A Bayesian Semi-parametric Quantile Regression Approach for Joint Modeling of Longitudinal Ordinal and Continuous Responses

Quantile regression (QR) models are one of the methods for longitudinal data analysis. When responses seemto be skew and asymmetric due to outliers and heavy-tails, QR models may work suitably. This paper developes the semi-parametric quantile regression model for analyzing longitudinal continuous a...

Full description

Saved in:
Bibliographic Details
Published inStatistics, optimization & information computing Vol. 11; no. 2; pp. 445 - 464
Main Authors Khazaei, Omid, Ganjali, Mojtaba, Khazaei, Mojtaba
Format Journal Article
LanguageEnglish
Published 13.03.2023
Online AccessGet full text

Cover

Loading…
Abstract Quantile regression (QR) models are one of the methods for longitudinal data analysis. When responses seemto be skew and asymmetric due to outliers and heavy-tails, QR models may work suitably. This paper developes the semi-parametric quantile regression model for analyzing longitudinal continuous and ordinal mixed responses. The latent variable model and some threshold parameters are used to perform the quantile regression model’s ordinal part. The error of the latent variable model has Asymmetric Laplace (AL) distribution. The error term’s distribution is assumed to be AL distribution to model the continuous responses. The correlations of longitudinal responses belong to the same individual and those of mixed continuous and ordinal responses are considered using a random-effects approach. The regression spline is used to approximate the non-parametric part of the model. The parameter estimation procedure is performed under aBayesian paradigm using the Gibbs sampling method. A simulation study is performed to demonstrate the proposed model’s performance where the relative biases, standard errors, and root of MSEs of estimated parameters are decreased in the semi- parametric QR joint model when the number of subjects is increased. In our application, it was found that the mother’s age and her child’s age have significant effects on reading ability, and antisocial behavior depends on the child’s gender.
AbstractList Quantile regression (QR) models are one of the methods for longitudinal data analysis. When responses seemto be skew and asymmetric due to outliers and heavy-tails, QR models may work suitably. This paper developes the semi-parametric quantile regression model for analyzing longitudinal continuous and ordinal mixed responses. The latent variable model and some threshold parameters are used to perform the quantile regression model’s ordinal part. The error of the latent variable model has Asymmetric Laplace (AL) distribution. The error term’s distribution is assumed to be AL distribution to model the continuous responses. The correlations of longitudinal responses belong to the same individual and those of mixed continuous and ordinal responses are considered using a random-effects approach. The regression spline is used to approximate the non-parametric part of the model. The parameter estimation procedure is performed under aBayesian paradigm using the Gibbs sampling method. A simulation study is performed to demonstrate the proposed model’s performance where the relative biases, standard errors, and root of MSEs of estimated parameters are decreased in the semi- parametric QR joint model when the number of subjects is increased. In our application, it was found that the mother’s age and her child’s age have significant effects on reading ability, and antisocial behavior depends on the child’s gender.
Author Khazaei, Mojtaba
Ganjali, Mojtaba
Khazaei, Omid
Author_xml – sequence: 1
  givenname: Omid
  surname: Khazaei
  fullname: Khazaei, Omid
– sequence: 2
  givenname: Mojtaba
  surname: Ganjali
