Presence-only and Presence-absence Data for Comparing Species Distribution Modeling Methods
Species distribution models (SDMs) are widely used to predict and study distributions of species. Many different modeling methods and associated algorithms are used and continue to emerge. It is important to understand how different approaches perform, particularly when applied to species occurrence...
Saved in:
Published in | Biodiversity informatics Vol. 15; no. 2; pp. 69 - 80 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
22.07.2020
|
Online Access | Get full text |
Cover
Loading…
Abstract | Species distribution models (SDMs) are widely used to predict and study distributions of species. Many different modeling methods and associated algorithms are used and continue to emerge. It is important to understand how different approaches perform, particularly when applied to species occurrence records that were not gathered in structured surveys (e.g. opportunistic records). This need motivated a large-scale, collaborative effort, published in 2006, that aimed to create objective comparisons of algorithm performance. As a benchmark, and to facilitate future comparisons of approaches, here we publish that dataset: point location records for 226 anonymized species from six regions of the world, with accompanying predictor variables in raster (grid) and point formats. A particularly interesting characteristic of this dataset is that independent presence-absence survey data are available for evaluation alongside the presence-only species occurrence data intended for modeling. The dataset is available on Open Science Framework and as an R package and can be used as a benchmark for modeling approaches and for testing new ways to evaluate the accuracy of SDMs. |
---|---|
AbstractList | Species distribution models (SDMs) are widely used to predict and study distributions of species. Many different modeling methods and associated algorithms are used and continue to emerge. It is important to understand how different approaches perform, particularly when applied to species occurrence records that were not gathered in structured surveys (e.g. opportunistic records). This need motivated a large-scale, collaborative effort, published in 2006, that aimed to create objective comparisons of algorithm performance. As a benchmark, and to facilitate future comparisons of approaches, here we publish that dataset: point location records for 226 anonymized species from six regions of the world, with accompanying predictor variables in raster (grid) and point formats. A particularly interesting characteristic of this dataset is that independent presence-absence survey data are available for evaluation alongside the presence-only species occurrence data intended for modeling. The dataset is available on Open Science Framework and as an R package and can be used as a benchmark for modeling approaches and for testing new ways to evaluate the accuracy of SDMs. |
Author | Loiselle, Bette Elith, Jane Huettmann, Falk Wiser, Susan K. Hijmans, Robert J. Lohmann, Lucia Overton, Jake Peterson, A. Townsend Phillips, Steven Valavi, Roozbeh Zimmermann, Niklaus E. Graham, Catherine Ford, Andrew Moritz, Craig Wohlgemuth, Thomas Richardson, Karen Abegg, Meinrad Guisan, Antoine Bruce, Caroline Williams, Stephen |
