Ambient urea synthesis via electrocatalytic C–N coupling
The construction of C–N bond and synthesis of N-containing compounds directly from N2 is an extremely attractive subject. The co-electrolysis system coupled with renewable electricity provides one of the potential options for the green and controllable C–N bond construction under ambient conditions,...
Saved in:
Published in | Materials Today Catalysis Vol. 8; p. 100092 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.03.2025
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The construction of C–N bond and synthesis of N-containing compounds directly from N2 is an extremely attractive subject. The co-electrolysis system coupled with renewable electricity provides one of the potential options for the green and controllable C–N bond construction under ambient conditions, bypassing the intermediate process of ammonia synthesis. In this review, we have summarized the recent progress in ambient urea synthesis via electrocatalytic C–N coupling from CO2 and nitrogenous species. The reaction mechanisms studies of N2 and CO2 coupling has been mainly highlighted, and the coupling enhancement strategies are emphasized for the coupling of nitrate and CO2, including intermediate adsorption regulation, functional synergy, site reconstitution and local-environment construction. Moreover, promising directions and remaining challenges are outlined, encompassing the mechanism study combining theory and experiment, reactant source and product application, optimization of urea synthesis evaluation system and the development of devices aiming to coupling system. This review aims to guide further advancements in electrocatalytic C–N coupling, facilitating the efficient and sustainable synthesis of urea for a broad spectrum of applications. |
---|---|
AbstractList | The construction of C–N bond and synthesis of N-containing compounds directly from N2 is an extremely attractive subject. The co-electrolysis system coupled with renewable electricity provides one of the potential options for the green and controllable C–N bond construction under ambient conditions, bypassing the intermediate process of ammonia synthesis. In this review, we have summarized the recent progress in ambient urea synthesis via electrocatalytic C–N coupling from CO2 and nitrogenous species. The reaction mechanisms studies of N2 and CO2 coupling has been mainly highlighted, and the coupling enhancement strategies are emphasized for the coupling of nitrate and CO2, including intermediate adsorption regulation, functional synergy, site reconstitution and local-environment construction. Moreover, promising directions and remaining challenges are outlined, encompassing the mechanism study combining theory and experiment, reactant source and product application, optimization of urea synthesis evaluation system and the development of devices aiming to coupling system. This review aims to guide further advancements in electrocatalytic C–N coupling, facilitating the efficient and sustainable synthesis of urea for a broad spectrum of applications. |
ArticleNumber | 100092 |
Author | Chen, Chen |