  fullname: Ganjali, Mojtaba
– sequence: 3
  givenname: Mojtaba
  surname: Khazaei
  fullname: Khazaei, Mojtaba
BookMark eNp9kM9LwzAcxYNMcM79Bx7yD0STtGkWb3PoVCbDX-AtpO23M9IlJWkPw3_edhMPHjy9x4P34H1O0ch5BwidM3rBFEvUZfS2IDxhlAgqKWGciyM0_g1Ge88Ipen7CZrG-EkpZVKIjPIx-prja7ODaI3DL7C1pDHBbKENtsBPnXGtrQE_wyZAjNY7PG-a4E3xgSsf8IO3rsWPvoTaug32FV55t7FtV1pnarwOBzWuxAvfT7nOd7Ffi413EeIZOq5MHWH6oxP0dnvzurgjq_XyfjFfkYIzLoiiGS24LCETaX9IMalAGp7MgOUCVKXkzNCcD1byXJQcygxkwlmuVJplaTJBV4fdIvgYA1S6sK1p-zttMLbWjOo9ST2Q1AM4PYDTA8m-nP4pN8FuTdj9X_sG3Zx7sA
CitedBy_id crossref_primary_10_1177_09622802251316974
crossref_primary_10_1007_s11222_024_10453_1
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.19139/soic-2310-5070-1225
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2310-5070
EndPage 464
ExternalDocumentID 10_19139_soic_2310_5070_1225
GroupedDBID 5VS
8FE
8FG
AAYXX
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ARAPS
BENPR
BGLVJ
BPHCQ
BVBZV
CITATION
HCIFZ
M1O
OK1
P62
PQQKQ
PROAC
ID FETCH-LOGICAL-c2125-9060c27de6545079179e7a238e1b5e9f978a0b25e9f72b5d2ed6e7321b9946643
ISSN 2311-004X
IngestDate Tue Jul 01 02:21:37 EDT 2025
Thu Apr 24 22:59:31 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2125-9060c27de6545079179e7a238e1b5e9f978a0b25e9f72b5d2ed6e7321b9946643
OpenAccessLink http://www.iapress.org/index.php/soic/article/download/1225/841
PageCount 20
ParticipantIDs crossref_citationtrail_10_19139_soic_2310_5070_1225
crossref_primary_10_19139_soic_2310_5070_1225
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-03-13
PublicationDateYYYYMMDD 2023-03-13
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-13
  day: 13
PublicationDecade 2020
PublicationTitle Statistics, optimization & information computing
PublicationYear 2023
SSID ssj0001755602
ssib044761686
ssib027513134
Score 2.2211509
Snippet Quantile regression (QR) models are one of the methods for longitudinal data analysis. When responses seemto be skew and asymmetric due to outliers and...
SourceID crossref
SourceType Enrichment Source
Index Database
StartPage 445
Title A Bayesian Semi-parametric Quantile Regression Approach for Joint Modeling of Longitudinal Ordinal and Continuous Responses
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWcoFDxVOUl3zghgyJ47wOHBZEW1UslaCV9hY5jkO36iaoTQ6Un8afY8aPJJRVRblks95kduX5MvPZOw9CXqlIBUmeSRZXpWZCC8FyUWcsAmcV6zqrA4n7kIvPyf6xOFjGy9ns1yRqqe_KN-pyY17J_2gVxkCvmCV7A80OQmEAzkG_cAQNw_GfdDx__V7-0CYN8qterxjW8V5jiyyFwZpNB088zN83G-raIOO0-VMYWnjQrprOtEI7c4HPn1rsXdRXpk_W4bl9xX11rGC1anoMlv1iQ2pd4KEjtUhYbb1nVFgLRmjtsjsNsFxtVvNemSYS3l2ioT-Rl1KbkILDtY-u79_tyeZU2sztRXvayVJuuGH6idu44BFGbtm8U2vfgFmGDLS5tK7IjwUMKGrwh4EOJ0DkE2srbCVK57iFLYf-l0_Awqeo_nal2CCfhZzHow_0__tfcY1DwCIulVBOgVIKlFKglAKl3CK3OaxRsH1GtrvnjRlP4zAKx9p7QqRJmLhafWYDMI2BbXLT_NBNhEvtxC96u-HnTqjThAMd3SPbbvFC5xaJ98lMNw_I3cVQ-ffiIfk5px6T9AomqcckHTFJPSYpYIQaTFKPSdrWdIpJ6jBJAZN0xCQdMPmIHO9-PPqwz1yDD6aAMcUsD5JA8bTSCfD4IM3BOehUAonUYRnrvM7TTAYlx9OUl3HFdZXoNOJhmZu2CNFjstW0jX5CaF3BUjzIuYJZFnUkyxgLY3KtKiDcUS12SOTnrlCu-j02YTkrrlPtDmHDXd9t9Zdrr396w-ufkTvjk_GcbHXnvX4BJLcrXxow_QYLQ6QO
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Bayesian+Semi-parametric+Quantile+Regression+Approach+for+Joint+Modeling+of+Longitudinal+Ordinal+and+Continuous+Responses&rft.jtitle=Statistics%2C+optimization+%26+information+computing&rft.au=Khazaei%2C+Omid&rft.au=Ganjali%2C+Mojtaba&rft.au=Khazaei%2C+Mojtaba&rft.date=2023-03-13&rft.issn=2311-004X&rft.eissn=2310-5070&rft.volume=11&rft.issue=2&rft.spage=445&rft.epage=464&rft_id=info:doi/10.19139%2Fsoic-2310-5070-1225&rft.externalDBID=n%2Fa&rft.externalDocID=10_19139_soic_2310_5070_1225
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2311-004X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2311-004X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2311-004X&client=summon