Ambient urea synthesis via electrocatalytic C–N coupling

The construction of C–N bond and synthesis of N-containing compounds directly from N2 is an extremely attractive subject. The co-electrolysis system coupled with renewable electricity provides one of the potential options for the green and controllable C–N bond construction under ambient conditions,...

Full description

Saved in:
Bibliographic Details
Published inMaterials Today Catalysis Vol. 8; p. 100092
Main Author Chen, Chen
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.03.2025
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The construction of C–N bond and synthesis of N-containing compounds directly from N2 is an extremely attractive subject. The co-electrolysis system coupled with renewable electricity provides one of the potential options for the green and controllable C–N bond construction under ambient conditions, bypassing the intermediate process of ammonia synthesis. In this review, we have summarized the recent progress in ambient urea synthesis via electrocatalytic C–N coupling from CO2 and nitrogenous species. The reaction mechanisms studies of N2 and CO2 coupling has been mainly highlighted, and the coupling enhancement strategies are emphasized for the coupling of nitrate and CO2, including intermediate adsorption regulation, functional synergy, site reconstitution and local-environment construction. Moreover, promising directions and remaining challenges are outlined, encompassing the mechanism study combining theory and experiment, reactant source and product application, optimization of urea synthesis evaluation system and the development of devices aiming to coupling system. This review aims to guide further advancements in electrocatalytic C–N coupling, facilitating the efficient and sustainable synthesis of urea for a broad spectrum of applications.
AbstractList The construction of C–N bond and synthesis of N-containing compounds directly from N2 is an extremely attractive subject. The co-electrolysis system coupled with renewable electricity provides one of the potential options for the green and controllable C–N bond construction under ambient conditions, bypassing the intermediate process of ammonia synthesis. In this review, we have summarized the recent progress in ambient urea synthesis via electrocatalytic C–N coupling from CO2 and nitrogenous species. The reaction mechanisms studies of N2 and CO2 coupling has been mainly highlighted, and the coupling enhancement strategies are emphasized for the coupling of nitrate and CO2, including intermediate adsorption regulation, functional synergy, site reconstitution and local-environment construction. Moreover, promising directions and remaining challenges are outlined, encompassing the mechanism study combining theory and experiment, reactant source and product application, optimization of urea synthesis evaluation system and the development of devices aiming to coupling system. This review aims to guide further advancements in electrocatalytic C–N coupling, facilitating the efficient and sustainable synthesis of urea for a broad spectrum of applications.
ArticleNumber 100092
Author Chen, Chen
Author_xml – sequence: 1
  givenname: Chen
  surname: Chen
  fullname: Chen, Chen
  email: chenc@hnu.edu.cn
  organization: State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, China
BookMark eNp9kM9KAzEQh4NUsFbfwMO-QGsyyWY3HoRS_AeiFwVvIZvMasp2tyTbQm--g2_ok5i6Ip48zfBj5mPmOyajtmuRkDNGZ4wyeb6crXprejMDCnmKKFVwQMaghJoWuXgZ_emPyGmMyzQCSjEpijG5mK8qj22fbQKaLO7a_g2jj9nWmwwbtH3o9vBm13ubLT7fPx4y223WjW9fT8hhbZqIpz91Qp6vr54Wt9P7x5u7xfx-aoEBTJWUltnSObAsB6OUURKQCa6ULJDZFNTCOupoCbyuoBJVwTmUnEtZGkn5hNwNXNeZpV4HvzJhpzvj9XfQhVdtQjqvQc3LQriycFDWVOSOGVNzhjnFGizyHBJLDCwbuhgD1r88RvVep17qQafe69SDzrR2Oaxh-nPrMehokzWLzofkKB3i_wd8AbDEgOs
Cites_doi 10.1016/j.chempr.2024.01.025
10.1021/acs.accounts.3c00424
10.1002/anie.202402684
10.1002/anie.202402215
10.1021/jacs.2c03452
10.1002/adma.202402160
10.1021/jacs.4c08564
10.1002/anie.202101275
10.1021/acssuschemeng.2c07114
10.1038/s41467-022-33066-6
10.31635/ccschem.023.202202408
10.1039/D3QM00433C
10.1039/D2TA07531H
10.1016/j.joule.2020.12.025
10.1002/adma.202409697
10.1021/acscatal.3c02747
10.1038/s41467-023-40273-2
10.1038/s41929-024-01173-w
10.1016/j.apcatb.2015.07.045
10.1038/s41893-021-00741-3
10.1038/s41467-020-19236-4
10.1039/D3DT01790G
10.1002/adma.202300020
10.1039/D3TA01011B
10.1021/acsnano.0c10596
10.1002/adfm.202408314
10.1038/s43586-021-00053-y
10.1002/anie.202216835
10.1021/acsami.3c01847
10.1126/science.aar6611
10.1038/s41467-018-04213-9
10.1021/acsmaterialslett.1c00375
10.1038/s41929-023-01020-4
10.1002/adfm.202200882
10.1093/nsr/nwaa142
10.1038/s41467-024-52832-2
10.1038/s41893-024-01302-0
10.1038/s41929-019-0241-7
10.1021/acs.accounts.0c00842
10.1038/s41557-020-0481-9
10.1002/adfm.202313420
10.1016/j.joule.2024.02.021
ContentType Journal Article
Copyright 2025 The Authors
Copyright_xml – notice: 2025 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.mtcata.2025.100092
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2949-754X
ExternalDocumentID oai_doaj_org_article_3874d87d28f045d1aaf31e50ef2ce352
10_1016_j_mtcata_2025_100092
S2949754X25000055
GroupedDBID 0R~
6I.
