Formation of Point Shocks for 3D Compressible Euler

We consider the 3D isentropic compressible Euler equations with the ideal gas law. We provide a constructive proof of the formation of the first point shock from smooth initial datum of finite energy, with no vacuum regions, with nontrivial vorticity present at the shock, and under no symmetry assum...

Full description

Saved in:
Bibliographic Details
Published inCommunications on pure and applied mathematics Vol. 76; no. 9; pp. 2073 - 2191
Main Authors Buckmaster, Tristan, Shkoller, Steve, Vicol, Vlad
Format Journal Article
LanguageEnglish
Published Melbourne John Wiley & Sons Australia, Ltd 01.09.2023
John Wiley and Sons, Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We consider the 3D isentropic compressible Euler equations with the ideal gas law. We provide a constructive proof of the formation of the first point shock from smooth initial datum of finite energy, with no vacuum regions, with nontrivial vorticity present at the shock, and under no symmetry assumptions. We prove that for an open set of Sobolev‐class initial data that are a small L∞ perturbation of a constant state, there exist smooth solutions to the Euler equations which form a generic stable shock in finite time. The blowup time and location can be explicitly computed, and solutions at the blowup time are smooth except for a single point, where they are of cusp‐type with Hölder C1/3 regularity. Our proof is based on the use of modulated self‐similar variables that are used to enforce a number of constraints on the blowup profile, necessary to establish global existence and asymptotic stability in self‐similar variables. © 2022 Wiley Periodicals LLC.
AbstractList We consider the 3D isentropic compressible Euler equations with the ideal gas law. We provide a constructive proof of the formation of the first point shock from smooth initial datum of finite energy, with no vacuum regions, with nontrivial vorticity present at the shock, and under no symmetry assumptions. We prove that for an open set of Sobolev‐class initial data that are a small L∞ perturbation of a constant state, there exist smooth solutions to the Euler equations which form a generic stable shock in finite time. The blowup time and location can be explicitly computed, and solutions at the blowup time are smooth except for a single point, where they are of cusp‐type with Hölder C1/3 regularity. Our proof is based on the use of modulated self‐similar variables that are used to enforce a number of constraints on the blowup profile, necessary to establish global existence and asymptotic stability in self‐similar variables. © 2022 Wiley Periodicals LLC.
We consider the 3D isentropic compressible Euler equations with the ideal gas law. We provide a constructive proof of the formation of the first point shock from smooth initial datum of finite energy, with no vacuum regions, with nontrivial vorticity present at the shock, and under no symmetry assumptions . We prove that for an open set of Sobolev‐class initial data that are a small L ∞ perturbation of a constant state, there exist smooth solutions to the Euler equations which form a generic stable shock in finite time. The blowup time and location can be explicitly computed, and solutions at the blowup time are smooth except for a single point , where they are of cusp‐type with Hölder C 1/3 regularity. Our proof is based on the use of modulated self‐similar variables that are used to enforce a number of constraints on the blowup profile, necessary to establish global existence and asymptotic stability in self‐similar variables. © 2022 Wiley Periodicals LLC.
Author Shkoller, Steve
Vicol, Vlad
Buckmaster, Tristan
Author_xml – sequence: 1
  givenname: Tristan
  surname: Buckmaster
  fullname: Buckmaster, Tristan
  email: buckmaster@math.princeton.edu
  organization: Department of Mathematics, Princeton University
– sequence: 2
  givenname: Steve
  surname: Shkoller
  fullname: Shkoller, Steve
  email: shkoller@math.ucdavis.edu
  organization: Department of Mathematics, UC Davis
– sequence: 3
  givenname: Vlad
  surname: Vicol
  fullname: Vicol, Vlad
  email: vicol@cims.nyu.edu
  organization: Courant Institute, New York University
BookMark eNp1kF1LwzAUhoNMcJte-A8CXnnR7Zyk7dLLUTcVBg7U65CmCXZ2TU06ZP_e7uNK9Opw4HnOxzsig8Y1hpBbhAkCsKlu1YQxSMUFGSJkswg4sgEZAiBEPI3hioxC2PQtxoIPCV86v1Vd5RrqLF27quno64fTn4Fa5yl_oLnbtt6EUBW1oYtdbfw1ubSqDubmXMfkfbl4y5-i1cvjcz5fRZohE5GOOY8za20hjFApt3Fhy0TNkkKwUtsSBXIQCjKVpP2RWOpM2KQ3EMvCaM7H5O40t_Xua2dCJzdu55t-pWSCJwlCjAdqeqK0dyF4Y6WuuuNHnVdVLRHkIRnZJyOPyfTG_S-j9dVW-f2f7Hn6d1Wb_f-gzNfzk_EDSRVyxA
