Pre-sleep casein protein ingestion: new paradigm in post-exercise recovery nutrition
Milk is a commonly ingested post-exercise recovery protein source. Casein protein, found in milk, is characterized by its slow digestion and absorption. Recently, several studies have been conducted with a focus on how pre-sleep casein protein intake could affect post-exercise recovery but our knowl...
Saved in:
Published in | Journal of exercise nutrition & biochemistry Vol. 24; no. 2; pp. 6 - 10 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
한국운동영양학회
30.06.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 2233-6842 2733-7545 2233-6842 2733-7545 |
DOI | 10.20463/pan.2020.0009 |
Cover
Summary: | Milk is a commonly ingested post-exercise recovery protein source. Casein protein, found in milk, is characterized by its slow digestion and absorption. Recently, several studies have been conducted with a focus on how pre-sleep casein protein intake could affect post-exercise recovery but our knowledge of the subject remains limited. This review aimed at presenting and discussing how pre-sleep casein protein ingestion affects post-exercise recovery and the details of its potential effector mechanisms.PURPOSEMilk is a commonly ingested post-exercise recovery protein source. Casein protein, found in milk, is characterized by its slow digestion and absorption. Recently, several studies have been conducted with a focus on how pre-sleep casein protein intake could affect post-exercise recovery but our knowledge of the subject remains limited. This review aimed at presenting and discussing how pre-sleep casein protein ingestion affects post-exercise recovery and the details of its potential effector mechanisms.We systematically reviewed the topics of 1) casein nutritional characteristics, 2) pre-sleep casein protein effects on post-exercise recovery, and 3) potential effector mechanisms of pre-sleep casein protein on post-exercise recovery, based on the currently available published studies on pre-sleep casein protein ingestion.METHODSWe systematically reviewed the topics of 1) casein nutritional characteristics, 2) pre-sleep casein protein effects on post-exercise recovery, and 3) potential effector mechanisms of pre-sleep casein protein on post-exercise recovery, based on the currently available published studies on pre-sleep casein protein ingestion.Studies have shown that pre-sleep casein protein ingestion (timing: 30 minutes before sleep, amount of casein protein ingested: 40-48 g) could help post-exercise recovery and positively affect acute protein metabolism and exercise performance. In addition, studies have suggested that repeated pre-sleep casein protein ingestion for post-exercise recovery over a long period might also result in chronic effects that optimize intramuscular physiological adaptation (muscle strength and muscle hypertrophy). The potential mechanisms of pre-sleep casein protein ingestion that contribute to these effects include the following: 1) significantly increasing plasma amino acid availability during sleep, thereby increasing protein synthesis, inhibiting protein breakdown, and achieving a positive protein balance; and 2) weakening exercise-induced muscle damage or inflammatory responses, causing reduced muscle soreness. Future studies should focus on completely elucidating these potential mechanisms.RESULTSStudies have shown that pre-sleep casein protein ingestion (timing: 30 minutes before sleep, amount of casein protein ingested: 40-48 g) could help post-exercise recovery and positively affect acute protein metabolism and exercise performance. In addition, studies have suggested that repeated pre-sleep casein protein ingestion for post-exercise recovery over a long period might also result in chronic effects that optimize intramuscular physiological adaptation (muscle strength and muscle hypertrophy). The potential mechanisms of pre-sleep casein protein ingestion that contribute to these effects include the following: 1) significantly increasing plasma amino acid availability during sleep, thereby increasing protein synthesis, inhibiting protein breakdown, and achieving a positive protein balance; and 2) weakening exercise-induced muscle damage or inflammatory responses, causing reduced muscle soreness. Future studies should focus on completely elucidating these potential mechanisms.In conclusion, post-exercise ingestion of at least 40 g of casein protein, approximately 30 minutes before sleep and after a bout of resistance exercise in the evening, might be an effective nutritional intervention to facilitate muscle recovery.CONCLUSIONIn conclusion, post-exercise ingestion of at least 40 g of casein protein, approximately 30 minutes before sleep and after a bout of resistance exercise in the evening, might be an effective nutritional intervention to facilitate muscle recovery. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2233-6842 2733-7545 2233-6842 2733-7545 |
DOI: | 10.20463/pan.2020.0009 |