AAFTH
AAXUO
ADVLN
AEXQZ
AFJKZ
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
EBS
FDB
GROUPED_DOAJ
M~E
AALRI
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
APXCP
CITATION
ID FETCH-LOGICAL-c2122-966c1c8dd2c152a99a962e1439967e1c99af4cd0d0823fb2b4b7332833668a603
IEDL.DBID DOA
ISSN 2949-754X
IngestDate Wed Aug 27 01:08:04 EDT 2025
Tue Jul 01 05:13:31 EDT 2025
Sat Mar 22 15:53:55 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Urea synthesis
Reaction mechanism
Electrocatalysis
C–N coupling
Adsorption configuration
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2122-966c1c8dd2c152a99a962e1439967e1c99af4cd0d0823fb2b4b7332833668a603
OpenAccessLink https://doaj.org/article/3874d87d28f045d1aaf31e50ef2ce352
ParticipantIDs doaj_primary_oai_doaj_org_article_3874d87d28f045d1aaf31e50ef2ce352
crossref_primary_10_1016_j_mtcata_2025_100092
elsevier_sciencedirect_doi_10_1016_j_mtcata_2025_100092
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2025
2025-03-00
2025-03-01
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: March 2025
PublicationDecade 2020
PublicationTitle Materials Today Catalysis
PublicationYear 2025
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Paul, Sarkar, Dolui, Sarkar, Robert, Ghorai (bib30) 2023; 52
Song, Haro, Huang, Barrera, Hatzell (bib11) 2020; 56
Wei, Liu, Zhu, Bo, Xiao, Chen, Nga, He, Qiu, Xie, Wang, Liu, Dong, Dong, Fi, Wang (bib47) 2023; 35
Wang, Yu, Hu, Chen, Xin, Feng (bib14) 2018; 9
Adalder, Paul, Ghorai, Kapse, Thapa, Nagendra, Ghorai (bib32) 2023; 15
Mukherjee, Paul, Adalder, Kapse, Thapa, Mandal, Ghorai, Sarkar, Ghorai (bib25) 2022; 32
Paul, Sarkar, Adalder, Kapse, Thapa, Ghorai (bib29) 2023; 11
Luo, Xie, Ou, Lavallais, Peng, Chen, Zhang, Wang, Li, Grigioni, Liu, Sinton, Dunn, Sargent (bib5) 2023; 6
Li, Xu, Bo, Wang, Xu, Chen, Miao, Chen, Zhang, Liu, Shen, Shao, Jia, Wang (bib43) 2024; 15
and CO
Qiu, Zhu, Bo, Cheng, He, Gu, Song, Chen, Wei, Wang, Liu, Li, Tu, Li, Liu, Li, Wang (bib45) 2023; 5
Fu (bib7) 2023; 3
Qiu, Huang, Yu, Chen, Liao (bib42) 2024; 63
Pan, Wang, Lu, Liu, Hao, Wang, Jiang, Sun, Wang, Wang (bib20) 2023; 62
Huang, Li, Xie, Zhao, Zhang, Zhang, Sheng, Zhao (bib39) 2024; 63
van Langevelde, Katsounaros, Koper (bib23) 2021; 5
Chen, Crooks, Seefeldt, Bren, Bullock, Darensbourg, Holland, Hoffman, Janik, Jones, Kanatzidis, King, Lancaster, Lymar, Pfromm, Schneider, Schrock (bib6) 2018; 360
Kang, Li, Sheveleva, Han, Li, Liu, Tuna, Mclnnes, Han, Yang, Schröder (bib3) 2020; 11
Chen, Zhu, Wen, Zhou, Zhou, Li, Tao, Li, Du, Liu, Yan, Xie, Zou, Wang, Chen, Huo, Li, Cheng, Su, Zhao, Cheng, Liu, Lin, Luo, Chen, Dong, Cheng, Li, Wang (bib4) 2020; 12
Lv, Wei, Zhang, Chen, Deng, Shi, Xi (bib9) 2020; 7
D. Jiao, Y. Dong, X. Cui, Q. Cai, C.R. Cabrera, J. Zhao, Z. Chen, Boosting the efficiency of urea synthesis via cooperative electroreduction of N
Chen, Song, Li, Gözaydın, Yan (bib1) 2021; 54
on MoP, J. Mater. Chem. A 11 (20223) 232−240.
