Presence-only and Presence-absence Data for Comparing Species Distribution Modeling Methods

Species distribution models (SDMs) are widely used to predict and study distributions of species. Many different modeling methods and associated algorithms are used and continue to emerge. It is important to understand how different approaches perform, particularly when applied to species occurrence...

Full description

Saved in:
Bibliographic Details
Published inBiodiversity informatics Vol. 15; no. 2; pp. 69 - 80
Main Authors Elith, Jane, Graham, Catherine, Valavi, Roozbeh, Abegg, Meinrad, Bruce, Caroline, Ford, Andrew, Guisan, Antoine, Hijmans, Robert J., Huettmann, Falk, Lohmann, Lucia, Loiselle, Bette, Moritz, Craig, Overton, Jake, Peterson, A. Townsend, Phillips, Steven, Richardson, Karen, Williams, Stephen, Wiser, Susan K., Wohlgemuth, Thomas, Zimmermann, Niklaus E.
Format Journal Article
LanguageEnglish
Published 22.07.2020
Online AccessGet full text

Cover

Loading…
Abstract Species distribution models (SDMs) are widely used to predict and study distributions of species. Many different modeling methods and associated algorithms are used and continue to emerge. It is important to understand how different approaches perform, particularly when applied to species occurrence records that were not gathered in struc­tured surveys (e.g. opportunistic records). This need motivated a large-scale, collaborative effort, published in 2006, that aimed to create objective comparisons of algorithm performance. As a benchmark, and to facilitate future comparisons of approaches, here we publish that dataset: point location records for 226 anonymized species from six regions of the world, with accompanying predictor variables in raster (grid) and point formats. A particularly interesting characteristic of this dataset is that independent presence-absence survey data are available for evaluation alongside the presence-only species occurrence data intended for modeling. The dataset is available on Open Science Framework and as an R package and can be used as a benchmark for modeling approaches and for testing new ways to evaluate the accuracy of SDMs.
AbstractList Species distribution models (SDMs) are widely used to predict and study distributions of species. Many different modeling methods and associated algorithms are used and continue to emerge. It is important to understand how different approaches perform, particularly when applied to species occurrence records that were not gathered in struc­tured surveys (e.g. opportunistic records). This need motivated a large-scale, collaborative effort, published in 2006, that aimed to create objective comparisons of algorithm performance. As a benchmark, and to facilitate future comparisons of approaches, here we publish that dataset: point location records for 226 anonymized species from six regions of the world, with accompanying predictor variables in raster (grid) and point formats. A particularly interesting characteristic of this dataset is that independent presence-absence survey data are available for evaluation alongside the presence-only species occurrence data intended for modeling. The dataset is available on Open Science Framework and as an R package and can be used as a benchmark for modeling approaches and for testing new ways to evaluate the accuracy of SDMs.
Author Loiselle, Bette
Elith, Jane
Huettmann, Falk
Wiser, Susan K.
Hijmans, Robert J.
Lohmann, Lucia
Overton, Jake
Peterson, A. Townsend
Phillips, Steven
Valavi, Roozbeh
Zimmermann, Niklaus E.
