showing promise as a strong model for underwater object identification, EfficientNet performed exceptionally well in the classification challenge. |
Author | Suryanarayan, S Viswamanav, R S Anjali, T Arjun, P A Abhishek, S |
Author_xml | – sequence: 1 givenname: P A surname: Arjun fullname: Arjun, P A email: amenu4aie20013@am.students.amrita.edu organization: Department of Computer Science and Engineering, Amrita School of Computing, Amrita Vishwa Vidyapeetham, Amritapuri, India – sequence: 2 givenname: S surname: Suryanarayan fullname: Suryanarayan, S email: amenu4aie20062@am.students.amrita.edu organization: Department of Computer Science and Engineering, Amrita School of Computing, Amrita Vishwa Vidyapeetham, Amritapuri, India – sequence: 3 givenname: R S surname: Viswamanav fullname: Viswamanav, R S email: amenu4aie20075@am.students.amrita.edu organization: Department of Computer Science and Engineering, Amrita School of Computing, Amrita Vishwa Vidyapeetham, Amritapuri, India – sequence: 4 givenname: S surname: Abhishek fullname: Abhishek, S email: abhishekabi2002@gmail.com organization: Rolls-Royce Inc, Bangalore, India – sequence: 5 givenname: T surname: Anjali fullname: Anjali, T email: anjalit@am.amrita.edu organization: Department of Computer Science and Engineering, Amrita School of Computing, Amrita Vishwa Vidyapeetham, Amritapuri, India |
BookMark | eNp9kMFOwzAMhiM0JMbYE3DJC7Q4Tdu0SBzQGDBpwGHbOUpTZ8q0pVPSFfH2tIwDJ3yxZemzfn_XZOQah4TcMogZsPxuFx99o0OcQJLGwOMkZRdkzAohIsigHP2Zr8g0hB30xYuiZGJM1hvXod1bt6UbV6P_VC16umr9Sbcnj-GevjWV3eM7trQLMZ0bY7VF1w4L6-iqccrTxUFtkT5hi7q1jbshl0btA05_-4Rsnufr2Wu0_HhZzB6XkU4YZ5ERJskVSyBHAZgWCqqyQFNjqnnFhKrBYJVVGZZKJKmAOme5grLKBC9AsJRPCD_f1b4JwaORR28Pyn9JBnJwI3fyx40c3EjgsnfTUw9nCvtonUUvw_CRxtr6Pr-sG_sv_w3V_3Ag |
Cites_doi | 10.3390/rs15030593 10.1016/j.oceaneng.2022.113403 10.1109/ACCESS.2020.2995390 10.1007/s11276-023-03290-z 10.3390/rs14174364 10.1109/ACCESS.2020.2978880 10.1016/j.cose.2022.102622 |
ContentType | Journal Article |
Copyright | 2024 |
Copyright_xml | – notice: 2024 |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.procs.2024.03.241 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1877-0509 |
EndPage | 527 |
ExternalDocumentID | 10_1016_j_procs_2024_03_241 S1877050924006008 |
GroupedDBID | --K 0R~ 1B1 457 5VS 6I. 71M AAEDT AAEDW AAFTH AAIKJ AALRI AAQFI AAXUO AAYWO ABMAC ABWVN ACGFS ACRPL ADBBV ADEZE ADNMO ADVLN AEXQZ AFTJW AGHFR AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ E3Z EBS EJD EP3 FDB FNPLU HZ~ IXB KQ8 M41 M~E O-L O9- OK1 P2P RIG ROL SES SSZ AAYXX ACVFH ADCNI AEUPX AFPUW AIGII AKBMS AKYEP CITATION |
ID | FETCH-LOGICAL-c2131-f7f26a1206e70e48a0b98efde4c3b17ad0feb5b5e9a72470d616a09b573807143 |
IEDL.DBID | IXB |
ISSN | 1877-0509 |
IngestDate | Tue Jul 01 01:53:40 EDT 2025 Fri May 16 00:30:27 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | EfficientNetV2 Transfer Learning Convolutional Neural Networks Side-Scan Sonar MobileNetV3 |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2131-f7f26a1206e70e48a0b98efde4c3b17ad0feb5b5e9a72470d616a09b573807143 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1877050924006008 |
PageCount | 10 |
ParticipantIDs | crossref_primary_10_1016_j_procs_2024_03_241 elsevier_sciencedirect_doi_10_1016_j_procs_2024_03_241 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024 2024-00-00 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – year: 2024 text: 2024 |
PublicationDecade | 2020 |
PublicationTitle | Procedia computer science |