Chen, Lv, Kang, Wang, Guo, Wang, Teobaldi, Liu, Guo (bib21) 2023; 120
Paul, Adalder, Barman, Thapa, Bera, Mitra, Ghorai (bib33) 2024; 34
Lv, Zhong, Liu, Fang, Yan, Chen, Kong, Lee, Liu, Li, Liu, Song, Chen, Yan, Yu (bib2) 2021; 4
Adalder, Paul, Barman, Bera, Sarkar, Mukherjee, Thapa, Ghorai (bib31) 2023; 13
Chen, Ma, Zhang, Wang, Yang, Wang, Zhang, Liu, Bao, Chu (bib41) 2024; 36
Hu, Zhou, Qi, Huo, Li, Lv, Chen, Feng, Yu, Chai, Yang, He (bib50) 2024; 7
Zhang, Zhu, Bo, Chen, Zhai, Li, Tu, Zheng, Wang, Wei, Chen, Wang, Li, Liu, Jiang, Dai, Wang (bib16) 2024; 10
Yuan, Chen, Bai, Liu, Zhang, Zhao, Wang, Li, He, Zhang (bib19) 2021; 60
Paul, Adalder, Ghorai (bib27) 2023; 7
Yang, Wu, Jiang, Zhang, Liu, Yu, Liu, Du, Dai, Mao, Qin (bib44) 2024; 36
Fu, Yang, Hu (bib35) 2021; 3
Zhao, Ding, Li, Liu, Li, Zhao, Shan, Li, Sun, Li (bib37) 2023; 14
Liu, Tu, Wei, Wang, Zhang, Chen, Chen, Wang (bib34) 2023; 62
Paul, Sarkar, Adalder, Banerjee, Ghorai (bib26) 2023; 11
Zhang, Zhu, Bo, Chen, Cheng, Zheng, Li, Tu, Chen, Xie, Wei, Wang, Liu, Chen, Jiang, Li, Liu, Li, Wang (bib15) 2023; 62
Liu, Guo, Frauenheim, Gu, Kou (bib17) 2024; 34
Wang, Xia, Cai, Zhang, Yu, Cui, Zhang, Wu, Wu (bib48) 2024; 63
Mao, Byun, Macleod, Maravelias, Ozin (bib53) 2024; 8
Hao, Guo, Chen, Shu, Wang, Bu, Gao, Zhang, Su, Feng, Zhou, Wang, Hu, Yin, Si, Zhang, Yan (bib13) 2019; 2
Ghorai, Paul, Ghorai, Adalder, Kapse, Thapa, Nagendra, Gain (bib28) 2021; 15
Iriawan, Andersen, Zhang, Comer, Barrio, Chen, Medford, Stephens, Chorkendorff, Shao-Horn (bib8) 2021; 1
Song, Ma, Chen, Xu, Feng, Wu, Jia, Zhang, Tan, Wang, Chen, Ma, Zhu, Kang, Sun, Han (bib40) 2024; 146
Tu, Zhu, Bo, Zhang, Miao, Wen, Chen, Li, Zhou, Liu, Chen, Shao, Yan, Li, Jia, Wang (bib49) 2023; 62
Qiu, Qin, Li, Cao, Cui, Zhang, Zhuang, Wang, Zhang (bib51) 2024; 63
Wang, Wang, Cheng, He, Liu, Liu, Yuan, Huan, Qian, Yan (bib52) 2024; 63
Wei, Wen, Liu, Chen, Xie, Wang, Qiu, He, Zhou, Chen, Cheng, Lin, Jia, Fu, Wang (bib22) 2022; 144
Chen, Yuan, Jiang, Ren, Ding, Ma, Wu, Lu, Wang (bib24) 2020; 5
Zhang, Zhu, Bo, Chen, Qiu, Wei, He, Xie, Chen, Zheng, Chen, Jiang, Li, Liu, Wang (bib36) 2022; 13
Gao, Wang, Sun, Jing, Chen, Liang, Yang, Zhang, Yao, Wang (bib38) 2024; 63
Kayan, Köleli (bib10) 2016; 181
Wang, Zhu, An, Zhang, Wei, Chen, Li, Chen, Zhou, Liu, Shao, Wang (bib46) 2024; 63
Xiong, Yu, Chen, Lu, Hu, Cheng, Xu, Lu (bib12) 2024; 7
Lv (10.1016/j.mtcata.2025.100092_bib2) 2021; 4
Qiu (10.1016/j.mtcata.2025.100092_bib42) 2024; 63
Chen (10.1016/j.mtcata.2025.100092_bib41) 2024; 36
Iriawan (10.1016/j.mtcata.2025.100092_bib8) 2021; 1
Qiu (10.1016/j.mtcata.2025.100092_bib45) 2023; 5
Wang (10.1016/j.mtcata.2025.100092_bib48) 2024; 63
van Langevelde (10.1016/j.mtcata.2025.100092_bib23) 2021; 5
10.1016/j.mtcata.2025.100092_bib18
Fu (10.1016/j.mtcata.2025.100092_bib7) 2023; 3
Chen (10.1016/j.mtcata.2025.100092_bib4) 2020; 12
Wei (10.1016/j.mtcata.2025.100092_bib22) 2022; 144
Paul (10.1016/j.mtcata.2025.100092_bib30) 2023; 52
Huang (10.1016/j.mtcata.2025.100092_bib39) 2024; 63
Zhang (10.1016/j.mtcata.2025.100092_bib36) 2022; 13
Li (10.1016/j.mtcata.2025.100092_bib43) 2024; 15
Tu (10.1016/j.mtcata.2025.100092_bib49) 2023; 62
Wei (10.1016/j.mtcata.2025.100092_bib47) 2023; 35
Zhang (10.1016/j.mtcata.2025.100092_bib16) 2024; 10
Kayan (10.1016/j.mtcata.2025.100092_bib10) 2016; 181
Zhang (10.1016/j.mtcata.2025.100092_bib15) 2023; 62
Lv (10.1016/j.mtcata.2025.100092_bib9) 2020; 7
Gao (10.1016/j.mtcata.2025.100092_bib38) 2024; 63
Paul (10.1016/j.mtcata.2025.100092_bib27) 2023; 7
Liu (10.1016/j.mtcata.2025.100092_bib34) 2023; 62
Zhao (10.1016/j.mtcata.2025.100092_bib37) 2023; 14
Song (10.1016/j.mtcata.2025.100092_bib11) 2020; 56
Xiong (10.1016/j.mtcata.2025.100092_bib12) 2024; 7
Adalder (10.1016/j.mtcata.2025.100092_bib32) 2023; 15
Chen (10.1016/j.mtcata.2025.100092_bib21) 2023; 120
Qiu (10.1016/j.mtcata.2025.100092_bib51) 2024; 63
Hao (10.1016/j.mtcata.2025.100092_bib13) 2019; 2
Fu (10.1016/j.mtcata.2025.100092_bib35) 2021; 3
Mukherjee (10.1016/j.mtcata.2025.100092_bib25) 2022; 32
Ghorai (10.1016/j.mtcata.2025.100092_bib28) 2021; 15
Kang (10.1016/j.mtcata.2025.100092_bib3) 2020; 11
Chen (10.1016/j.mtcata.2025.100092_bib1) 2021; 54
Paul (10.1016/j.mtcata.2025.100092_bib26) 2023; 11
Wang (10.1016/j.mtcata.2025.100092_bib14) 2018; 9
Yang (10.1016/j.mtcata.2025.100092_bib44) 2024; 36
Adalder (10.1016/j.mtcata.2025.100092_bib31) 2023; 13
Pan (10.1016/j.mtcata.2025.100092_bib20) 2023; 62
Paul (10.1016/j.mtcata.2025.100092_bib29) 2023; 11
Paul (10.1016/j.mtcata.2025.100092_bib33) 2024; 34
Wang (10.1016/j.mtcata.2025.100092_bib46) 2024; 63
Hu (10.1016/j.mtcata.2025.100092_bib50) 2024; 7
Song (10.1016/j.mtcata.2025.100092_bib40) 2024; 146
Luo (10.1016/j.mtcata.2025.100092_bib5) 2023; 6
Chen (10.1016/j.mtcata.2025.100092_bib24) 2020; 5
Wang (10.1016/j.mtcata.2025.100092_bib52) 2024; 63
Mao (10.1016/j.mtcata.2025.100092_bib53) 2024; 8
Liu (10.1016/j.mtcata.2025.100092_bib17) 2024; 34
Yuan (10.1016/j.mtcata.2025.100092_bib19) 2021; 60
Chen (10.1016/j.mtcata.2025.100092_bib6) 2018; 360
References_xml – volume: 120
  year: 2023
  ident: bib21
  article-title: Efficient C−N coupling in the direct synthesis of urea from CO
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 36
  start-page: 2402160
  year: 2024
  ident: bib41
  article-title: Urea electrocatalysis from nitrate and CO
  publication-title: Adv. Mater.