CitedBy_id crossref_primary_10_1007_s41114_024_00052_x
crossref_primary_10_1088_1361_6382_ad059a
crossref_primary_10_1090_tran_8568
crossref_primary_10_3934_cam_2025009
crossref_primary_10_1007_s11401_024_0020_x
crossref_primary_10_1007_s00526_024_02753_1
crossref_primary_10_1360_SSM_2023_0024
crossref_primary_10_1007_s40818_022_00141_6
crossref_primary_10_1137_23M1580395
crossref_primary_10_1007_s00220_024_04978_9
crossref_primary_10_1051_m2an_2023085
crossref_primary_10_1007_s00222_024_01269_x
crossref_primary_10_1088_1361_6544_ada713
crossref_primary_10_1007_s00205_024_01997_7
crossref_primary_10_2140_apde_2024_17_831
crossref_primary_10_1016_j_jde_2025_01_014
Cites_doi 10.1007/BF02392822
10.1016/s0294-1449(16)30114-7
10.4171/192
10.1002/cpa.3160460402
10.1016/0022-0396(79)90082-2
10.2307/121020
10.1007/BF01210741
10.1063/1.1704154
10.1007/s00222-018-0799-8
10.1090/S0002-9947-02-02982-3
10.1093/imrn/rny012
10.1215/S0012-7094-97-08605-1
10.1002/cpa.21956
10.1017/S0022112096002406
10.1088/0951-7715/22/1/001
10.1007/978-1-4612-1116-7_1
10.4007/annals.2005.161.157
10.1002/cpa.3160270307
10.1007/s10240-019-00110-z
10.1007/978-3-642-04048-1
ContentType Journal Article
Copyright 2022 Wiley Periodicals LLC.
2023 Wiley Periodicals LLC.
Copyright_xml – notice: 2022 Wiley Periodicals LLC.
– notice: 2023 Wiley Periodicals LLC.
DBID AAYXX
CITATION
JQ2
DOI 10.1002/cpa.22068
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1097-0312
EndPage 2191
ExternalDocumentID 10_1002_cpa_22068
CPA22068
Genre article
GroupedDBID --Z
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6J9
6OB
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEFU
ABEML
ABIJN
ABLJU
ABTAH
ACAHQ
ACBEA
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AI.
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
FSPIC
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
H~9
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6L
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OHT
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
RYL
S10
SAMSI
SUPJJ
TN5
TWZ
UB1
UHB
V2E
VH1
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WOHZO
WQJ
WRC
WWM
WXSBR
WYISQ
XBAML
XG1
XPP
XV2
YZZ
ZY4
ZZTAW
~IA
~WT
AAYXX
ADXHL
AETEA
AEYWJ
AGHNM
AGQPQ
AGYGG
AMVHM
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JQ2
ID FETCH-LOGICAL-c2128-c43349fffb8e8a63f4bfd5a75b82dcfd181308a09a563121dc98f549f11dbec33
IEDL.DBID DR2
ISSN 0010-3640
IngestDate Fri Jul 25 10:45:24 EDT 2025
Tue Jul 01 02:50:31 EDT 2025
Thu Apr 24 23:09:12 EDT 2025
Wed Jan 22 16:19:15 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2128-c43349fffb8e8a63f4bfd5a75b82dcfd181308a09a563121dc98f549f11dbec33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2835510413
PQPubID 48818
PageCount 1
ParticipantIDs proquest_journals_2835510413
crossref_citationtrail_10_1002_cpa_22068
crossref_primary_10_1002_cpa_22068
wiley_primary_10_1002_cpa_22068_CPA22068
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2023
2023-09-00
20230901
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: September 2023
PublicationDecade 2020
PublicationPlace Melbourne
PublicationPlace_xml – name: Melbourne
– name: New York
PublicationTitle Communications on pure and applied mathematics
PublicationYear 2023
Publisher John Wiley & Sons Australia, Ltd
John Wiley and Sons, Limited
Publisher_xml – name: John Wiley & Sons Australia, Ltd
– name: John Wiley and Sons, Limited
References 1974; 27
2009; 22
1993; 46
1860; 8
2020; 2020
2021
2010
2020
1999; 182
1964; 5
2018; 214
2002; 354
1985; 101
2019
2007
2018
1984
1983
2014
2019; 130
1979; 33
1996; 315
e_1_2_1_20_1
e_1_2_1_23_1
e_1_2_1_24_1
e_1_2_1_21_1
Christodoulou D. (e_1_2_1_9_1) 2007
e_1_2_1_22_1
e_1_2_1_27_1
e_1_2_1_28_1
e_1_2_1_25_1
e_1_2_1_26_1
Elgindi T.M. (e_1_2_1_18_1) 2019
e_1_2_1_29_1
Chen J. (e_1_2_1_8_1) 2019
Elgindi T. M. (e_1_2_1_17_1) 2019
Collot C. (e_1_2_1_13_1) 2018
Buckmaster T. (e_1_2_1_5_1) 2020
Collot C. (e_1_2_1_12_1) 2018
e_1_2_1_7_1
e_1_2_1_30_1
e_1_2_1_6_1
e_1_2_1_3_1
e_1_2_1_4_1
e_1_2_1_10_1
e_1_2_1_2_1
e_1_2_1_11_1
Riemann B. (e_1_2_1_31_1) 1860; 8
e_1_2_1_32_1
e_1_2_1_16_1
e_1_2_1_14_1
e_1_2_1_15_1
e_1_2_1_19_1
References_xml – start-page: 1984
  year: 1983
– volume: 315
  start-page: 223
  year: 1996
  end-page: 256
  article-title: The onset of instability in unsteady boundary‐layer separation
  publication-title: J. Fluid Mech.