PublicationYear | 2024 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Feng, Zhu (bib0009) 2022; 19 Huang, Yang, Wang, Yu, He (bib0014) 2023; 270 Le, Hoang, Phung, Chapple, Bouzerdoum, Ritz, Le Chung (bib0011) 2020; 8 Yadav, Menon, Ravi, Vishvanathan, Pham (bib0008) 2022; 115 Xi, Liu (bib0013) 2022; 14 Du, Sun, Song, Sun, Yang (bib0001) 2023; 15 Zhang, Sun, Chen, Wang (bib0015) 2022 M, Singh, Duraisamy (bib0012) 2022 Ashim, Suresh, Prasannakumar (bib0003) 2021 Phung, Nguyen, Le, Chapple, Ritz, Bouzerdoum, Tran (bib0006) 2019 Rao, Mukherjee, Gupta, Ray, Phoha (bib0007) 2009 Sreekala, Nijil Raj, Gupta, Anitha, Nanda, Chaturvedi (bib0002) 2023 C, Sruthy, Nandakumar (bib0010) 2021 Asif, Anil, Tangudu, Sai Keertan, Don (bib0004) 2023 Huo, Wu, Li (bib0005) 2020; 8 Rao (10.1016/j.procs.2024.03.241_bib0007) 2009 Du (10.1016/j.procs.2024.03.241_bib0001) 2023; 15 Sreekala (10.1016/j.procs.2024.03.241_bib0002) 2023 Phung (10.1016/j.procs.2024.03.241_bib0006) 2019 Huo (10.1016/j.procs.2024.03.241_bib0005) 2020; 8 Asif (10.1016/j.procs.2024.03.241_bib0004) 2023 Huang (10.1016/j.procs.2024.03.241_bib0014) 2023; 270 Zhang (10.1016/j.procs.2024.03.241_bib0015) 2022 Ashim (10.1016/j.procs.2024.03.241_bib0003) 2021 Le (10.1016/j.procs.2024.03.241_bib0011) 2020; 8 Xi (10.1016/j.procs.2024.03.241_bib0013) 2022; 14 Feng (10.1016/j.procs.2024.03.241_bib0009) 2022; 19 C (10.1016/j.procs.2024.03.241_bib0010) 2021 M (10.1016/j.procs.2024.03.241_bib0012) 2022 Yadav (10.1016/j.procs.2024.03.241_bib0008) 2022; 115 |
References_xml | – year: 2019 ident: bib0006 article-title: Mine-like Object Sensing in Sonar Imagery with a Compact Deep Learning Architecture for Scarce Data publication-title: 2019 Digital Image Computing: Techniques and Applications (DICTA) – volume: 14 start-page: 4364 year: 2022 ident: bib0013 article-title: Detection of Small Floating Target on Sea Surface Based on Gramian Angular Field and Improved EfficientNet publication-title: Remote Sensing – year: 2021 ident: bib0010 article-title: Car Damage Identification and Categorization Using Various Transfer Learning Models publication-title: 2021 5th International Conference on Trends in Electronics and Informatics (ICOEI) – year: 2021 ident: bib0003 article-title: A Comparative Analysis of Various Transfer Learning Approaches Skin Cancer Detection publication-title: 2021 5th International Conference on Trends in Electronics and Informatics (ICOEI) – year: 2023 ident: bib0002 article-title: Deep Convolutional Neural Network with Kalman Filter Based Objected Tracking and Detection in Underwater Communications publication-title: Wireless Networks – volume: 15 start-page: 593 year: 2023 ident: bib0001 article-title: A Comparative Study of Different CNN Models and Transfer Learning Effect for Underwater Object Classification in Side-Scan Sonar Images publication-title: Remote Sensing – volume: 8 start-page: 47407 year: 2020 end-page: 47418 ident: bib0005 article-title: Underwater Object Classification in Sidescan Sonar Images Using Deep Transfer Learning and Semisynthetic Training Data publication-title: IEEE Access – year: 2022 ident: bib0012 article-title: Diabetic Retinopathy Classification Using Transfer Learning Techniques publication-title: 2022 13th International Conference on Computing Communication and Networking Technologies (ICCCNT) – volume: 8 start-page: 94126 year: 2020 end-page: 94139 ident: bib0011 article-title: Deep Gabor Neural Network for Automatic Detection