– volume: 11
  start-page: 5464
  year: 2020
  ident: bib3
  article-title: Electro-reduction of carbon dioxide at low over-potential at a metal-organic framework decorated cathode
  publication-title: Nat. Commun.
– volume: 56
  start-page: 2944
  year: 2020
  end-page: 2953
  ident: bib11
  article-title: Progress in photochemical and electrochemical C−N bond formation for urea synthesis
  publication-title: Acc. Chem. Res.
– volume: 15
  start-page: 5230
  year: 2021
  end-page: 5239
  ident: bib28
  article-title: Scalable production of cobalt phthalocyanine nanotubes: efficient and robust hollow electrocatalyst for ammonia synthesis at room temperature
  publication-title: ACS Nano
– volume: 63
  year: 2024
  ident: bib39
  article-title: The tandem nitrate and CO
  publication-title: Angew. Chem. Int. Ed.
– volume: 9
  start-page: 1795
  year: 2018
  ident: bib14
  article-title: Ambien ammonia synthesis via palladium-catalyzed electrohydrogenation of dinitrogen at low overpotential
  publication-title: Nat. Commun.
– volume: 62
  year: 2023
  ident: bib20
  article-title: Single-atom or dual-atom in TiO
  publication-title: Angew. Chem. Int. Ed.
– volume: 63
  year: 2024
  ident: bib48
  article-title: Dynamic reconstruction of two-dimensional defective Bi nanosheets for efficient electrocatalytic urea synthesis
  publication-title: Angew. Chem. Int. Ed.
– volume: 34
  start-page: 2313420
  year: 2024
  ident: bib17
  article-title: Urea electrosynthesis accelerated by theoretical simulations
  publication-title: Adv. Funct. Mater.
– volume: 11
  start-page: 6191
  year: 2023
  end-page: 6200
  ident: bib29
  article-title: Strengthening the metal center of Co−N
  publication-title: ACS Sustain. Chem. Eng.
– volume: 2
  start-page: 448
  year: 2019
  end-page: 456
  ident: bib13
  article-title: Promoting nitrogen reduction to ammonia with bismuth nanocrystals and potassium cations in water
  publication-title: Nat. Catal.
– volume: 7
  year: 2024
  ident: bib50
  article-title: Pulsed co-electrolysis of carbon dioxide and nitrate for sustainable urea synthesis
  publication-title: Nat. Sustain.
– volume: 4
  start-page: 868
  year: 2021
  end-page: 876
  ident: bib2
  article-title: Selective electrocatalytic synthesis of urea with nitrate and carbon dioxide
  publication-title: Nat. Sustain.
– volume: 181
  start-page: 88
  year: 2016
  end-page: 93
  ident: bib10
  article-title: Simultaneous electrocatalytic reduction of dinitrogen and carbon dioxide on conducting polymer electrodes
  publication-title: Appl. Catal. B-Environ.
– volume: 13
  start-page: 13516
  year: 2023
  end-page: 13527
  ident: bib31
  article-title: Controlling the metal-ligand coordination environment of manganese phthalocyanine in 1D−2D heterostructure for enhancing nitrate reduction to ammonia
  publication-title: ACS Catal.
– volume: 63
  year: 2024
  ident: bib51
  article-title: Overcoming electrostatic interaction via pulsed electroreduction for boosting the electrocatalytic urea synthesis
  publication-title: Angew. Chem. Int. Ed.
– volume: 144
  start-page: 11530
  year: 2022
  end-page: 11535
  ident: bib22
  article-title: Oxygen vacancy-mediated selective C−N coupling toward electrocatalytic urea synthesis
  publication-title: J. Am. Chem. Soc.
– volume: 63
  year: 2024
  ident: bib38
  article-title: Tandem catalysts enabling efficient C−N coupling toward the electrosynthesis of urea
  publication-title: Angew. Chem. Int. Ed.
– volume: 34
  start-page: 2408314
  year: 2024
  ident: bib33
  article-title: Boosting selective nitrogen oxidation to nitric acid by synergizing cobalt phthalocyanine on carbon nitride surface
  publication-title: Adv. Funct. Mater.
– volume: 62
  year: 2023
  ident: bib34
  article-title: C-bound or O-bound surface: which one boosts electrocatalytic urea synthesis
  publication-title: Angew. Chem. Int. Ed.
– volume: 11
  start-page: 13249
  year: 2023
  end-page: 13254
  ident: bib26
  article-title: Dual metal site-mediated efficient C−N coupling towards electrochemical urea synthesis
  publication-title: J. Mater. Chem. A.