Author_xml | – sequence: 1 givenname: Chen surname: Chen fullname: Chen, Chen email: chenc@hnu.edu.cn organization: State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, China |
BookMark | eNp9kM9KAzEQh4NUsFbfwMO-QGsyyWY3HoRS_AeiFwVvIZvMasp2tyTbQm--g2_ok5i6Ip48zfBj5mPmOyajtmuRkDNGZ4wyeb6crXprejMDCnmKKFVwQMaghJoWuXgZ_emPyGmMyzQCSjEpijG5mK8qj22fbQKaLO7a_g2jj9nWmwwbtH3o9vBm13ubLT7fPx4y223WjW9fT8hhbZqIpz91Qp6vr54Wt9P7x5u7xfx-aoEBTJWUltnSObAsB6OUURKQCa6ULJDZFNTCOupoCbyuoBJVwTmUnEtZGkn5hNwNXNeZpV4HvzJhpzvj9XfQhVdtQjqvQc3LQriycFDWVOSOGVNzhjnFGizyHBJLDCwbuhgD1r88RvVep17qQafe69SDzrR2Oaxh-nPrMehokzWLzofkKB3i_wd8AbDEgOs |
Cites_doi | 10.1016/j.chempr.2024.01.025 10.1021/acs.accounts.3c00424 10.1002/anie.202402684 10.1002/anie.202402215 10.1021/jacs.2c03452 10.1002/adma.202402160 10.1021/jacs.4c08564 10.1002/anie.202101275 10.1021/acssuschemeng.2c07114 10.1038/s41467-022-33066-6 10.31635/ccschem.023.202202408 10.1039/D3QM00433C 10.1039/D2TA07531H 10.1016/j.joule.2020.12.025 10.1002/adma.202409697 10.1021/acscatal.3c02747 10.1038/s41467-023-40273-2 10.1038/s41929-024-01173-w 10.1016/j.apcatb.2015.07.045 10.1038/s41893-021-00741-3 10.1038/s41467-020-19236-4 10.1039/D3DT01790G 10.1002/adma.202300020 10.1039/D3TA01011B 10.1021/acsnano.0c10596 10.1002/adfm.202408314 10.1038/s43586-021-00053-y 10.1002/anie.202216835 10.1021/acsami.3c01847 10.1126/science.aar6611 10.1038/s41467-018-04213-9 10.1021/acsmaterialslett.1c00375 10.1038/s41929-023-01020-4 10.1002/adfm.202200882 10.1093/nsr/nwaa142 10.1038/s41467-024-52832-2 10.1038/s41893-024-01302-0 10.1038/s41929-019-0241-7 10.1021/acs.accounts.0c00842 10.1038/s41557-020-0481-9 10.1002/adfm.202313420 10.1016/j.joule.2024.02.021 |
ContentType | Journal Article |
Copyright | 2025 The Authors |
Copyright_xml | – notice: 2025 The Authors |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.mtcata.2025.100092 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2949-754X |
ExternalDocumentID | oai_doaj_org_article_3874d87d28f045d1aaf31e50ef2ce352 10_1016_j_mtcata_2025_100092 S2949754X25000055 |
GroupedDBID | 0R~ 6I. AAFTH AAXUO ADVLN AEXQZ AFJKZ AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ EBS FDB GROUPED_DOAJ M~E AALRI AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AIGII AKBMS AKYEP APXCP CITATION |
ID | FETCH-LOGICAL-c2122-966c1c8dd2c152a99a962e1439967e1c99af4cd0d0823fb2b4b7332833668a603 |
IEDL.DBID | DOA |
ISSN | 2949-754X |
IngestDate | Wed Aug 27 01:08:04 EDT 2025 Tue Jul 01 05:13:31 EDT 2025 Sat Mar 22 15:53:55 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Urea synthesis Reaction mechanism Electrocatalysis C–N coupling Adsorption configuration |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2122-966c1c8dd2c152a99a962e1439967e1c99af4cd0d0823fb2b4b7332833668a603 |
OpenAccessLink | https://doaj.org/article/3874d87d28f045d1aaf31e50ef2ce352 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_3874d87d28f045d1aaf31e50ef2ce352 crossref_primary_10_1016_j_mtcata_2025_100092 elsevier_sciencedirect_doi_10_1016_j_mtcata_2025_100092 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2025 2025-03-00 2025-03-01 |
PublicationDateYYYYMMDD | 2025-03-01 |
PublicationDate_xml | – month: 03 year: 2025 text: March 2025 |
