A Bayesian Semi-parametric Quantile Regression Approach for Joint Modeling of Longitudinal Ordinal and Continuous Responses
Quantile regression (QR) models are one of the methods for longitudinal data analysis. When responses seemto be skew and asymmetric due to outliers and heavy-tails, QR models may work suitably. This paper developes the semi-parametric quantile regression model for analyzing longitudinal continuous a...
Saved in:
Published in | Statistics, optimization & information computing Vol. 11; no. 2; pp. 445 - 464 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
13.03.2023
|
Online Access | Get full text |
Cover
Loading…
Abstract | Quantile regression (QR) models are one of the methods for longitudinal data analysis. When responses seemto be skew and asymmetric due to outliers and heavy-tails, QR models may work suitably. This paper developes the semi-parametric quantile regression model for analyzing longitudinal continuous and ordinal mixed responses. The latent variable model and some threshold parameters are used to perform the quantile regression model’s ordinal part. The error of the latent variable model has Asymmetric Laplace (AL) distribution. The error term’s distribution is assumed to be AL distribution to model the continuous responses. The correlations of longitudinal responses belong to the same individual and those of mixed continuous and ordinal responses are considered using a random-effects approach. The regression spline is used to approximate the non-parametric part of the model. The parameter estimation procedure is performed under aBayesian paradigm using the Gibbs sampling method. A simulation study is performed to demonstrate the proposed model’s performance where the relative biases, standard errors, and root of MSEs of estimated parameters are decreased in the semi- parametric QR joint model when the number of subjects is increased. In our application, it was found that the mother’s age and her child’s age have significant effects on reading ability, and antisocial behavior depends on the child’s gender. |
---|---|
AbstractList | Quantile regression (QR) models are one of the methods for longitudinal data analysis. When responses seemto be skew and asymmetric due to outliers and heavy-tails, QR models may work suitably. This paper developes the semi-parametric quantile regression model for analyzing longitudinal continuous and ordinal mixed responses. The latent variable model and some threshold parameters are used to perform the quantile regression model’s ordinal part. The error of the latent variable model has Asymmetric Laplace (AL) distribution. The error term’s distribution is assumed to be AL distribution to model the continuous responses. The correlations of longitudinal responses belong to the same individual and those of mixed continuous and ordinal responses are considered using a random-effects approach. The regression spline is used to approximate the non-parametric part of the model. The parameter estimation procedure is performed under aBayesian paradigm using the Gibbs sampling method. A simulation study is performed to demonstrate the proposed model’s performance where the relative biases, standard errors, and root of MSEs of estimated parameters are decreased in the semi- parametric QR joint model when the number of subjects is increased. In our application, it was found that the mother’s age and her child’s age have significant effects on reading ability, and antisocial behavior depends on the child’s gender. |
Author | Khazaei, Mojtaba Ganjali, Mojtaba Khazaei, Omid |
Author_xml | – sequence: 1 givenname: Omid surname: Khazaei fullname: Khazaei, Omid – sequence: 2 givenname: Mojtaba surname: Ganjali fullname: Ganjali, Mojtaba – sequence: 3 givenname: Mojtaba surname: Khazaei fullname: Khazaei, Mojtaba |