– volume: 7
  start-page: 785
  year: 2024
  end-page: 795
  ident: bib12
  article-title: Urea synthesis via electrocatalytic oxidative coupling of CO with NH
  publication-title: Nat. Catal.
– volume: 60
  start-page: 10910
  year: 2021
  end-page: 10918
  ident: bib19
  article-title: Unveiling electrochemical urea synthesis by co-activation of CO
  publication-title: Angew. Chem. Int. Ed.
– volume: 7
  start-page: 1564
  year: 2020
  end-page: 1583
  ident: bib9
  article-title: Direct transformation of dinitrogen: synthesis of N-containing organic compounds via N−C bond formation
  publication-title: Nat. Sci. Rev.
– volume: 14
  start-page: 4491
  year: 2023
  ident: bib37
  article-title: Efficient urea electrosynthesis from carbon dioxide and nitrate via alternating Cu−W bimetallic C−N coupling sites
  publication-title: Nat. Commun.
– reference: and CO
– volume: 5
  start-page: 605
  year: 2020
  end-page: 613
  ident: bib24
  article-title: Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper-molecular solid catalyst
  publication-title: Nat. Sustain.
– volume: 360
  year: 2018
  ident: bib6
  article-title: Beyond fossil fuel-driven nitrogen transformations
  publication-title: Science
– volume: 6
  start-page: 939
  year: 2023
  end-page: 948
  ident: bib5
  article-title: Selective electrochemical synthesis of urea from nitrate and CO
  publication-title: Nat. Catal.
– volume: 63
  year: 2024
  ident: bib52
  article-title: Orderly coating of bilayer polymer to tailor microenvironment for efficient C−N coupling toward highly selective urea electrosynthesis
  publication-title: Angew. Chem. Int. Ed.
– volume: 62
  year: 2023
  ident: bib49
  article-title: A universal approach for sustainable urea synthesis via intermediate assembly at the electrode/electrolyte interface
  publication-title: Angew. Chem. Int. Ed.
– reference: on MoP, J. Mater. Chem. A 11 (20223) 232−240.
– volume: 8
  start-page: 1224
  year: 2024
  end-page: 1238
  ident: bib53
  article-title: Green urea production for sustainable agriculture
  publication-title: Joule
– volume: 7
  start-page: 3820
  year: 2023
  end-page: 3854
  ident: bib27
  article-title: Progress of electrocatalytic urea synthesis: strategic design, reactor engineering, mechanistic details and techno-commercial study
  publication-title: Mater. Chem. Front.
– volume: 54
  start-page: 1711
  year: 2021
  end-page: 1722
  ident: bib1
  article-title: Expanding the boundary of biorefinery: Organonitrogen chemicals from biomass
  publication-title: Acc. Chem. Res.
– volume: 10
  start-page: 1516
  year: 2024
  end-page: 1527
  ident: bib16
  article-title: Selective nitrogen fixation via Janus C−N coupling in co-electrolysis
  publication-title: Chem
– volume: 62
  year: 2023
  ident: bib15
  article-title: Electrocatalytic urea synthesis with 63.5% Faradaic efficiency and 100% N-selectivity via one-step C−N coupling
  publication-title: Angew. Chem. Int. Ed.
– volume: 146
  start-page: 25813
  year: 2024
  end-page: 25823
  ident: bib40
  article-title: Urea synthesis via coelectrolysis of CO
  publication-title: J. Am. Chem. Soc.
– volume: 3
  year: 2023
  ident: bib7
  article-title: Lithium-mediated nitrogen reduction for electrochemical ammonia synthesis: From batch to flow reactor
  publication-title: Mater. Today Catal.
– volume: 5
  start-page: 2617
  year: 2023
  end-page: 2627
  ident: bib45
  article-title: Boosting electrocatalytic urea production via promoting asymmetric C−N coupling
  publication-title: CCS Chem.
– reference: D. Jiao, Y. Dong, X. Cui, Q. Cai, C.R. Cabrera, J. Zhao, Z. Chen, Boosting the efficiency of urea synthesis via cooperative electroreduction of N
– volume: 63
  year: 2024
  ident: bib46
  article-title: Electron deficiency is more important than conductivity in C−N coupling for electrocatalytic urea synthesis
  publication-title: Angew. Chem. Int. Ed.
– volume: 1
  start-page: 56
  year: 2021
  ident: bib8
  article-title: Methods for nitrogen activation by reduction and oxidation
  publication-title: Nat. Rev. Method. Prime.
– volume: 5
  start-page: 290
  year: 2021
  end-page: 294
  ident: bib23
  article-title: Electrocatalytic nitrate reduction for sustainable ammonia production
  publication-title: Joule
– volume: 15
  start-page: 8858
  year: 2024
  ident: bib43
  article-title: Ligand engineering towards electrocatalytic urea synthesis on a molecular catalyst
  publication-title: Nat. Commun.
– volume: 13
  start-page: 5337
  year: 2022
  ident: bib36
  article-title: Identifying and tailoring C−N coupling site for efficient urea synthesis over diatomic Fe−Ni catalyst
  publication-title: Nat. Commun.
– volume: 15
  start-page: 34642
  year: 2023
  end-page: 34650
  ident: bib32
  article-title: Selective electrocatalytic oxidation of nitrogen to nitric acid using manganese phthalocyanine
  publication-title: ACS Appl. Mater. Interfaces
– volume: 36
  start-page: 2409697
  year: 2024
  ident: bib44
  article-title: Stabilization of Cu
  publication-title: Adv. Mater.
– volume: 35
  start-page: 2300020
  year: 2023
  ident: bib47
  article-title: Dynamic reconstitution between copper single atoms and clusters for electrocatalytic urea synthesis
  publication-title: Adv. Mater.
