A semiparametric Bayesian model for multiple monotonically increasing count sequences
In longitudinal clinical trials, subjects may be evaluated many times over the course of the study. This article is motivated by a medical study conducted in the U.S. Veterans Administration Cooperative Urological Research Group to assess the effectiveness of a treatment in preventing recurrence on...
Saved in:
Published in | Brazilian journal of probability and statistics Vol. 30; no. 2; pp. 155 - 170 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Brazilian Statistical Association
01.05.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 0103-0752 2317-6199 |
DOI | 10.1214/14-BJPS268 |
Cover
Abstract | In longitudinal clinical trials, subjects may be evaluated many times over the course of the study. This article is motivated by a medical study conducted in the U.S. Veterans Administration Cooperative Urological Research Group to assess the effectiveness of a treatment in preventing recurrence on subjects affected by bladder cancer. The data consist of the accumulated tumor counts over a sequence of regular checkups, with many missing observations. We propose a hierarchical nonparametric Bayesian model for sequences of monotonically increasing counts. Unlike some of the previous analyses for these data, we avoid interpolation by explicitly incorporating the missing observations under the assumption of these being missing completely at random. Our formulation involves a generalized linear mixed effects model, using a dependent Dirichlet process prior for the random effects, with an autoregressive component to include serial correlation along patients. This provides great flexibility in the desired inference, that is, assessing the treatment effect. We discuss posterior computations and the corresponding results obtained for the motivating dataset, including a comparison with parametric alternatives. |
---|---|
AbstractList | In longitudinal clinical trials, subjects may be evaluated many times over the course of the study. This article is motivated by a medical study conducted in the U.S. Veterans Administration Cooperative Urological Research Group to assess the effectiveness of a treatment in preventing recurrence on subjects affected by bladder cancer. The data consist of the accumulated tumor counts over a sequence of regular checkups, with many missing observations. We propose a hierarchical nonparametric Bayesian model for sequences of monotonically increasing counts. Unlike some of the previous analyses for these data, we avoid interpolation by explicitly incorporating the missing observations under the assumption of these being missing completely at random. Our formulation involves a generalized linear mixed effects model, using a dependent Dirichlet process prior for the random effects, with an autoregressive component to include serial correlation along patients. This provides great flexibility in the desired inference, that is, assessing the treatment effect. We discuss posterior computations and the corresponding results obtained for the motivating dataset, including a comparison with parametric alternatives. |
Author | Quintana, Fernando A. Leiva-Yamaguchi, Valeria |
Author_xml | – sequence: 1 givenname: Valeria surname: Leiva-Yamaguchi fullname: Leiva-Yamaguchi, Valeria – sequence: 2 givenname: Fernando A. surname: Quintana fullname: Quintana, Fernando A. |
BookMark | eNo9kE1LAzEURYNUsNZu3AtZC6N5SSaZLNviJwUF7XrIxDeSMpPUZLrov3ekxcuDC4_DWdxLMgkxICHXwO6Ag7wHWSxf3z-4qs7IlAvQhQJjJmTKgImC6ZJfkHnOWzZGGC45m5LNgmbs_c4m2-OQvKNLe8DsbaB9_MKOtjHRft8Nftfh-ApxiME723UH6oNLaLMP39TFfRhG088eg8N8Rc5b22Wcn3pGNo8Pn6vnYv329LJarAvHgQ9F01qlQVsB0hrhDFeGqbKxWGrDrbKuYpVUUGIjRdU0ElqthK5QQjkKQIgZuT16XYo5J2zrXfK9TYcaWP23ST3eaZMRvjnC2zzE9E9yaUBU0ohfJl1fxw |
Cites_doi | 10.1214/aos/1176342372 10.1080/10618600.2000.10474879 10.1214/13-BA803 10.1214/aos/1176342871 10.1177/1471082X1001100601 10.1080/01621459.1993.10594284 10.1016/0090-4295(77)90101-7 10.1214/aos/1176342360 10.1214/06-BA122 10.1080/10618600.1998.10474772 10.1214/088342304000000017 10.2307/2531731 10.1080/01621459.1994.10476468 10.1198/016214501750332758 10.1017/CBO9780511802478 10.1111/j.2517-6161.1994.tb01996.x 10.1198/jcgs.2009.06134 10.1007/978-1-4612-1732-9_5 10.1214/13-BA811 10.1111/1467-9868.00353 10.1080/01621459.1991.10475006 10.1093/biomet/83.2.275 10.1080/01621459.1979.10481632 |
ContentType | Journal Article |
Copyright | Copyright © 2016 Brazilian Statistical Association |