of Mine-like Objects in Sonar Imagery publication-title: IEEE Access – year: 2009 ident: bib0007 article-title: Underwater Mine Detection Using Symbolic Pattern Analysis of Sidescan Sonar Images publication-title: 2009 American Control Conference – volume: 115 year: 2022 ident: bib0008 article-title: EfficientNet Convolutional Neural Networks-Based Android Malware Detection publication-title: Computers & Security – volume: 270 year: 2023 ident: bib0014 article-title: A Novel Method for Real-Time ATR System of AUV Based on Attention-Mobilenetv3 Network and Pixel Correction Algorithm publication-title: Ocean Engineering – volume: 19 start-page: 1 year: 2022 end-page: 5 ident: bib0009 article-title: A Transformer-Based Deep Learning Network for Underwater Acoustic Target Recognition publication-title: IEEE Geo-science and Remote Sensing Letters – year: 2023 ident: bib0004 article-title: Traffic Sign Detection Using SSD Mobilenet & Faster RCNN publication-title: 2023 2nd International Conference on Vision Towards Emerging Trends in Communication and Networking Technologies (ViTE-CoN) – year: 2022 ident: bib0015 article-title: Efficient Semantic Segmentation Backbone Evaluation for Unmanned Surface Vehicles Based on Likelihood Distribution Estimation publication-title: 2022 18th International Conference on Mobility, Sensing and Networking (MSN) – volume: 15 start-page: 593 issue: 3 year: 2023 ident: 10.1016/j.procs.2024.03.241_bib0001 article-title: A Comparative Study of Different CNN Models and Transfer Learning Effect for Underwater Object Classification in Side-Scan Sonar Images publication-title: Remote Sensing doi: 10.3390/rs15030593 – volume: 270 year: 2023 ident: 10.1016/j.procs.2024.03.241_bib0014 article-title: A Novel Method for Real-Time ATR System of AUV Based on Attention-Mobilenetv3 Network and Pixel Correction Algorithm publication-title: Ocean Engineering doi: 10.1016/j.oceaneng.2022.113403 – year: 2009 ident: 10.1016/j.procs.2024.03.241_bib0007 article-title: Underwater Mine Detection Using Symbolic Pattern Analysis of Sidescan Sonar Images – year: 2023 ident: 10.1016/j.procs.2024.03.241_bib0004 article-title: Traffic Sign Detection Using SSD Mobilenet & Faster RCNN – year: 2019 ident: 10.1016/j.procs.2024.03.241_bib0006 article-title: Mine-like Object Sensing in Sonar Imagery with a Compact Deep Learning Architecture for Scarce Data – year: 2022 ident: 10.1016/j.procs.2024.03.241_bib0012 article-title: Diabetic Retinopathy Classification Using Transfer Learning Techniques – volume: 8 start-page: 94126 year: 2020 ident: 10.1016/j.procs.2024.03.241_bib0011 article-title: Deep Gabor Neural Network for Automatic Detection of Mine-like Objects in Sonar Imagery publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2995390 – year: 2022 ident: 10.1016/j.procs.2024.03.241_bib0015 article-title: Efficient Semantic Segmentation Backbone Evaluation for Unmanned Surface Vehicles Based on Likelihood Distribution Estimation – year: 2023 ident: 10.1016/j.procs.2024.03.241_bib0002 article-title: Deep Convolutional Neural Network with Kalman Filter Based Objected Tracking and Detection in Underwater Communications publication-title: Wireless Networks doi: 10.1007/s11276-023-03290-z – volume: 19 start-page: 1 year: 2022 ident: 10.1016/j.procs.2024.03.241_bib0009 article-title: A Transformer-Based Deep Learning Network for Underwater Acoustic Target Recognition publication-title: IEEE Geo-science and Remote Sensing Letters – year: 2021 