– volume: 63
  year: 2024
  ident: bib42
  article-title: Highly efficient electrosynthesis of urea from CO
  publication-title: Angew. Chem. Int. Ed.
– volume: 3
  start-page: 1468
  year: 2021
  end-page: 1476
  ident: bib35
  article-title: Dual-sites tandem catalysis for C−N bond formation via electrocatalytic coupling of CO2 and nitrogenous small molecules
  publication-title: ACS Mater. Lett.
– volume: 52
  start-page: 1536015364
  year: 2023
  ident: bib30
  article-title: 1D/2D interface engineering of a CoPc-C
  publication-title: Dalton Trans.
– volume: 12
  start-page: 717
  year: 2020
  end-page: 724
  ident: bib4
  article-title: Coupling N
  publication-title: Nat. Chem.
– volume: 32
  start-page: 2200882
  year: 2022
  ident: bib25
  article-title: Understanding the site-selective electrocatalytic co-reduction mechanism for green urea synthesis using copper phthalocyanine nanotubes
  publication-title: Adv. Funct. Mater.
– volume: 10
  start-page: 1516
  year: 2024
  ident: 10.1016/j.mtcata.2025.100092_bib16
  article-title: Selective nitrogen fixation via Janus C−N coupling in co-electrolysis
  publication-title: Chem
  doi: 10.1016/j.chempr.2024.01.025
– volume: 63
  year: 2024
  ident: 10.1016/j.mtcata.2025.100092_bib52
  article-title: Orderly coating of bilayer polymer to tailor microenvironment for efficient C−N coupling toward highly selective urea electrosynthesis
  publication-title: Angew. Chem. Int. Ed.
– volume: 56
  start-page: 2944
  year: 2020
  ident: 10.1016/j.mtcata.2025.100092_bib11
  article-title: Progress in photochemical and electrochemical C−N bond formation for urea synthesis
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.3c00424
– volume: 63
  year: 2024
  ident: 10.1016/j.mtcata.2025.100092_bib51
  article-title: Overcoming electrostatic interaction via pulsed electroreduction for boosting the electrocatalytic urea synthesis
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202402684
– volume: 63
  year: 2024
  ident: 10.1016/j.mtcata.2025.100092_bib38
  article-title: Tandem catalysts enabling efficient C−N coupling toward the electrosynthesis of urea
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202402215
– volume: 3
  year: 2023
  ident: 10.1016/j.mtcata.2025.100092_bib7
  article-title: Lithium-mediated nitrogen reduction for electrochemical ammonia synthesis: From batch to flow reactor
  publication-title: Mater. Today Catal.
– volume: 144
  start-page: 11530
  year: 2022
  ident: 10.1016/j.mtcata.2025.100092_bib22
  article-title: Oxygen vacancy-mediated selective C−N coupling toward electrocatalytic urea synthesis
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c03452
– volume: 36
  start-page: 2402160
  year: 2024
  ident: 10.1016/j.mtcata.2025.100092_bib41
  article-title: Urea electrocatalysis from nitrate and CO2 on diatomic alloys
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202402160
– volume: 146
  start-page: 25813
  year: 2024
  ident: 10.1016/j.mtcata.2025.100092_bib40
  article-title: Urea synthesis via coelectrolysis of CO2 and nitrate over heterostructured Cu−Bi catalysts
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.4c08564
– volume: 60
  start-page: 10910
  year: 2021
  ident: 10.1016/j.mtcata.2025.100092_bib19
  article-title: Unveiling electrochemical urea synthesis by co-activation of CO2 and N2 with Mott-Schottky heterostructure catalysts
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202101275
– volume: 11
  start-page: 6191
  year: 2023
  ident: 10.1016/j.mtcata.2025.100092_bib29
  article-title: Strengthening the metal center of Co−N4 active sites in a 1D−2D heterostructure for nitrate and nitrogen reduction reaction to ammonia
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.2c07114
– volume: 13
  start-page: 5337
  year: 2022
  ident: 10.1016/j.mtcata.2025.100092_bib36
  article-title: Identifying and tailoring C−N coupling site for efficient urea synthesis over diatomic Fe−Ni catalyst
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-33066-6
– volume: 5
  start-page: 2617
  year: 2023
  ident: 10.1016/j.mtcata.2025.100092_bib45
  article-title: Boosting electrocatalytic urea production via promoting asymmetric C−N coupling
  publication-title: CCS Chem.
  doi: 10.31635/ccschem.023.202202408
– volume: 7
  start-page: 3820
  year: 2023
  ident: 10.1016/j.mtcata.2025.100092_bib27
  article-title: Progress of electrocatalytic urea synthesis: strategic design, reactor engineering, mechanistic details and techno-commercial study
  publication-title: Mater. Chem. Front.
  doi: 10.1039/D3QM00433C
– volume: 63
  year: 2024
  ident: 10.1016/j.mtcata.2025.100092_bib39
  article-title: The tandem nitrate and CO2 reduction for urea electrosynthesis: role of surface N-intermediates in CO2 capture and activation
  publication-title: Angew. Chem. Int. Ed.
– ident: 10.1016/j.mtcata.2025.100092_bib18
  doi: 10.1039/D2TA07531H
– volume: 5
  start-page: 290
  year: 2021
  ident: 10.1016/j.mtcata.2025.100092_bib23
  article-title: Electrocatalytic nitrate reduction for sustainable ammonia production
  publication-title: Joule
  doi: 10.1016/j.joule.2020.12.025
– volume: 63
  year: 2024
  ident: 10.1016/j.mtcata.2025.100092_bib42
  article-title: Highly efficient electrosynthesis of urea from CO2 and nitrate by a metal-organic framework with dual active sites
  publication-title: Angew. Chem. Int. Ed.
