A semiparametric Bayesian model for multiple monotonically increasing count sequences

In longitudinal clinical trials, subjects may be evaluated many times over the course of the study. This article is motivated by a medical study conducted in the U.S. Veterans Administration Cooperative Urological Research Group to assess the effectiveness of a treatment in preventing recurrence on...

Full description

Saved in:
Bibliographic Details
Published inBrazilian journal of probability and statistics Vol. 30; no. 2; pp. 155 - 170
Main Authors Leiva-Yamaguchi, Valeria, Quintana, Fernando A.
Format Journal Article
LanguageEnglish
Published Brazilian Statistical Association 01.05.2016
Subjects
Online AccessGet full text
ISSN0103-0752
2317-6199
DOI10.1214/14-BJPS268

Cover

Abstract In longitudinal clinical trials, subjects may be evaluated many times over the course of the study. This article is motivated by a medical study conducted in the U.S. Veterans Administration Cooperative Urological Research Group to assess the effectiveness of a treatment in preventing recurrence on subjects affected by bladder cancer. The data consist of the accumulated tumor counts over a sequence of regular checkups, with many missing observations. We propose a hierarchical nonparametric Bayesian model for sequences of monotonically increasing counts. Unlike some of the previous analyses for these data, we avoid interpolation by explicitly incorporating the missing observations under the assumption of these being missing completely at random. Our formulation involves a generalized linear mixed effects model, using a dependent Dirichlet process prior for the random effects, with an autoregressive component to include serial correlation along patients. This provides great flexibility in the desired inference, that is, assessing the treatment effect. We discuss posterior computations and the corresponding results obtained for the motivating dataset, including a comparison with parametric alternatives.
AbstractList In longitudinal clinical trials, subjects may be evaluated many times over the course of the study. This article is motivated by a medical study conducted in the U.S. Veterans Administration Cooperative Urological Research Group to assess the effectiveness of a treatment in preventing recurrence on subjects affected by bladder cancer. The data consist of the accumulated tumor counts over a sequence of regular checkups, with many missing observations. We propose a hierarchical nonparametric Bayesian model for sequences of monotonically increasing counts. Unlike some of the previous analyses for these data, we avoid interpolation by explicitly incorporating the missing observations under the assumption of these being missing completely at random. Our formulation involves a generalized linear mixed effects model, using a dependent Dirichlet process prior for the random effects, with an autoregressive component to include serial correlation along patients. This provides great flexibility in the desired inference, that is, assessing the treatment effect. We discuss posterior computations and the corresponding results obtained for the motivating dataset, including a comparison with parametric alternatives.
Author Quintana, Fernando A.
Leiva-Yamaguchi, Valeria
Author_xml – sequence: 1
  givenname: Valeria
  surname: Leiva-Yamaguchi
  fullname: Leiva-Yamaguchi, Valeria
– sequence: 2
  givenname: Fernando A.
  surname: Quintana
  fullname: Quintana, Fernando A.
BookMark eNo9kE1LAzEURYNUsNZu3AtZC6N5SSaZLNviJwUF7XrIxDeSMpPUZLrov3ekxcuDC4_DWdxLMgkxICHXwO6Ag7wHWSxf3z-4qs7IlAvQhQJjJmTKgImC6ZJfkHnOWzZGGC45m5LNgmbs_c4m2-OQvKNLe8DsbaB9_MKOtjHRft8Nftfh-ApxiME723UH6oNLaLMP39TFfRhG088eg8N8Rc5b22Wcn3pGNo8Pn6vnYv329LJarAvHgQ9F01qlQVsB0hrhDFeGqbKxWGrDrbKuYpVUUGIjRdU0ElqthK5QQjkKQIgZuT16XYo5J2zrXfK9TYcaWP23ST3eaZMRvjnC2zzE9E9yaUBU0ohfJl1fxw
Cites_doi 10.1214/aos/1176342372
10.1080/10618600.2000.10474879
10.1214/13-BA803
10.1214/aos/1176342871
10.1177/1471082X1001100601
10.1080/01621459.1993.10594284
10.1016/0090-4295(77)90101-7
10.1214/aos/1176342360
10.1214/06-BA122
10.1080/10618600.1998.10474772
10.1214/088342304000000017
10.2307/2531731
10.1080/01621459.1994.10476468
10.1198/016214501750332758
10.1017/CBO9780511802478
10.1111/j.2517-6161.1994.tb01996.x
10.1198/jcgs.2009.06134
10.1007/978-1-4612-1732-9_5
10.1214/13-BA811
10.1111/1467-9868.00353
10.1080/01621459.1991.10475006
10.1093/biomet/83.2.275
10.1080/01621459.1979.10481632