Graham, Catherine
Ford, Andrew
Moritz, Craig
Wohlgemuth, Thomas
Richardson, Karen
Abegg, Meinrad
Guisan, Antoine
Bruce, Caroline
Williams, Stephen
Author_xml – sequence: 1
  givenname: Jane
  surname: Elith
  fullname: Elith, Jane
– sequence: 2
  givenname: Catherine
  surname: Graham
  fullname: Graham, Catherine
– sequence: 3
  givenname: Roozbeh
  surname: Valavi
  fullname: Valavi, Roozbeh
– sequence: 4
  givenname: Meinrad
  surname: Abegg
  fullname: Abegg, Meinrad
– sequence: 5
  givenname: Caroline
  surname: Bruce
  fullname: Bruce, Caroline
– sequence: 6
  givenname: Andrew
  surname: Ford
  fullname: Ford, Andrew
– sequence: 7
  givenname: Antoine
  surname: Guisan
  fullname: Guisan, Antoine
– sequence: 8
  givenname: Robert J.
  surname: Hijmans
  fullname: Hijmans, Robert J.
– sequence: 9
  givenname: Falk
  surname: Huettmann
  fullname: Huettmann, Falk
– sequence: 10
  givenname: Lucia
  surname: Lohmann
  fullname: Lohmann, Lucia
– sequence: 11
  givenname: Bette
  surname: Loiselle
  fullname: Loiselle, Bette
– sequence: 12
  givenname: Craig
  surname: Moritz
  fullname: Moritz, Craig
– sequence: 13
  givenname: Jake
  surname: Overton
  fullname: Overton, Jake
– sequence: 14
  givenname: A. Townsend
  surname: Peterson
  fullname: Peterson, A. Townsend
– sequence: 15
  givenname: Steven
  surname: Phillips
  fullname: Phillips, Steven
– sequence: 16
  givenname: Karen
  surname: Richardson
  fullname: Richardson, Karen
– sequence: 17
  givenname: Stephen
  surname: Williams
  fullname: Williams, Stephen
– sequence: 18
  givenname: Susan K.
  surname: Wiser
  fullname: Wiser, Susan K.
– sequence: 19
  givenname: Thomas
  surname: Wohlgemuth
  fullname: Wohlgemuth, Thomas
– sequence: 20
  givenname: Niklaus E.
  surname: Zimmermann
  fullname: Zimmermann, Niklaus E.
BookMark eNp1kE1LAzEQhoNUsK2eveYPbLuzmw9zlK1aoUVBPXlYsvnQyDYpSRT6721XERFkDu8wwzMMzwSNfPAGoXMoZ8CBwbxzsw-grppBXV-QIzQGSlgheE1Hv_oTNEnprSxrRjkfo-f7aJLxyhTB9zssvcY_E9kNiRcyS2xDxE3YbGV0_gU_bI1yJuGFSzm67j274PE6aNMftmuTX4NOp-jYyj6Zs--coqfrq8dmWazubm6by1WhKqhyIbTuOFBGlJVMsqqiHQFS2X3xGrigQhoKhEptKRPcKlPSUghiiRVaCFtPEf26q2JIKRrbKpfl4aUcpetbKNvBUNu5djDUDob23PwPt41uI-PuX-ITgBNshw
CitedBy_id crossref_primary_10_1094_PDIS_12_22_2908_RE
crossref_primary_10_1111_ddi_13498
crossref_primary_10_1111_ddi_13675
crossref_primary_10_1111_geb_13639
crossref_primary_10_1007_s10641_025_01670_2
crossref_primary_10_2139_ssrn_4175953
crossref_primary_10_1038_s41598_021_01595_7
crossref_primary_10_1186_s13071_024_06636_4
crossref_primary_10_1111_ecog_05615
crossref_primary_10_3390_geosciences14070186
crossref_primary_10_1002_ece3_7989
crossref_primary_10_1111_ecog_05877
crossref_primary_10_1016_j_ecoinf_2024_102832
crossref_primary_10_1109_TPAMI_2022_3168152
crossref_primary_10_1016_j_biocon_2023_110361
crossref_primary_10_1016_j_ecoinf_2023_102106
crossref_primary_10_1111_1365_2664_14166
crossref_primary_10_3389_ffgc_2025_1519432
crossref_primary_10_1016_j_ecoinf_2021_101478
crossref_primary_10_3354_esr01270
crossref_primary_10_1007_s10750_024_05619_x
crossref_primary_10_1016_j_jaridenv_2022_104725
crossref_primary_10_3897_natureconservation_58_140644
crossref_primary_10_3390_ijerph20032206
crossref_primary_10_1016_j_ecolmodel_2024_110667
crossref_primary_10_1002_ece3_10635
crossref_primary_10_1007_s10531_021_02195_7
crossref_primary_10_1016_j_scitotenv_2022_154053
crossref_primary_10_3390_fishes8110559
crossref_primary_10_1016_j_ecoinf_2024_102623
crossref_primary_10_1007_s10531_024_02841_w
crossref_primary_10_1038_s41598_024_55173_8