Author_xml | – sequence: 1 givenname: Jane surname: Elith fullname: Elith, Jane – sequence: 2 givenname: Catherine surname: Graham fullname: Graham, Catherine – sequence: 3 givenname: Roozbeh surname: Valavi fullname: Valavi, Roozbeh – sequence: 4 givenname: Meinrad surname: Abegg fullname: Abegg, Meinrad – sequence: 5 givenname: Caroline surname: Bruce fullname: Bruce, Caroline – sequence: 6 givenname: Andrew surname: Ford fullname: Ford, Andrew – sequence: 7 givenname: Antoine surname: Guisan fullname: Guisan, Antoine – sequence: 8 givenname: Robert J. surname: Hijmans fullname: Hijmans, Robert J. – sequence: 9 givenname: Falk surname: Huettmann fullname: Huettmann, Falk – sequence: 10 givenname: Lucia surname: Lohmann fullname: Lohmann, Lucia – sequence: 11 givenname: Bette surname: Loiselle fullname: Loiselle, Bette – sequence: 12 givenname: Craig surname: Moritz fullname: Moritz, Craig – sequence: 13 givenname: Jake surname: Overton fullname: Overton, Jake – sequence: 14 givenname: A. Townsend surname: Peterson fullname: Peterson, A. Townsend – sequence: 15 givenname: Steven surname: Phillips fullname: Phillips, Steven – sequence: 16 givenname: Karen surname: Richardson fullname: Richardson, Karen – sequence: 17 givenname: Stephen surname: Williams fullname: Williams, Stephen – sequence: 18 givenname: Susan K. surname: Wiser fullname: Wiser, Susan K. – sequence: 19 givenname: Thomas surname: Wohlgemuth fullname: Wohlgemuth, Thomas – sequence: 20 givenname: Niklaus E. surname: Zimmermann fullname: Zimmermann, Niklaus E. |
BookMark | eNp1kE1LAzEQhoNUsK2eveYPbLuzmw9zlK1aoUVBPXlYsvnQyDYpSRT6721XERFkDu8wwzMMzwSNfPAGoXMoZ8CBwbxzsw-grppBXV-QIzQGSlgheE1Hv_oTNEnprSxrRjkfo-f7aJLxyhTB9zssvcY_E9kNiRcyS2xDxE3YbGV0_gU_bI1yJuGFSzm67j274PE6aNMftmuTX4NOp-jYyj6Zs--coqfrq8dmWazubm6by1WhKqhyIbTuOFBGlJVMsqqiHQFS2X3xGrigQhoKhEptKRPcKlPSUghiiRVaCFtPEf26q2JIKRrbKpfl4aUcpetbKNvBUNu5djDUDob23PwPt41uI-PuX-ITgBNshw |
CitedBy_id | crossref_primary_10_1094_PDIS_12_22_2908_RE crossref_primary_10_1111_ddi_13498 crossref_primary_10_1111_ddi_13675 crossref_primary_10_1111_geb_13639 crossref_primary_10_1007_s10641_025_01670_2 crossref_primary_10_2139_ssrn_4175953 crossref_primary_10_1038_s41598_021_01595_7 crossref_primary_10_1186_s13071_024_06636_4 crossref_primary_10_1111_ecog_05615 crossref_primary_10_3390_geosciences14070186 crossref_primary_10_1002_ece3_7989 crossref_primary_10_1111_ecog_05877 crossref_primary_10_1016_j_ecoinf_2024_102832 crossref_primary_10_1109_TPAMI_2022_3168152 crossref_primary_10_1016_j_biocon_2023_110361 crossref_primary_10_1016_j_ecoinf_2023_102106 crossref_primary_10_1111_1365_2664_14166 crossref_primary_10_3389_ffgc_2025_1519432 crossref_primary_10_1016_j_ecoinf_2021_101478 crossref_primary_10_3354_esr01270 crossref_primary_10_1007_s10750_024_05619_x crossref_primary_10_1016_j_jaridenv_2022_104725 crossref_primary_10_3897_natureconservation_58_140644 crossref_primary_10_3390_ijerph20032206 crossref_primary_10_1016_j_ecolmodel_2024_110667 crossref_primary_10_1002_ece3_10635 crossref_primary_10_1007_s10531_021_02195_7 crossref_primary_10_1016_j_scitotenv_2022_154053 crossref_primary_10_3390_fishes8110559 crossref_primary_10_1016_j_ecoinf_2024_102623 crossref_primary_10_1007_s10531_024_02841_w crossref_primary_10_1038_s41598_024_55173_8 crossref_primary_10_1111_csp2_12917 crossref_primary_10_3354_meps14404 crossref_primary_10_1016_j_gecco_2022_e02360 crossref_primary_10_1073_pnas_2307525121 crossref_primary_10_1016_j_scitotenv_2022_159598 crossref_primary_10_1007_s13762_025_06346_z crossref_primary_10_1016_j_ecolmodel_2023_110458 crossref_primary_10_1016_j_rsma_2025_104059 crossref_primary_10_1002_ecm_1486 crossref_primary_10_1016_j_chaos_2024_114996 crossref_primary_10_1038_s41598_024_57588_9 crossref_primary_10_1111_2041_210X_14252 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.17161/bi.v15i2.13384 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Ecology |