– year: 2007
  article-title: . EMS Monographs in Mathematics
  publication-title: European Mathematical Society (EMS), Zürich
– start-page: 1904.04795 [math.AP]
  year: 2019
  publication-title: Preprint
– volume: 101
  start-page: 475
  issue: 4
  year: 1985
  end-page: 485
  article-title: Formation of singularities in three‐dimensional compressible fluids
  publication-title: Comm. Math. Phys.
– volume: 182
  start-page: 1
  issue: 1
  year: 1999
  end-page: 23
  article-title: Blowup of small data solutions for a class of quasilinear wave equations in two space dimensions
  publication-title: II. Acta Math.
– volume: 46
  start-page: 453
  issue: 4
  year: 1993
  end-page: 499
  article-title: Multi‐valued solutions and branch point singularities for nonlinear hyperbolic or elliptic systems
  publication-title: Comm. Pure Appl. Math.
– year: 2018
  article-title: Singularity formation for Burgers equation with transverse viscosity
  publication-title: Preprint
– volume: 214
  start-page: 1
  issue: 1
  year: 2018
  end-page: 169
  article-title: Shock formation in solutions to the 2D compressible Euler equations in the presence of non‐zero vorticity
  publication-title: Invent. Math.
– start-page: 325
  year: 2010
– volume: 354
  start-page: 3155
  issue: 8
  year: 2002
  end-page: 3179
  article-title: Formation and propagation of singularities for 2×2 quasilinear hyperbolic systems
  publication-title: Trans. Amer. Math. Soc.
– year: 2014
– volume: 27
  start-page: 377
  year: 1974
  end-page: 405
  article-title: Formation of singularities in one‐dimensional nonlinear wave propagation
  publication-title: Comm. Pure Appl. Math.
– volume: 22
  start-page: R1
  issue: 1
  year: 2009
  end-page: R44
  article-title: The role of self‐similarity in singularities of partial differential equations
  publication-title: Nonlinearity
– year: 1984
– start-page: 1906.05811 [math.AP]
  year: 2019
  article-title: Stable self‐similar blowup for a family of nonlocal transport equations
  publication-title: Preprint
– volume: 33
  start-page: 92
  issue: 1
  year: 1979
  end-page: 111
  article-title: Development of singularities in the nonlinear waves for quasilinear hyperbolic partial differential equations
  publication-title: J. Differential Equations
– volume: 130
  start-page: 187
  issue: 1
  year: 2019
  end-page: 297
  article-title: Separation for the stationary Prandtl equation
  publication-title: Publications mathématiques de l'IHÉS
– start-page: 1808.05967 [math.AP]
  year: 2018
  article-title: On singularity formation for the two dimensional unsteady Prandtl's system
  publication-title: Preprint
– year: 2021
  article-title: Formation of shocks for 2D isentropic compressible Euler
  publication-title: Comm. Pure Appl. Math.
– start-page: 1910.00173 [math.AP]
  year: 2019
  publication-title: Preprint
– volume: 8
  start-page: 43
  year: 1860
  end-page: 66
  article-title: Über die Fortpflanzung ebener Luftwellen von endlicher Schwingungsweite
  publication-title: Abhandlungen der Königlichen Gesellschaft der Wissenschaften in Göttingen
– year: 2020
  article-title: Shock formation and vorticity creation for 3d Euler
  publication-title: Preprint
– volume: 5
  start-page: 611
  year: 1964
  end-page: 613
  article-title: Development of singularities of solutions of nonlinear hyperbolic partial differential equations
  publication-title: J. Mathematical Phys.