BookMark | eNp9kM9LwzAcxYNMcM79Bx7yD0STtGkWb3PoVCbDX-AtpO23M9IlJWkPw3_edhMPHjy9x4P34H1O0ch5BwidM3rBFEvUZfS2IDxhlAgqKWGciyM0_g1Ge88Ipen7CZrG-EkpZVKIjPIx-prja7ODaI3DL7C1pDHBbKENtsBPnXGtrQE_wyZAjNY7PG-a4E3xgSsf8IO3rsWPvoTaug32FV55t7FtV1pnarwOBzWuxAvfT7nOd7Ffi413EeIZOq5MHWH6oxP0dnvzurgjq_XyfjFfkYIzLoiiGS24LCETaX9IMalAGp7MgOUCVKXkzNCcD1byXJQcygxkwlmuVJplaTJBV4fdIvgYA1S6sK1p-zttMLbWjOo9ST2Q1AM4PYDTA8m-nP4pN8FuTdj9X_sG3Zx7sA |
CitedBy_id | crossref_primary_10_1177_09622802251316974 crossref_primary_10_1007_s11222_024_10453_1 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.19139/soic-2310-5070-1225 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2310-5070 |
EndPage | 464 |
ExternalDocumentID | 10_19139_soic_2310_5070_1225 |
GroupedDBID | 5VS 8FE 8FG AAYXX AFKRA ALMA_UNASSIGNED_HOLDINGS ALSLI ARAPS BENPR BGLVJ BPHCQ BVBZV CITATION HCIFZ M1O OK1 P62 PQQKQ PROAC |
ID | FETCH-LOGICAL-c2125-9060c27de6545079179e7a238e1b5e9f978a0b25e9f72b5d2ed6e7321b9946643 |
ISSN | 2311-004X |
IngestDate | Tue Jul 01 02:21:37 EDT 2025 Thu Apr 24 22:59:31 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c2125-9060c27de6545079179e7a238e1b5e9f978a0b25e9f72b5d2ed6e7321b9946643 |
OpenAccessLink | http://www.iapress.org/index.php/soic/article/download/1225/841 |
PageCount | 20 |
ParticipantIDs | crossref_citationtrail_10_19139_soic_2310_5070_1225 crossref_primary_10_19139_soic_2310_5070_1225 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-03-13 |
PublicationDateYYYYMMDD | 2023-03-13 |
PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-13 day: 13 |
PublicationDecade | 2020 |
PublicationTitle | Statistics, optimization & information computing |
PublicationYear | 2023 |
SSID | ssj0001755602 ssib044761686 ssib027513134 |
Score | 2.2211509 |
Snippet | Quantile regression (QR) models are one of the methods for longitudinal data analysis. When responses seemto be skew and asymmetric due to outliers and... |
SourceID | crossref |
SourceType | Enrichment Source Index Database |
StartPage | 445 |
Title | A Bayesian Semi-parametric Quantile Regression Approach for Joint Modeling of Longitudinal Ordinal and Continuous Responses |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWcoFDxVOUl3zghgyJ47wOHBZEW1UslaCV9hY5jkO36iaoTQ6Un8afY8aPJJRVRblks95kduX5MvPZOw9CXqlIBUmeSRZXpWZCC8FyUWcsAmcV6zqrA4n7kIvPyf6xOFjGy9ns1yRqqe_KN-pyY17J_2gVxkCvmCV7A80OQmEAzkG_cAQNw_GfdDx__V7-0CYN8qterxjW8V5jiyyFwZpNB088zN83G-raIOO0-VMYWnjQrprOtEI7c4HPn1rsXdRXpk_W4bl9xX11rGC1anoMlv1iQ2pd4KEjtUhYbb1nVFgLRmjtsjsNsFxtVvNemSYS3l2ioT-Rl1KbkILDtY-u79_tyeZU2sztRXvayVJuuGH6idu44BFGbtm8U2vfgFmGDLS5tK7IjwUMKGrwh4EOJ0DkE2srbCVK57iFLYf-l0_Awqeo_nal2CCfhZzHow_0__tfcY1DwCIulVBOgVIKlFKglAKl3CK3OaxRsH1GtrvnjRlP4zAKx9p7QqRJmLhafWYDMI2BbXLT_NBNhEvtxC96u-HnTqjThAMd3SPbbvFC5xaJ98lMNw_I3cVQ-ffiIfk5px6T9AomqcckHTFJPSYpYIQaTFKPSdrWdIpJ6jBJAZN0xCQdMPmIHO9-PPqwz1yDD6aAMcUsD5JA8bTSCfD4IM3BOehUAonUYRnrvM7TTAYlx9OUl3HFdZXoNOJhmZu2CNFjstW0jX5CaF3BUjzIuYJZFnUkyxgLY3KtKiDcUS12SOTnrlCu-j02YTkrrlPtDmHDXd9t9Zdrr396w-ufkTvjk_GcbHXnvX4BJLcrXxow_QYLQ6QO |
linkProvider | ProQuest |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Bayesian+Semi-parametric+Quantile+Regression+Approach+for+Joint+Modeling+of+Longitudinal+Ordinal+and+Continuous+Responses&rft.jtitle=Statistics%2C+optimization+%26+information+computing&rft.au=Khazaei%2C+Omid&rft.au=Ganjali%2C+Mojtaba&rft.au=Khazaei%2C+Mojtaba&rft.date=2023-03-13&rft.issn=2311-004X&rft.eissn=2310-5070&rft.volume=11&rft.issue=2&rft.spage=445&rft.epage=464&rft_id=info:doi/10.19139%2Fsoic-2310-5070-1225&rft.externalDBID=n%2Fa&rft.externalDocID=10_19139_soic_2310_5070_1225 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2311-004X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2311-004X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2311-004X&client=summon |