PublicationDecade | 2020 |
PublicationTitle | Materials Today Catalysis |
PublicationYear | 2025 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Paul, Sarkar, Dolui, Sarkar, Robert, Ghorai (bib30) 2023; 52 Song, Haro, Huang, Barrera, Hatzell (bib11) 2020; 56 Wei, Liu, Zhu, Bo, Xiao, Chen, Nga, He, Qiu, Xie, Wang, Liu, Dong, Dong, Fi, Wang (bib47) 2023; 35 Wang, Yu, Hu, Chen, Xin, Feng (bib14) 2018; 9 Adalder, Paul, Ghorai, Kapse, Thapa, Nagendra, Ghorai (bib32) 2023; 15 Mukherjee, Paul, Adalder, Kapse, Thapa, Mandal, Ghorai, Sarkar, Ghorai (bib25) 2022; 32 Paul, Sarkar, Adalder, Kapse, Thapa, Ghorai (bib29) 2023; 11 Luo, Xie, Ou, Lavallais, Peng, Chen, Zhang, Wang, Li, Grigioni, Liu, Sinton, Dunn, Sargent (bib5) 2023; 6 Li, Xu, Bo, Wang, Xu, Chen, Miao, Chen, Zhang, Liu, Shen, Shao, Jia, Wang (bib43) 2024; 15 and CO Qiu, Zhu, Bo, Cheng, He, Gu, Song, Chen, Wei, Wang, Liu, Li, Tu, Li, Liu, Li, Wang (bib45) 2023; 5 Fu (bib7) 2023; 3 Qiu, Huang, Yu, Chen, Liao (bib42) 2024; 63 Pan, Wang, Lu, Liu, Hao, Wang, Jiang, Sun, Wang, Wang (bib20) 2023; 62 Huang, Li, Xie, Zhao, Zhang, Zhang, Sheng, Zhao (bib39) 2024; 63 van Langevelde, Katsounaros, Koper (bib23) 2021; 5 Chen, Crooks, Seefeldt, Bren, Bullock, Darensbourg, Holland, Hoffman, Janik, Jones, Kanatzidis, King, Lancaster, Lymar, Pfromm, Schneider, Schrock (bib6) 2018; 360 Kang, Li, Sheveleva, Han, Li, Liu, Tuna, Mclnnes, Han, Yang, Schröder (bib3) 2020; 11 Chen, Zhu, Wen, Zhou, Zhou, Li, Tao, Li, Du, Liu, Yan, Xie, Zou, Wang, Chen, Huo, Li, Cheng, Su, Zhao, Cheng, Liu, Lin, Luo, Chen, Dong, Cheng, Li, Wang (bib4) 2020; 12 Lv, Wei, Zhang, Chen, Deng, Shi, Xi (bib9) 2020; 7 D. Jiao, Y. Dong, X. Cui, Q. Cai, C.R. Cabrera, J. Zhao, Z. Chen, Boosting the efficiency of urea synthesis via cooperative electroreduction of N Chen, Song, Li, Gözaydın, Yan (bib1) 2021; 54 on MoP, J. Mater. Chem. A 11 (20223) 232−240. Chen, Lv, Kang, Wang, Guo, Wang, Teobaldi, Liu, Guo (bib21) 2023; 120 Paul, Adalder, Barman, Thapa, Bera, Mitra, Ghorai (bib33) 2024; 34 Lv, Zhong, Liu, Fang, Yan, Chen, Kong, Lee, Liu, Li, Liu, Song, Chen, Yan, Yu (bib2) 2021; 4 Adalder, Paul, Barman, Bera, Sarkar, Mukherjee, Thapa, Ghorai (bib31) 2023; 13 Chen, Ma, Zhang, Wang, Yang, Wang, Zhang, Liu, Bao, Chu (bib41) 2024; 36 Hu, Zhou, Qi, Huo, Li, Lv, Chen, Feng, Yu, Chai, Yang, He (bib50) 2024; 7 Zhang, Zhu, Bo, Chen, Zhai, Li, Tu, Zheng, Wang, Wei, Chen, Wang, Li, Liu, Jiang, Dai, Wang (bib16) 2024; 10 Yuan, Chen, Bai, Liu, Zhang, Zhao, Wang, Li, He, Zhang (bib19) 2021; 60 Paul, Adalder, Ghorai (bib27) 2023; 7 Yang, Wu, Jiang, Zhang, Liu, Yu, Liu, Du, Dai, Mao, Qin (bib44) 2024; 36 Fu, Yang, Hu (bib35) 2021; 3 Zhao, Ding, Li, Liu, Li, Zhao, Shan, Li, Sun, Li (bib37) 2023; 14 Liu, Tu, Wei, Wang, Zhang, Chen, Chen, Wang (bib34) 2023; 62 Paul, Sarkar, Adalder, Banerjee, Ghorai (bib26) 2023; 11 Zhang, Zhu, Bo, Chen, Cheng, Zheng, Li, Tu, Chen, Xie, Wei, Wang, Liu, Chen, Jiang, Li, Liu, Li, Wang (bib15) 2023; 62 Liu, Guo, Frauenheim, Gu, Kou (bib17) 2024; 34 Wang, Xia, Cai, Zhang, Yu, Cui, Zhang, Wu, Wu (bib48) 2024; 63 Mao, Byun, Macleod, Maravelias, Ozin (bib53) 2024; 8 