crossref_primary_10_1111_csp2_12917
crossref_primary_10_3354_meps14404
crossref_primary_10_1016_j_gecco_2022_e02360
crossref_primary_10_1073_pnas_2307525121
crossref_primary_10_1016_j_scitotenv_2022_159598
crossref_primary_10_1007_s13762_025_06346_z
crossref_primary_10_1016_j_ecolmodel_2023_110458
crossref_primary_10_1016_j_rsma_2025_104059
crossref_primary_10_1002_ecm_1486
crossref_primary_10_1016_j_chaos_2024_114996
crossref_primary_10_1038_s41598_024_57588_9
crossref_primary_10_1111_2041_210X_14252
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.17161/bi.v15i2.13384
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Ecology
EISSN 1546-9735
EndPage 80
ExternalDocumentID 10_17161_bi_v15i2_13384
GroupedDBID 23N
2WC
5GY
5VS
6J9
AAKPC
AAYXX
ACPRK
ADBBV
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
E3Z
EBS
EJD
GX1
KQ8
KWQ
OK1
OVT
RNS
TR2
XSB
ID FETCH-LOGICAL-c212t-9ddb71564cfa6a6225b4142f2f27317959ae5145adf5697fce050994f4f9d99f3
ISSN 1546-9735
IngestDate Tue Jul 01 04:20:16 EDT 2025
Thu Apr 24 22:52:40 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License http://creativecommons.org/licenses/by-nc/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c212t-9ddb71564cfa6a6225b4142f2f27317959ae5145adf5697fce050994f4f9d99f3
OpenAccessLink https://journals.ku.edu/jbi/article/download/13384/13221
PageCount 12
ParticipantIDs crossref_citationtrail_10_17161_bi_v15i2_13384
crossref_primary_10_17161_bi_v15i2_13384
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-07-22
PublicationDateYYYYMMDD 2020-07-22
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-22
  day: 22
PublicationDecade 2020
PublicationTitle Biodiversity informatics
PublicationYear 2020
SSID ssj0036577
Score 2.3484838
Snippet Species distribution models (SDMs) are widely used to predict and study distributions of species. Many different modeling methods and associated algorithms are...
SourceID crossref
SourceType Enrichment Source
Index Database
StartPage 69
Title Presence-only and Presence-absence Data for Comparing Species Distribution Modeling Methods
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NaxsxEBVOSiGXkDYt-Sw69NCLtvFa2rWOITgNAZcekmLIYZG0Ulgw65BsDM4_yL_OSKuV5eBAWgxrI6-F7fcYzUgzbxD6DhYvFZwKkuUyJzQXlAxNxoiSsCAIcBl4afchx7-zi2t6OWGTXu85ylp6bGSintbWlfwPqjAGuNoq2X9ANkwKA_Aa8IUrIAzXd2H8x9UOKU1m9XTh8_79iJDuGVBthEslPGsbDlr9bdtyXj9Y4c3Q7sr1RHOV6WPXUvph5bC3mpUhfcMrrTZRlvxo6ndnLsXykH5Zgh2KDLu3_oqpmFdtXvfsSeqwI30q9a0zPWNd1feijLckIP48yUmaxlaUZoTnrQ5JoteMdaaXRRRLIzvatm_pVuSTtbYeIj1r7GWVzPusShMbbdPlstYd5b9a7UIOoo1-7BSFrAo3QeEm2EAfUog4bDOMX5OQLTTImGviGX6FV4myE_xc_QaRgxN5Klc7aNuHGPi05csn1NP1Z_Rx5OTJF7voZoU1GFiDX7MGW9ZgwBkH1mDPGhyzBneswZ41X9D1-ejq7IL4FhtEgc_SEF6WMrd6QcqITGRg3CXt09TAIwfPkjMuNLjUTJSGZTw3Slu9IE4NNbzk3Ay-os16Vus9hLnkqVF0MFQCfHA6lBBI97kSTENEMOjLfZR0_0uhvP68bYMyLd5AYh_9CB-4a6VX3rr14P23HqKtJWWP0GZz_6iPwa9s5DeH-AtIvnkV
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Presence-only+and+Presence-absence+Data+for+Comparing+Species+Distribution+Modeling+Methods&rft.jtitle=Biodiversity+informatics&rft.au=Elith%2C+Jane&rft.au=Graham%2C+Catherine&rft.au=Valavi%2C+Roozbeh&rft.au=Abegg%2C+Meinrad&rft.date=2020-07-22&rft.issn=1546-9735&rft.eissn=1546-9735&rft.volume=15&rft.issue=2&rft.spage=69&rft.epage=80&rft_id=info:doi/10.17161%2Fbi.v15i2.13384&rft.externalDBID=n%2Fa&rft.externalDocID=10_17161_bi_v15i2_13384
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-9735&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-9735&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-9735&client=summon