– volume: 2020
  start-page: 541
  issue: 2
  year: 2020
  end-page: 606
  article-title: On strongly anisotropic type I blowup
  publication-title: Int. Math. Res. Not. IMRN
– year: 2019
– year: 2018
  ident: e_1_2_1_13_1
  article-title: Singularity formation for Burgers equation with transverse viscosity
  publication-title: Preprint
– ident: e_1_2_1_3_1
  doi: 10.1007/BF02392822
– ident: e_1_2_1_27_1
  doi: 10.1016/s0294-1449(16)30114-7
– volume: 8
  start-page: 43
  year: 1860
  ident: e_1_2_1_31_1
  article-title: Über die Fortpflanzung ebener Luftwellen von endlicher Schwingungsweite
  publication-title: Abhandlungen der Königlichen Gesellschaft der Wissenschaften in Göttingen
– start-page: 1906.05811 [mat
  year: 2019
  ident: e_1_2_1_18_1
  article-title: Stable self‐similar blowup for a family of nonlocal transport equations
  publication-title: Preprint
– ident: e_1_2_1_10_1
  doi: 10.4171/192
– ident: e_1_2_1_6_1
  doi: 10.1002/cpa.3160460402
– ident: e_1_2_1_24_1
  doi: 10.1016/0022-0396(79)90082-2
– ident: e_1_2_1_23_1
– ident: e_1_2_1_20_1
– ident: e_1_2_1_2_1
  doi: 10.2307/121020
– year: 2020
  ident: e_1_2_1_5_1
  article-title: Shock formation and vorticity creation for 3d Euler
  publication-title: Preprint
– ident: e_1_2_1_32_1
  doi: 10.1007/BF01210741
– ident: e_1_2_1_22_1
  doi: 10.1063/1.1704154
– ident: e_1_2_1_25_1
  doi: 10.1007/s00222-018-0799-8
– ident: e_1_2_1_21_1
  doi: 10.1090/S0002-9947-02-02982-3
– start-page: 1910.00173 [mat
  year: 2019
  ident: e_1_2_1_8_1
  publication-title: Preprint
– start-page: 1808.05967 [mat
  year: 2018
  ident: e_1_2_1_12_1
  article-title: On singularity formation for the two dimensional unsteady Prandtl's system
  publication-title: Preprint
– ident: e_1_2_1_29_1
  doi: 10.1093/imrn/rny012
– ident: e_1_2_1_30_1
  doi: 10.1215/S0012-7094-97-08605-1
– ident: e_1_2_1_11_1
– ident: e_1_2_1_4_1
  doi: 10.1002/cpa.21956
– ident: e_1_2_1_7_1
  doi: 10.1017/S0022112096002406
– ident: e_1_2_1_16_1
  doi: 10.1088/0951-7715/22/1/001
– ident: e_1_2_1_26_1
  doi: 10.1007/978-1-4612-1116-7_1
– ident: e_1_2_1_28_1
  doi: 10.4007/annals.2005.161.157
– year: 2007
  ident: e_1_2_1_9_1
  article-title: The formation of shocks in 3‐dimensional fluids. EMS Monographs in Mathematics
  publication-title: European Mathematical Society (EMS), Zürich
– ident: e_1_2_1_19_1
  doi: 10.1002/cpa.3160270307
– ident: e_1_2_1_15_1
  doi: 10.1007/s10240-019-00110-z
– start-page: 1904.04795 [mat
  year: 2019
  ident: e_1_2_1_17_1
  publication-title: Preprint
– ident: e_1_2_1_14_1
  doi: 10.1007/978-3-642-04048-1
SSID ssj0011483
Score 2.5664022
Snippet We consider the 3D isentropic compressible Euler equations with the ideal gas law. We provide a constructive proof of the formation of the first point shock...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2073