Hao, Guo, Chen, Shu, Wang, Bu, Gao, Zhang, Su, Feng, Zhou, Wang, Hu, Yin, Si, Zhang, Yan (bib13) 2019; 2 Ghorai, Paul, Ghorai, Adalder, Kapse, Thapa, Nagendra, Gain (bib28) 2021; 15 Iriawan, Andersen, Zhang, Comer, Barrio, Chen, Medford, Stephens, Chorkendorff, Shao-Horn (bib8) 2021; 1 Song, Ma, Chen, Xu, Feng, Wu, Jia, Zhang, Tan, Wang, Chen, Ma, Zhu, Kang, Sun, Han (bib40) 2024; 146 Tu, Zhu, Bo, Zhang, Miao, Wen, Chen, Li, Zhou, Liu, Chen, Shao, Yan, Li, Jia, Wang (bib49) 2023; 62 Qiu, Qin, Li, Cao, Cui, Zhang, Zhuang, Wang, Zhang (bib51) 2024; 63 Wang, Wang, Cheng, He, Liu, Liu, Yuan, Huan, Qian, Yan (bib52) 2024; 63 Wei, Wen, Liu, Chen, Xie, Wang, Qiu, He, Zhou, Chen, Cheng, Lin, Jia, Fu, Wang (bib22) 2022; 144 Chen, Yuan, Jiang, Ren, Ding, Ma, Wu, Lu, Wang (bib24) 2020; 5 Zhang, Zhu, Bo, Chen, Qiu, Wei, He, Xie, Chen, Zheng, Chen, Jiang, Li, Liu, Wang (bib36) 2022; 13 Gao, Wang, Sun, Jing, Chen, Liang, Yang, Zhang, Yao, Wang (bib38) 2024; 63 Kayan, Köleli (bib10) 2016; 181 Wang, Zhu, An, Zhang, Wei, Chen, Li, Chen, Zhou, Liu, Shao, Wang (bib46) 2024; 63 Xiong, Yu, Chen, Lu, Hu, Cheng, Xu, Lu (bib12) 2024; 7 Lv (10.1016/j.mtcata.2025.100092_bib2) 2021; 4 Qiu (10.1016/j.mtcata.2025.100092_bib42) 2024; 63 Chen (10.1016/j.mtcata.2025.100092_bib41) 2024; 36 Iriawan (10.1016/j.mtcata.2025.100092_bib8) 2021; 1 Qiu (10.1016/j.mtcata.2025.100092_bib45) 2023; 5 Wang (10.1016/j.mtcata.2025.100092_bib48) 2024; 63 van Langevelde (10.1016/j.mtcata.2025.100092_bib23) 2021; 5 10.1016/j.mtcata.2025.100092_bib18 Fu (10.1016/j.mtcata.2025.100092_bib7) 2023; 3 Chen (10.1016/j.mtcata.2025.100092_bib4) 2020; 12 Wei (10.1016/j.mtcata.2025.100092_bib22) 2022; 144 Paul (10.1016/j.mtcata.2025.100092_bib30) 2023; 52 Huang (10.1016/j.mtcata.2025.100092_bib39) 2024; 63 Zhang (10.1016/j.mtcata.2025.100092_bib36) 2022; 13 Li (10.1016/j.mtcata.2025.100092_bib43) 2024; 15 Tu (10.1016/j.mtcata.2025.100092_bib49) 2023; 62 Wei (10.1016/j.mtcata.2025.100092_bib47) 2023; 35 Zhang (10.1016/j.mtcata.2025.100092_bib16) 2024; 10 Kayan (10.1016/j.mtcata.2025.100092_bib10) 2016; 181 Zhang (10.1016/j.mtcata.2025.100092_bib15) 2023; 62 Lv (10.1016/j.mtcata.2025.100092_bib9) 2020; 7 Gao (10.1016/j.mtcata.2025.100092_bib38) 2024; 63 Paul (10.1016/j.mtcata.2025.100092_bib27) 2023; 7 Liu (10.1016/j.mtcata.2025.100092_bib34) 2023; 62 Zhao (10.1016/j.mtcata.2025.100092_bib37) 2023; 14 Song (10.1016/j.mtcata.2025.100092_bib11) 2020; 56 Xiong (10.1016/j.mtcata.2025.100092_bib12) 2024; 7 Adalder (10.1016/j.mtcata.2025.100092_bib32) 2023; 15 Chen (10.1016/j.mtcata.2025.100092_bib21) 2023; 120 Qiu (10.1016/j.mtcata.2025.100092_bib51) 2024; 63 Hao (10.1016/j.mtcata.2025.100092_bib13) 2019; 2 Fu (10.1016/j.mtcata.2025.100092_bib35) 2021; 3 Mukherjee (10.1016/j.mtcata.2025.100092_bib25) 2022; 32 Ghorai (10.1016/j.mtcata.2025.100092_bib28) 2021; 15 Kang (10.1016/j.mtcata.2025.100092_bib3) 2020; 11 Chen (10.1016/j.mtcata.2025.100092_bib1) 2021; 54 Paul (10.1016/j.mtcata.2025.100092_bib26) 2023; 11 Wang (10.1016/j.mtcata.2025.100092_bib14) 2018; 9 Yang (10.1016/j.mtcata.2025.100092_bib44) 2024; 36 Adalder (10.1016/j.mtcata.2025.100092_bib31) 2023; 13 Pan (10.1016/j.mtcata.2025.100092_bib20) 2023; 62 Paul (10.1016/j.mtcata.2025.100092_bib29) 