– volume: 36
  start-page: 2409697
  year: 2024
  ident: 10.1016/j.mtcata.2025.100092_bib44
  article-title: Stabilization of Cuδ+ sites within MnO2 for superior urea electro-synthesis
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202409697
– volume: 63
  year: 2024
  ident: 10.1016/j.mtcata.2025.100092_bib48
  article-title: Dynamic reconstruction of two-dimensional defective Bi nanosheets for efficient electrocatalytic urea synthesis
  publication-title: Angew. Chem. Int. Ed.
– volume: 5
  start-page: 605
  year: 2020
  ident: 10.1016/j.mtcata.2025.100092_bib24
  article-title: Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper-molecular solid catalyst
  publication-title: Nat. Sustain.
– volume: 13
  start-page: 13516
  year: 2023
  ident: 10.1016/j.mtcata.2025.100092_bib31
  article-title: Controlling the metal-ligand coordination environment of manganese phthalocyanine in 1D−2D heterostructure for enhancing nitrate reduction to ammonia
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.3c02747
– volume: 14
  start-page: 4491
  year: 2023
  ident: 10.1016/j.mtcata.2025.100092_bib37
  article-title: Efficient urea electrosynthesis from carbon dioxide and nitrate via alternating Cu−W bimetallic C−N coupling sites
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-40273-2
– volume: 7
  start-page: 785
  year: 2024
  ident: 10.1016/j.mtcata.2025.100092_bib12
  article-title: Urea synthesis via electrocatalytic oxidative coupling of CO with NH3 on Pt
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-024-01173-w
– volume: 181
  start-page: 88
  year: 2016
  ident: 10.1016/j.mtcata.2025.100092_bib10
  article-title: Simultaneous electrocatalytic reduction of dinitrogen and carbon dioxide on conducting polymer electrodes
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2015.07.045
– volume: 63
  year: 2024
  ident: 10.1016/j.mtcata.2025.100092_bib46
  article-title: Electron deficiency is more important than conductivity in C−N coupling for electrocatalytic urea synthesis
  publication-title: Angew. Chem. Int. Ed.
– volume: 4
  start-page: 868
  year: 2021
  ident: 10.1016/j.mtcata.2025.100092_bib2
  article-title: Selective electrocatalytic synthesis of urea with nitrate and carbon dioxide
  publication-title: Nat. Sustain.
  doi: 10.1038/s41893-021-00741-3
– volume: 11
  start-page: 5464
  year: 2020
  ident: 10.1016/j.mtcata.2025.100092_bib3
  article-title: Electro-reduction of carbon dioxide at low over-potential at a metal-organic framework decorated cathode
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-19236-4
– volume: 52
  start-page: 1536015364
  year: 2023
  ident: 10.1016/j.mtcata.2025.100092_bib30
  article-title: 1D/2D interface engineering of a CoPc-C3N4 heterostructure for boosting the nitrogen reduction reaction to NH3
  publication-title: Dalton Trans.
  doi: 10.1039/D3DT01790G
– volume: 35
  start-page: 2300020
  year: 2023
  ident: 10.1016/j.mtcata.2025.100092_bib47
  article-title: Dynamic reconstitution between copper single atoms and clusters for electrocatalytic urea synthesis
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202300020
– volume: 11
  start-page: 13249
  year: 2023
  ident: 10.1016/j.mtcata.2025.100092_bib26
  article-title: Dual metal site-mediated efficient C−N coupling towards electrochemical urea synthesis
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/D3TA01011B
– volume: 15
  start-page: 5230
  year: 2021
  ident: 10.1016/j.mtcata.2025.100092_bib28
  article-title: Scalable production of cobalt phthalocyanine nanotubes: efficient and robust hollow electrocatalyst for ammonia synthesis at room temperature
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c10596
– volume: 34
  start-page: 2408314
  year: 2024
  ident: 10.1016/j.mtcata.2025.100092_bib33
  article-title: Boosting selective nitrogen oxidation to nitric acid by synergizing cobalt phthalocyanine on carbon nitride surface
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202408314
– volume: 1
  start-page: 56
  year: 2021
  ident: 10.1016/j.mtcata.2025.100092_bib8
  article-title: Methods for nitrogen activation by reduction and oxidation
  publication-title: Nat. Rev. Method. Prime.
  doi: 10.1038/s43586-021-00053-y
– volume: 62
  year: 2023
  ident: 10.1016/j.mtcata.2025.100092_bib20
  article-title: Single-atom or dual-atom in TiO2 nanosheet: which is the better choice for electrocatalytic urea synthesis
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202216835
– volume: 15
  start-page: 34642
  year: 2023
  ident: 10.1016/j.mtcata.2025.100092_bib32
  article-title: Selective electrocatalytic oxidation of nitrogen to nitric acid using manganese phthalocyanine
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.3c01847
– volume: 360
  year: 2018
  ident: 10.1016/j.mtcata.2025.100092_bib6
  article-title: Beyond fossil fuel-driven nitrogen transformations
  publication-title: Science
  doi: 10.1126/science.aar6611
– volume: 9
  start-page: 1795
  year: 2018
  ident: 10.1016/j.mtcata.2025.100092_bib14
  article-title: Ambien ammonia synthesis via palladium-catalyzed electrohydrogenation of dinitrogen at low overpotential
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04213-9
– volume: 120
  year: 2023
  ident: 10.1016/j.mtcata.2025.100092_bib21
  article-title: Efficient C−N coupling in the direct synthesis of urea from CO2 and N2 by amorphous SbxBi1-xOy clusters
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 3
  start-page: 1468
  year: 2021
  ident: 10.1016/j.mtcata.2025.100092_bib35
  article-title: Dual-sites tandem catalysis for C−N bond formation via electrocatalytic coupling of CO2 and nitrogenous small molecules
  publication-title: ACS Mater. Lett.