ContentType Journal Article
Copyright Copyright © 2016 Brazilian Statistical Association
Copyright_xml – notice: Copyright © 2016 Brazilian Statistical Association
DBID AAYXX
CITATION
DOI 10.1214/14-BJPS268
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2317-6199
EndPage 170
ExternalDocumentID 10_1214_14_BJPS268
24913849
GroupedDBID AAHSX
ABBHK
ABJPR
ABXSQ
ACHDO
ACIPV
ACMTB
ACTMH
ADULT
AEHFS
AELHJ
AENEX
AEUPB
AFFOW
AFOWJ
AFVYC
AGLNM
AIHAF
ALMA_UNASSIGNED_HOLDINGS
ALRMG
DQDLB
ECEWR
GR0
GX1
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
OK1
P2P
PUASD
RBU
RPE
SA0
TN5
WS9
AAYXX
CITATION
ID FETCH-LOGICAL-c212t-bfa6717a314a93c9269065bae5792a6ac8084615eb438bb41f76378e415c21133
ISSN 0103-0752
IngestDate Tue Jul 01 04:19:12 EDT 2025
Mon May 19 02:50:07 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c212t-bfa6717a314a93c9269065bae5792a6ac8084615eb438bb41f76378e415c21133
PageCount 16
ParticipantIDs crossref_primary_10_1214_14_BJPS268
jstor_primary_24913849
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20160501
2016-5-1
PublicationDateYYYYMMDD 2016-05-01
PublicationDate_xml – month: 5
  year: 2016
  text: 20160501
  day: 1
PublicationDecade 2010
PublicationTitle Brazilian journal of probability and statistics
PublicationYear 2016
Publisher Brazilian Statistical Association
Publisher_xml – name: Brazilian Statistical Association
References 22
23
24
25
26
27
10
11
12
13
14
15
16
17
18
19
1
2
3
4
5
6
7
8
9
20
21
References_xml – ident: 3
  doi: 10.1214/aos/1176342372
– ident: 21
  doi: 10.1080/10618600.2000.10474879
– ident: 9
  doi: 10.1214/13-BA803
– ident: 2
  doi: 10.1214/aos/1176342871
– ident: 24
– ident: 14
  doi: 10.1177/1471082X1001100601
– ident: 4
  doi: 10.1080/01621459.1993.10594284
– ident: 6
  doi: 10.1016/0090-4295(77)90101-7
– ident: 11
  doi: 10.1214/aos/1176342360
– ident: 22
– ident: 1
– ident: 7
  doi: 10.1214/06-BA122
– ident: 18
  doi: 10.1080/10618600.1998.10474772
– ident: 20
  doi: 10.1214/088342304000000017
– ident: 8
  doi: 10.2307/2531731
– ident: 10
  doi: 10.1080/01621459.1994.10476468
– ident: 17
  doi: 10.1198/016214501750332758
– ident: 15
  doi: 10.1017/CBO9780511802478
– ident: 13
  doi: 10.1111/j.2517-6161.1994.tb01996.x
– ident: 23
  doi: 10.1198/jcgs.2009.06134
– ident: 16
  doi: 10.1007/978-1-4612-1732-9_5
– ident: 19
  doi: 10.1214/13-BA811
– ident: 26
  doi: 10.1111/1467-9868.00353
– ident: 27
  doi: 10.1080/01621459.1991.10475006
– ident: 5
  doi: 10.1093/biomet/83.2.275
– ident: 12
  doi: 10.1080/01621459.1979.10481632
– ident: 25
SSID ssj0000392420
Score 1.6081965
Snippet In longitudinal clinical trials, subjects may be evaluated many times over the course of the study. This article is motivated by a medical study conducted in...
SourceID crossref
jstor
SourceType Index Database
Publisher
StartPage 155
SubjectTerms Bayesian networks
Bladder cancer
Cancer
Increasing functions
Nonparametric models
Parametric models
Placebos
Predictive modeling
Statistical variance
Tumors
Title A semiparametric Bayesian model for multiple monotonically increasing count sequences
URI https://www.jstor.org/stable/24913849
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA46X_RBvOK8EdC3UV3a9JLHTbwgKIIbzKeRJpkUXCdbFfTXe5Km7ep8UF9KKUtb-o3kOyff-Q5Cp66QYTtSwiFSth0aKQnzoKIOCUaKSekrl-pC4bv74KZPbwf-oGhxb6tLsvhMfP5YV_IfVOEa4KqrZP-AbHlTuADngC8cAWE4_grjTmumxol27x7rxlii1eUfylRFmgY3RkJYKgbhrSbZxJRBvuhiP00XbcntW5q1Sk11bZt3yj8TkwiZc5jQPWhyd-_cu0nXJOV2z5W6J3nnzhMf82fda8VoaWEhyhXNNs-apEBLDXO1qexJq3M2n4MgQaX4K9KSWpUV-rV51e63JFV4uzBdu4Sagn-ne_vw6Ob9deqe2N_WqlJBqGMXGA2Ry9COXUYrbhiarfrrASnzbG0ggDR35yxe0rrUwvDz6tE1XjIvTTVEo7eB1m2EgDs53JtoSaVbaO2utNedbaN-B9eBxwXw2ACPAXhcAI9rwOMKeGyAxyXwO6h_ddm7uHFsfwxHAOHInHjEA4jGuUcoZ55grjad9mOu_JC5POAiagO7JL6KqRfFMSUjWEzCSAFngxsQz9tFjXSSqj2EReBJmMmlpMyjQcBY7CvBwlEIFIoxwZropPg6w9fcBmW4CEET7ZoPV_4EYnviRZTt_2r4AVqt_lyHqJFN39QRUL4sPjaYfgGSuVsu
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+semiparametric+Bayesian+model+for+multiple+monotonically+increasing+count+sequences&rft.jtitle=Brazilian+journal+of+probability+and+statistics&rft.au=Leiva-Yamaguchi%2C+Valeria&rft.au=Quintana%2C+Fernando+A.&rft.date=2016-05-01&rft.issn=0103-0752&rft.volume=30&rft.issue=2&rft_id=info:doi/10.1214%2F14-BJPS268&rft.externalDBID=n%2Fa&rft.externalDocID=10_1214_14_BJPS268
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0103-0752&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0103-0752&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0103-0752&client=summon