2023; 11 Paul (10.1016/j.mtcata.2025.100092_bib33) 2024; 34 Wang (10.1016/j.mtcata.2025.100092_bib46) 2024; 63 Hu (10.1016/j.mtcata.2025.100092_bib50) 2024; 7 Song (10.1016/j.mtcata.2025.100092_bib40) 2024; 146 Luo (10.1016/j.mtcata.2025.100092_bib5) 2023; 6 Chen (10.1016/j.mtcata.2025.100092_bib24) 2020; 5 Wang (10.1016/j.mtcata.2025.100092_bib52) 2024; 63 Mao (10.1016/j.mtcata.2025.100092_bib53) 2024; 8 Liu (10.1016/j.mtcata.2025.100092_bib17) 2024; 34 Yuan (10.1016/j.mtcata.2025.100092_bib19) 2021; 60 Chen (10.1016/j.mtcata.2025.100092_bib6) 2018; 360 |
References_xml | – volume: 120 year: 2023 ident: bib21 article-title: Efficient C−N coupling in the direct synthesis of urea from CO publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 36 start-page: 2402160 year: 2024 ident: bib41 article-title: Urea electrocatalysis from nitrate and CO publication-title: Adv. Mater. – volume: 11 start-page: 5464 year: 2020 ident: bib3 article-title: Electro-reduction of carbon dioxide at low over-potential at a metal-organic framework decorated cathode publication-title: Nat. Commun. – volume: 56 start-page: 2944 year: 2020 end-page: 2953 ident: bib11 article-title: Progress in photochemical and electrochemical C−N bond formation for urea synthesis publication-title: Acc. Chem. Res. – volume: 15 start-page: 5230 year: 2021 end-page: 5239 ident: bib28 article-title: Scalable production of cobalt phthalocyanine nanotubes: efficient and robust hollow electrocatalyst for ammonia synthesis at room temperature publication-title: ACS Nano – volume: 63 year: 2024 ident: bib39 article-title: The tandem nitrate and CO publication-title: Angew. Chem. Int. Ed. – volume: 9 start-page: 1795 year: 2018 ident: bib14 article-title: Ambien ammonia synthesis via palladium-catalyzed electrohydrogenation of dinitrogen at low overpotential publication-title: Nat. Commun. – volume: 62 year: 2023 ident: bib20 article-title: Single-atom or dual-atom in TiO publication-title: Angew. Chem. Int. Ed. – volume: 63 year: 2024 ident: bib48 article-title: Dynamic reconstruction of two-dimensional defective Bi nanosheets for efficient electrocatalytic urea synthesis publication-title: Angew. Chem. Int. Ed. – volume: 34 start-page: 2313420 year: 2024 ident: bib17 article-title: Urea electrosynthesis accelerated by theoretical simulations publication-title: Adv. Funct. Mater. – volume: 11 start-page: 6191 year: 2023 end-page: 6200 ident: bib29 article-title: Strengthening the metal center of Co−N publication-title: ACS Sustain. Chem. Eng. – volume: 2 start-page: 448 year: 2019 end-page: 456 ident: bib13 article-title: Promoting nitrogen reduction to ammonia with bismuth nanocrystals and potassium cations in water publication-title: Nat. Catal. – volume: 7 year: 2024 ident: bib50 article-title: Pulsed co-electrolysis of carbon dioxide and nitrate for sustainable urea synthesis publication-title: Nat. Sustain. – volume: 4 start-page: 868 year: 2021 end-page: 876 ident: bib2 article-title: Selective electrocatalytic synthesis of urea with nitrate and carbon dioxide publication-title: Nat. Sustain. – volume: 181 start-page: 88 year: 2016 end-page: 93 ident: bib10 