  doi: 10.1021/acsmaterialslett.1c00375
– volume: 6
  start-page: 939
  year: 2023
  ident: 10.1016/j.mtcata.2025.100092_bib5
  article-title: Selective electrochemical synthesis of urea from nitrate and CO2 via relay catalysis on hybrid catalysts
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-023-01020-4
– volume: 32
  start-page: 2200882
  year: 2022
  ident: 10.1016/j.mtcata.2025.100092_bib25
  article-title: Understanding the site-selective electrocatalytic co-reduction mechanism for green urea synthesis using copper phthalocyanine nanotubes
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202200882
– volume: 7
  start-page: 1564
  year: 2020
  ident: 10.1016/j.mtcata.2025.100092_bib9
  article-title: Direct transformation of dinitrogen: synthesis of N-containing organic compounds via N−C bond formation
  publication-title: Nat. Sci. Rev.
  doi: 10.1093/nsr/nwaa142
– volume: 15
  start-page: 8858
  year: 2024
  ident: 10.1016/j.mtcata.2025.100092_bib43
  article-title: Ligand engineering towards electrocatalytic urea synthesis on a molecular catalyst
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-024-52832-2
– volume: 7
  year: 2024
  ident: 10.1016/j.mtcata.2025.100092_bib50
  article-title: Pulsed co-electrolysis of carbon dioxide and nitrate for sustainable urea synthesis
  publication-title: Nat. Sustain.
  doi: 10.1038/s41893-024-01302-0
– volume: 62
  year: 2023
  ident: 10.1016/j.mtcata.2025.100092_bib15
  article-title: Electrocatalytic urea synthesis with 63.5% Faradaic efficiency and 100% N-selectivity via one-step C−N coupling
  publication-title: Angew. Chem. Int. Ed.
– volume: 62
  year: 2023
  ident: 10.1016/j.mtcata.2025.100092_bib34
  article-title: C-bound or O-bound surface: which one boosts electrocatalytic urea synthesis
  publication-title: Angew. Chem. Int. Ed.
– volume: 2
  start-page: 448
  year: 2019
  ident: 10.1016/j.mtcata.2025.100092_bib13
  article-title: Promoting nitrogen reduction to ammonia with bismuth nanocrystals and potassium cations in water
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-019-0241-7
– volume: 54
  start-page: 1711
  year: 2021
  ident: 10.1016/j.mtcata.2025.100092_bib1
  article-title: Expanding the boundary of biorefinery: Organonitrogen chemicals from biomass
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.0c00842
– volume: 12
  start-page: 717
  year: 2020
  ident: 10.1016/j.mtcata.2025.100092_bib4
  article-title: Coupling N2 and CO2 in H2O to synthesize urea under ambient conditions
  publication-title: Nat. Chem.
  doi: 10.1038/s41557-020-0481-9
– volume: 34
  start-page: 2313420
  year: 2024
  ident: 10.1016/j.mtcata.2025.100092_bib17
  article-title: Urea electrosynthesis accelerated by theoretical simulations
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202313420
– volume: 8
  start-page: 1224
  year: 2024
  ident: 10.1016/j.mtcata.2025.100092_bib53
  article-title: Green urea production for sustainable agriculture
  publication-title: Joule
  doi: 10.1016/j.joule.2024.02.021
– volume: 62
  year: 2023
  ident: 10.1016/j.mtcata.2025.100092_bib49
  article-title: A universal approach for sustainable urea synthesis via intermediate assembly at the electrode/electrolyte interface
  publication-title: Angew. Chem. Int. Ed.
SSID ssj0002991647
Score 2.2845294
SecondaryResourceType review_article
Snippet The construction of C–N bond and synthesis of N-containing compounds directly from N2 is an extremely attractive subject. The co-electrolysis system coupled...
SourceID doaj
crossref
elsevier
SourceType Open Website
Index Database
Publisher
StartPage 100092
SubjectTerms Adsorption configuration
C–N coupling
Electrocatalysis
Reaction mechanism
Urea synthesis
Title Ambient urea synthesis via electrocatalytic C–N coupling
URI https://dx.doi.org/10.1016/j.mtcata.2025.100092
https://doaj.org/article/3874d87d28f045d1aaf31e50ef2ce352
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQJxYEAkT5kgfWiMRx4oStVK0QUjtRqZvlT1Sktoi2SF0Q_4F_yC_hLk5QWGBh8WA5dnIX-T0nd-8IuSpV4VWmfGSArEbcxj7SnokotqXlKkmLzGE28mic3034_TSbtkp9YUxYkAcOhrtOC8FtISwrPLAPmyjl08RlsfPMOGAPuPsC5rUOU7gHM6Q9XDS5clVA1xzllFBqiGUYGxCX7AcWVZL9LUhqwcxwn-zV_JD2wn0dkB23OCQ3vbnGvEWKIeR0tV0Aa1vNVvR1pmhdx6b6DLOFi2j_8_1jTM1yg7m2j0dkMhw89O-iuuhBZABFGKplmsQU1jID0KrKUpU5cwkeG3LhEgMdnhsbW_xF5jXTXIs0BZKQ5nmh8jg9Jp3FcuFOCGU249wUMEA4aBQgs08817l22nhluyRqHl8-B20L2QR9PclgLonmksFcXXKLNvoei8rUVQf4S9b-kn_5q0tEY2FZg3wAb5hq9uvyp_-x_BnZxSlDFNk56axfNu4CaMVaX1ZvELSjt8EXVefMuw
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ambient+urea+synthesis+via+electrocatalytic+C%E2%80%93N+coupling&rft.jtitle=Materials+Today+Catalysis&rft.au=Chen+Chen&rft.date=2025-03-01&rft.pub=Elsevier&rft.eissn=2949-754X&rft.volume=8&rft.spage=100092&rft_id=info:doi/10.1016%2Fj.mtcata.2025.100092&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_3874d87d28f045d1aaf31e50ef2ce352
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2949-754X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2949-754X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2949-754X&client=summon