Copyright_xml | – notice: Copyright © 2016 Brazilian Statistical Association |
DBID | AAYXX CITATION |
DOI | 10.1214/14-BJPS268 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2317-6199 |
EndPage | 170 |
ExternalDocumentID | 10_1214_14_BJPS268 24913849 |
GroupedDBID | AAHSX ABBHK ABJPR ABXSQ ACHDO ACIPV ACMTB ACTMH ADULT AEHFS AELHJ AENEX AEUPB AFFOW AFOWJ AFVYC AGLNM AIHAF ALMA_UNASSIGNED_HOLDINGS ALRMG DQDLB ECEWR GR0 GX1 IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JST OK1 P2P PUASD RBU RPE SA0 TN5 WS9 AAYXX CITATION |
ID | FETCH-LOGICAL-c212t-bfa6717a314a93c9269065bae5792a6ac8084615eb438bb41f76378e415c21133 |
ISSN | 0103-0752 |
IngestDate | Tue Jul 01 04:19:12 EDT 2025 Mon May 19 02:50:07 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Issue | 2 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c212t-bfa6717a314a93c9269065bae5792a6ac8084615eb438bb41f76378e415c21133 |
PageCount | 16 |
ParticipantIDs | crossref_primary_10_1214_14_BJPS268 jstor_primary_24913849 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20160501 2016-5-1 |
PublicationDateYYYYMMDD | 2016-05-01 |
PublicationDate_xml | – month: 5 year: 2016 text: 20160501 day: 1 |
PublicationDecade | 2010 |
PublicationTitle | Brazilian journal of probability and statistics |
PublicationYear | 2016 |
Publisher | Brazilian Statistical Association |
Publisher_xml | – name: Brazilian Statistical Association |
References | 22 23 24 25 26 27 10 11 12 13 14 15 16 17 18 19 1 2 3 4 5 6 7 8 9 20 21 |
References_xml | – ident: 3 doi: 10.1214/aos/1176342372 – ident: 21 doi: 10.1080/10618600.2000.10474879 – ident: 9 doi: 10.1214/13-BA803 – ident: 2 doi: 10.1214/aos/1176342871 – ident: 24 – ident: 14 doi: 10.1177/1471082X1001100601 – ident: 4 doi: 10.1080/01621459.1993.10594284 – ident: 6 doi: 10.1016/0090-4295(77)90101-7 – ident: 11 doi: 10.1214/aos/1176342360 – ident: 22 – ident: 1 – ident: 7 doi: 10.1214/06-BA122 – ident: 18 doi: 10.1080/10618600.1998.10474772 – ident: 20 doi: 10.1214/088342304000000017 – ident: 8 doi: 10.2307/2531731 – ident: 10 doi: 10.1080/01621459.1994.10476468 – ident: 17 doi: 10.1198/016214501750332758 – ident: 15 doi: 10.1017/CBO9780511802478 – ident: 13 doi: 10.1111/j.2517-6161.1994.tb01996.x – ident: 23 doi: 10.1198/jcgs.2009.06134 – ident: 16 doi: 10.1007/978-1-4612-1732-9_5 – ident: 19 doi: 10.1214/13-BA811 – ident: 26 doi: 10.1111/1467-9868.00353 – ident: 27 doi: 10.1080/01621459.1991.10475006 – ident: 5 doi: 10.1093/biomet/83.2.275 – ident: 12 doi: 10.1080/01621459.1979.10481632 – ident: 25 |
SSID | ssj0000392420 |
Score | 1.6081965 |
Snippet | In longitudinal clinical trials, subjects may be evaluated many times over the course of the study. This article is motivated by a medical study conducted in... |
SourceID | crossref jstor |
SourceType | Index Database Publisher |
StartPage | 155 |
SubjectTerms | Bayesian networks Bladder cancer Cancer Increasing functions Nonparametric models Parametric models Placebos Predictive modeling Statistical variance Tumors |
Title | A semiparametric Bayesian model for multiple monotonically increasing count sequences |
URI | https://www.jstor.org/stable/24913849 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA46X_RBvOK8EdC3UV3a9JLHTbwgKIIbzKeRJpkUXCdbFfTXe5Km7ep8UF9KKUtb-o3kOyff-Q5Cp66QYTtSwiFSth0aKQnzoKIOCUaKSekrl-pC4bv74KZPbwf-oGhxb6tLsvhMfP5YV_IfVOEa4KqrZP-AbHlTuADngC8cAWE4_grjTmumxol27x7rxlii1eUfylRFmgY3RkJYKgbhrSbZxJRBvuhiP00XbcntW5q1Sk11bZt3yj8TkwiZc5jQPWhyd-_cu0nXJOV2z5W6J3nnzhMf82fda8VoaWEhyhXNNs-apEBLDXO1qexJq3M2n4MgQaX4K9KSWpUV-rV51e63JFV4uzBdu4Sagn-ne_vw6Ob9deqe2N_WqlJBqGMXGA2Ry9COXUYrbhiarfrrASnzbG0ggDR35yxe0rrUwvDz6tE1XjIvTTVEo7eB1m2EgDs53JtoSaVbaO2utNedbaN-B9eBxwXw2ACPAXhcAI9rwOMKeGyAxyXwO6h_ddm7uHFsfwxHAOHInHjEA4jGuUcoZ55grjad9mOu_JC5POAiagO7JL6KqRfFMSUjWEzCSAFngxsQz9tFjXSSqj2EReBJmMmlpMyjQcBY7CvBwlEIFIoxwZropPg6w9fcBmW4CEET7ZoPV_4EYnviRZTt_2r4AVqt_lyHqJFN39QRUL4sPjaYfgGSuVsu |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+semiparametric+Bayesian+model+for+multiple+monotonically+increasing+count+sequences&rft.jtitle=Brazilian+journal+of+probability+and+statistics&rft.au=Leiva-Yamaguchi%2C+Valeria&rft.au=Quintana%2C+Fernando+A.&rft.date=2016-05-01&rft.issn=0103-0752&rft.volume=30&rft.issue=2&rft_id=info:doi/10.1214%2F14-BJPS268&rft.externalDBID=n%2Fa&rft.externalDocID=10_1214_14_BJPS268 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0103-0752&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0103-0752&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0103-0752&client=summon |