article-title: Simultaneous electrocatalytic reduction of dinitrogen and carbon dioxide on conducting polymer electrodes publication-title: Appl. Catal. B-Environ. – volume: 13 start-page: 13516 year: 2023 end-page: 13527 ident: bib31 article-title: Controlling the metal-ligand coordination environment of manganese phthalocyanine in 1D−2D heterostructure for enhancing nitrate reduction to ammonia publication-title: ACS Catal. – volume: 63 year: 2024 ident: bib51 article-title: Overcoming electrostatic interaction via pulsed electroreduction for boosting the electrocatalytic urea synthesis publication-title: Angew. Chem. Int. Ed. – volume: 144 start-page: 11530 year: 2022 end-page: 11535 ident: bib22 article-title: Oxygen vacancy-mediated selective C−N coupling toward electrocatalytic urea synthesis publication-title: J. Am. Chem. Soc. – volume: 63 year: 2024 ident: bib38 article-title: Tandem catalysts enabling efficient C−N coupling toward the electrosynthesis of urea publication-title: Angew. Chem. Int. Ed. – volume: 34 start-page: 2408314 year: 2024 ident: bib33 article-title: Boosting selective nitrogen oxidation to nitric acid by synergizing cobalt phthalocyanine on carbon nitride surface publication-title: Adv. Funct. Mater. – volume: 62 year: 2023 ident: bib34 article-title: C-bound or O-bound surface: which one boosts electrocatalytic urea synthesis publication-title: Angew. Chem. Int. Ed. – volume: 11 start-page: 13249 year: 2023 end-page: 13254 ident: bib26 article-title: Dual metal site-mediated efficient C−N coupling towards electrochemical urea synthesis publication-title: J. Mater. Chem. A. – volume: 7 start-page: 785 year: 2024 end-page: 795 ident: bib12 article-title: Urea synthesis via electrocatalytic oxidative coupling of CO with NH publication-title: Nat. Catal. – volume: 60 start-page: 10910 year: 2021 end-page: 10918 ident: bib19 article-title: Unveiling electrochemical urea synthesis by co-activation of CO publication-title: Angew. Chem. Int. Ed. – volume: 7 start-page: 1564 year: 2020 end-page: 1583 ident: bib9 article-title: Direct transformation of dinitrogen: synthesis of N-containing organic compounds via N−C bond formation publication-title: Nat. Sci. Rev. – volume: 14 start-page: 4491 year: 2023 ident: bib37 article-title: Efficient urea electrosynthesis from carbon dioxide and nitrate via alternating Cu−W bimetallic C−N coupling sites publication-title: Nat. Commun. – reference: and CO – volume: 5 start-page: 605 year: 2020 end-page: 613 ident: bib24 article-title: Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper-molecular solid catalyst publication-title: Nat. Sustain. – volume: 360 year: 2018 ident: bib6 article-title: Beyond fossil fuel-driven nitrogen transformations publication-title: Science – volume: 6 start-page: 939 year: 2023 end-page: 948 ident: bib5 article-title: Selective electrochemical synthesis of urea from nitrate and CO publication-title: Nat. Catal. – volume: 63 year: 2024 ident: bib52 article-title: Orderly coating of bilayer polymer to tailor microenvironment for efficient C−N coupling toward highly selective urea electrosynthesis publication-title: Angew. Chem. Int. Ed. – volume: 