EISSN | 1546-9735 |
EndPage | 80 |
ExternalDocumentID | 10_17161_bi_v15i2_13384 |
GroupedDBID | 23N 2WC 5GY 5VS 6J9 AAKPC AAYXX ACPRK ADBBV AFRAH ALMA_UNASSIGNED_HOLDINGS BCNDV CITATION E3Z EBS EJD GX1 KQ8 KWQ OK1 OVT RNS TR2 XSB |
ID | FETCH-LOGICAL-c212t-9ddb71564cfa6a6225b4142f2f27317959ae5145adf5697fce050994f4f9d99f3 |
ISSN | 1546-9735 |
IngestDate | Tue Jul 01 04:20:16 EDT 2025 Thu Apr 24 22:52:40 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | http://creativecommons.org/licenses/by-nc/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c212t-9ddb71564cfa6a6225b4142f2f27317959ae5145adf5697fce050994f4f9d99f3 |
OpenAccessLink | https://journals.ku.edu/jbi/article/download/13384/13221 |
PageCount | 12 |
ParticipantIDs | crossref_citationtrail_10_17161_bi_v15i2_13384 crossref_primary_10_17161_bi_v15i2_13384 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-07-22 |
PublicationDateYYYYMMDD | 2020-07-22 |
PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-22 day: 22 |
PublicationDecade | 2020 |
PublicationTitle | Biodiversity informatics |
PublicationYear | 2020 |
SSID | ssj0036577 |
Score | 2.3484838 |
Snippet | Species distribution models (SDMs) are widely used to predict and study distributions of species. Many different modeling methods and associated algorithms are... |
SourceID | crossref |
SourceType | Enrichment Source Index Database |
StartPage | 69 |
Title | Presence-only and Presence-absence Data for Comparing Species Distribution Modeling Methods |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NaxsxEBVOSiGXkDYt-Sw69NCLtvFa2rWOITgNAZcekmLIYZG0Ulgw65BsDM4_yL_OSKuV5eBAWgxrI6-F7fcYzUgzbxD6DhYvFZwKkuUyJzQXlAxNxoiSsCAIcBl4afchx7-zi2t6OWGTXu85ylp6bGSintbWlfwPqjAGuNoq2X9ANkwKA_Aa8IUrIAzXd2H8x9UOKU1m9XTh8_79iJDuGVBthEslPGsbDlr9bdtyXj9Y4c3Q7sr1RHOV6WPXUvph5bC3mpUhfcMrrTZRlvxo6ndnLsXykH5Zgh2KDLu3_oqpmFdtXvfsSeqwI30q9a0zPWNd1feijLckIP48yUmaxlaUZoTnrQ5JoteMdaaXRRRLIzvatm_pVuSTtbYeIj1r7GWVzPusShMbbdPlstYd5b9a7UIOoo1-7BSFrAo3QeEm2EAfUog4bDOMX5OQLTTImGviGX6FV4myE_xc_QaRgxN5Klc7aNuHGPi05csn1NP1Z_Rx5OTJF7voZoU1GFiDX7MGW9ZgwBkH1mDPGhyzBneswZ41X9D1-ejq7IL4FhtEgc_SEF6WMrd6QcqITGRg3CXt09TAIwfPkjMuNLjUTJSGZTw3Slu9IE4NNbzk3Ay-os16Vus9hLnkqVF0MFQCfHA6lBBI97kSTENEMOjLfZR0_0uhvP68bYMyLd5AYh_9CB-4a6VX3rr14P23HqKtJWWP0GZz_6iPwa9s5DeH-AtIvnkV |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Presence-only+and+Presence-absence+Data+for+Comparing+Species+Distribution+Modeling+Methods&rft.jtitle=Biodiversity+informatics&rft.au=Elith%2C+Jane&rft.au=Graham%2C+Catherine&rft.au=Valavi%2C+Roozbeh&rft.au=Abegg%2C+Meinrad&rft.date=2020-07-22&rft.issn=1546-9735&rft.eissn=1546-9735&rft.volume=15&rft.issue=2&rft.spage=69&rft.epage=80&rft_id=info:doi/10.17161%2Fbi.v15i2.13384&rft.externalDBID=n%2Fa&rft.externalDocID=10_17161_bi_v15i2_13384 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-9735&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-9735&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-9735&client=summon |