SubjectTerms Compressibility
Euler-Lagrange equation
Ideal gas
Perturbation
Vorticity
Title Formation of Point Shocks for 3D Compressible Euler
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcpa.22068
https://www.proquest.com/docview/2835510413
Volume 76
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KT3rwLVarLOLBS9oku00TPJXaUoRKUQs9CGGfKJa0NOnFX-_s5lEVBfGWw-axszvzfUlmvkHoChAFeLmSDpcedahiXSfS4HhMAzvhDBi6LY8e3wejKb2bdWY1dFPWwuT6ENUHN-MZNl4bB2c8bW9EQ8WStXzfDUyhr8nVMoTooZKOMjQ__7ts4kxA3VJVyPXb1ZlfsWhDMD_TVIszw130XD5hnl7y1lpnvCXev4k3_nMKe2in4J-4l2-YfVRTyQHaHlfirekhIsOyoBEvNJ4sXpMMP75A3EwxMFxMbrEJIjZ_ls8VHqznanWEpsPBU3_kFL0VHAFgFTqCEkIjrTUPVcgCoinXssO6HR76UmgJwE_ckLkR6wTE8z0polDDu6T2PAnLTsgxqieLRJ0gbGbgSdOuLCBAD0ToUeYKxZkiHlWcNtB1aeVYFMLjpv_FPM4lk_0Y7BBbOzTQZTV0matt_DSoWS5VXDhcGhvZOAgvAMlwO2vz3y8Q9yc9e3D696FnaMs0ms-zy5qonq3W6hzoSMYv7L77AMqk2FM
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTsMwEB0hOAAHdsRSwEIgcUlJbDekBw5VF5WlqGKRuAXbsQWiahFtheCb-BX-iXG2AgKJCwduOViJM_a8ebbHbwB2MKIgL9eRIyOPO1yLA6ds0PGEQXYiBTL0-Hp068xvXvHj69L1GLxmd2ESfYh8w816RozX1sHthvT-SDVUPYgipa4fpCmVJ_r5CRds_cOjGo7uLqWN-mW16aQ1BRyFIB04ijPGy8YYGehA-MxwaaKSOCjJgEbKRBjwmBsItyxKPvOoF6lyYHANZTwvwt-1258I-BO2grhV6q-d52JVdmGRnGdbZPO5m-kYuXQ_7-rn6DeitB-JcRzZGrPwltkkSWi5Lw4HsqhevshF_hejzcFMSrFJJfGJeRjT3QWYbuX6tP1FYI3szibpGdLu3XUH5OIWQ0OfIIknrEYsTsYpwrKjSX3Y0Y9LcPUnvV6G8W6vq1eAWIt5ka3I5jNkQCrwuHCVlkIzj2vJV2EvG9ZQpdrqtsRHJ0xUoWmIdg9ju6_Cdt70IREU-a5RIZsbYYop_dAq4yGCIuvAz8WD_PMLwmq7Ej-s_b7pFkw2L1un4enR2ck6TFFkc0kyXQHGB49DvYHsayA340lP4OavJ8w7e583Xg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JSgQxEC1EQfTgLu4GUfDSY3eSabsPHsRxcGdwAW9tVhSHmcGZQfSX_BU_ykpvLih48eCtD6E7XUm9ekkqrwDWMaIgLzfakzrgHjdi24stOp6wyE6kQIaeXo8-PQsPrvjRdfV6AF6KuzCZPkS54eY8I8Vr5-AdbbfeRUNVR1Qo9cMoz6g8Nk-PuF7r7hzWcHA3KK3vX-4deHlJAU8hRkee4ozx2ForIxOJkFkura6K7aqMqFZWY7xjfiT8WFRDFtBAqziyuISyQaDxb93uJ-L9EA_92NWJqJ2XWlVuXZEdZztgC7lfyBj5dKvs6ufg985oP_LiNLDVx-G1MEmWz3Jf6fdkRT1_UYv8JzabgLGcYJPdzCMmYcC0pmD0tFSn7U4Dqxc3Nknbkkb7rtUjF7cYGLoEKTxhNeJQMk0Qlk1D9vtN8zADV3_S61kYbLVbZg6Is1igXT22kCH_UVHAha-MFIYF3Eg-D5vFqCYqV1Z3BT6aSaYJTRO0e5LafR7WyqadTE7ku0ZLxdRIckTpJk4XD_ETOQd-Lh3jn1-Q7DV204eF3zddheFGrZ6cHJ4dL8IIRSqXZdItwWDvoW-WkXr15Eo65Qnc_PV8eQN89DYN
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Formation+of+Point+Shocks+for+3D+Compressible+Euler&rft.jtitle=Communications+on+pure+and+applied+mathematics&rft.au=Buckmaster%2C+Tristan&rft.au=Shkoller%2C+Steve&rft.au=Vicol%2C+Vlad&rft.date=2023-09-01&rft.pub=John+Wiley+and+Sons%2C+Limited&rft.issn=0010-3640&rft.eissn=1097-0312&rft.volume=76&rft.issue=9&rft.spage=2073&rft.epage=2191&rft_id=info:doi/10.1002%2Fcpa.22068&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-3640&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-3640&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-3640&client=summon