62 year: 2023 ident: bib49 article-title: A universal approach for sustainable urea synthesis via intermediate assembly at the electrode/electrolyte interface publication-title: Angew. Chem. Int. Ed. – reference: on MoP, J. Mater. Chem. A 11 (20223) 232−240. – volume: 8 start-page: 1224 year: 2024 end-page: 1238 ident: bib53 article-title: Green urea production for sustainable agriculture publication-title: Joule – volume: 7 start-page: 3820 year: 2023 end-page: 3854 ident: bib27 article-title: Progress of electrocatalytic urea synthesis: strategic design, reactor engineering, mechanistic details and techno-commercial study publication-title: Mater. Chem. Front. – volume: 54 start-page: 1711 year: 2021 end-page: 1722 ident: bib1 article-title: Expanding the boundary of biorefinery: Organonitrogen chemicals from biomass publication-title: Acc. Chem. Res. – volume: 10 start-page: 1516 year: 2024 end-page: 1527 ident: bib16 article-title: Selective nitrogen fixation via Janus C−N coupling in co-electrolysis publication-title: Chem – volume: 62 year: 2023 ident: bib15 article-title: Electrocatalytic urea synthesis with 63.5% Faradaic efficiency and 100% N-selectivity via one-step C−N coupling publication-title: Angew. Chem. Int. Ed. – volume: 146 start-page: 25813 year: 2024 end-page: 25823 ident: bib40 article-title: Urea synthesis via coelectrolysis of CO publication-title: J. Am. Chem. Soc. – volume: 3 year: 2023 ident: bib7 article-title: Lithium-mediated nitrogen reduction for electrochemical ammonia synthesis: From batch to flow reactor publication-title: Mater. Today Catal. – volume: 5 start-page: 2617 year: 2023 end-page: 2627 ident: bib45 article-title: Boosting electrocatalytic urea production via promoting asymmetric C−N coupling publication-title: CCS Chem. – reference: D. Jiao, Y. Dong, X. Cui, Q. Cai, C.R. Cabrera, J. Zhao, Z. Chen, Boosting the efficiency of urea synthesis via cooperative electroreduction of N – volume: 63 year: 2024 ident: bib46 article-title: Electron deficiency is more important than conductivity in C−N coupling for electrocatalytic urea synthesis publication-title: Angew. Chem. Int. Ed. – volume: 1 start-page: 56 year: 2021 ident: bib8 article-title: Methods for nitrogen activation by reduction and oxidation publication-title: Nat. Rev. Method. Prime. – volume: 5 start-page: 290 year: 2021 end-page: 294 ident: bib23 article-title: Electrocatalytic nitrate reduction for sustainable ammonia production publication-title: Joule – volume: 15 start-page: 8858 year: 2024 ident: bib43 article-title: Ligand engineering towards electrocatalytic urea synthesis on a molecular catalyst publication-title: Nat. Commun. – volume: 13 start-page: 5337 year: 2022 ident: bib36 article-title: Identifying and tailoring C−N coupling site for efficient urea synthesis over diatomic Fe−Ni catalyst publication-title: Nat. Commun. – volume: 15 start-page: 34642 year: 2023 end-page: 34650 ident: bib32 article-title: Selective electrocatalytic oxidation of nitrogen to nitric acid using manganese phthalocyanine publication-title: ACS Appl. Mater. Interfaces – volume: 36 start-page: 2409697 year: 2024 ident: bib44 