ident: 10.1016/j.procs.2024.03.241_bib0010 article-title: Car Damage Identification and Categorization Using Various Transfer Learning Models – year: 2021 ident: 10.1016/j.procs.2024.03.241_bib0003 article-title: A Comparative Analysis of Various Transfer Learning Approaches Skin Cancer Detection – volume: 14 start-page: 4364 issue: 17 year: 2022 ident: 10.1016/j.procs.2024.03.241_bib0013 article-title: Detection of Small Floating Target on Sea Surface Based on Gramian Angular Field and Improved EfficientNet publication-title: Remote Sensing doi: 10.3390/rs14174364 – volume: 8 start-page: 47407 year: 2020 ident: 10.1016/j.procs.2024.03.241_bib0005 article-title: Underwater Object Classification in Sidescan Sonar Images Using Deep Transfer Learning and Semisynthetic Training Data publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2978880 – volume: 115 year: 2022 ident: 10.1016/j.procs.2024.03.241_bib0008 article-title: EfficientNet Convolutional Neural Networks-Based Android Malware Detection publication-title: Computers & Security doi: 10.1016/j.cose.2022.102622 |
SSID | ssj0000388917 |
Score | 2.3460548 |
Snippet | Deep learning techniques have led to an increased use of Convolutional Neural Networks (CNN) in recognizing images for marine surveys and classifying... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 518 |
SubjectTerms | Convolutional Neural Networks EfficientNetV2 MobileNetV3 Side-Scan Sonar Transfer Learning |
Title | Unveiling Underwater Structures: MobileNet vs. EfficientNet in Sonar Image Detection |
URI | https://dx.doi.org/10.1016/j.procs.2024.03.241 |
Volume | 233 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqsrDwRpRH5YGRUCd27JitlFaFqh1oK7pFcXKWgkRaQSl_H9tJEEiIgTFOToo--17W3XcIXQJRLAMpPa0z5rGUSqNStuxPppIRGgE4Br7xhA_n7GERLhqoV_fC2LLKyvaXNt1Z62qlU6HZWeV5Z-pHQlj2ElsFycuGX8oi18S3uP26Z7FsJ9IN3rXfe1agJh9yZV7WT1ja7oBZstOA-b87qG9OZ7CHdqpoEXfLH9pHDSgO0G49iQFXinmIZvNiA7ntLMdukNFH4l47bth3k1Df4PFSGf2fwBpv3q5x3xFHGH9jF_ICT008_orvX4xxwXewduVZxRGaD_qz3tCr5iV4aeBT39NCBzzxA8JBEGBRQpSMQGdgtkD5IsmIBhWqEGQiAiZIxn2eEKlCYVnnTeB0jJrFsoAThE2SYeIMy1ZIgTHFE6q5SMFkFylJqNItdFWDFK9KWoy4rhd7jh2mscU0JjQ2mLYQr4GMf-xubAz3X4Kn_xU8Q9v2qbwsOUdNAzhcmPBhrdpoqzt6fBq13Tn5BKUDw_g |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELWqMsDCN6J8emAk1Ekcu2aD0qqFtktbqZsVJxepSKQVlPL38TkJAgkxsNo6KXrOvbuzzu8IuQJmeApKeVmWco8nobIuhW1_KlGchS0Ap8A3HInelD_OolmNtKu3MNhWWXJ_wemOrcuVZolmczmfN8d-S0pUL8EuSOEe_G7YbECid_Zn918XLSh3otzkXTTw0KJSH3J9XhgoULc74Kh2GnD_9wj1Lep0d8l2mS7Su-KL9kgN8n2yU41ioKVnHpDJNF_DHJ-WUzfJ6CN2204c9t1W1Ld0uDCWAEawouu3G9pxyhE24ODCPKdjm5C_0v6LZRf6ACvXn5Ufkmm3M2n3vHJggpcEfuh7mcwCEfsBEyAZ8FbMjGpBloI9A-PLOGUZmMhEoGIZcMlS4YuYKRNJlJ23mdMRqeeLHI4JtVWGTTRQrjAEzo2Iw0zIBGx5kbA4NFmDXFcg6WWhi6GrhrFn7TDViKlmobaYNoiogNQ_jldb5v7L8OS_hpdkszcZDvSgP3o6JVu4U9ycnJG6BR_ObS6xMhfuX_kEYvLFdQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unveiling+Underwater+Structures%3A+MobileNet+vs.+EfficientNet+in+Sonar+Image+Detection&rft.jtitle=Procedia+computer+science&rft.au=Arjun%2C+P+A&rft.au=Suryanarayan%2C+S&rft.au=Viswamanav%2C+R+S&rft.au=Abhishek%2C+S&rft.date=2024&rft.issn=1877-0509&rft.eissn=1877-0509&rft.volume=233&rft.spage=518&rft.epage=527&rft_id=info:doi/10.1016%2Fj.procs.2024.03.241&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_procs_2024_03_241 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-0509&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-0509&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-0509&client=summon |