article-title: Stabilization of Cu publication-title: Adv. Mater. – volume: 35 start-page: 2300020 year: 2023 ident: bib47 article-title: Dynamic reconstitution between copper single atoms and clusters for electrocatalytic urea synthesis publication-title: Adv. Mater. – volume: 63 year: 2024 ident: bib42 article-title: Highly efficient electrosynthesis of urea from CO publication-title: Angew. Chem. Int. Ed. – volume: 3 start-page: 1468 year: 2021 end-page: 1476 ident: bib35 article-title: Dual-sites tandem catalysis for C−N bond formation via electrocatalytic coupling of CO2 and nitrogenous small molecules publication-title: ACS Mater. Lett. – volume: 52 start-page: 1536015364 year: 2023 ident: bib30 article-title: 1D/2D interface engineering of a CoPc-C publication-title: Dalton Trans. – volume: 12 start-page: 717 year: 2020 end-page: 724 ident: bib4 article-title: Coupling N publication-title: Nat. Chem. – volume: 32 start-page: 2200882 year: 2022 ident: bib25 article-title: Understanding the site-selective electrocatalytic co-reduction mechanism for green urea synthesis using copper phthalocyanine nanotubes publication-title: Adv. Funct. Mater. – volume: 10 start-page: 1516 year: 2024 ident: 10.1016/j.mtcata.2025.100092_bib16 article-title: Selective nitrogen fixation via Janus C−N coupling in co-electrolysis publication-title: Chem doi: 10.1016/j.chempr.2024.01.025 – volume: 63 year: 2024 ident: 10.1016/j.mtcata.2025.100092_bib52 article-title: Orderly coating of bilayer polymer to tailor microenvironment for efficient C−N coupling toward highly selective urea electrosynthesis publication-title: Angew. Chem. Int. Ed. – volume: 56 start-page: 2944 year: 2020 ident: 10.1016/j.mtcata.2025.100092_bib11 article-title: Progress in photochemical and electrochemical C−N bond formation for urea synthesis publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.3c00424 – volume: 63 year: 2024 ident: 10.1016/j.mtcata.2025.100092_bib51 article-title: Overcoming electrostatic interaction via pulsed electroreduction for boosting the electrocatalytic urea synthesis publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202402684 – volume: 63 year: 2024 ident: 10.1016/j.mtcata.2025.100092_bib38 article-title: Tandem catalysts enabling efficient C−N coupling toward the electrosynthesis of urea publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202402215 – volume: 3 year: 2023 ident: 10.1016/j.mtcata.2025.100092_bib7 article-title: Lithium-mediated nitrogen reduction for electrochemical ammonia synthesis: From batch to flow reactor publication-title: Mater. Today Catal. – volume: 144 start-page: 11530 year: 2022 ident: 10.1016/j.mtcata.2025.100092_bib22 article-title: Oxygen vacancy-mediated selective C−N coupling toward electrocatalytic urea synthesis publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.2c03452 – volume: 36 start-page: 2402160 year: 2024 ident: 10.1016/j.mtcata.2025.100092_bib41 article-title: Urea electrocatalysis from nitrate and CO2 on diatomic alloys publication-title: Adv. Mater. doi: 10.1002/adma.202402160 – volume: 146 start-page: 25813 year: 2024 ident: 10.1016/j.mtcata.2025.100092_bib40 article-title: Urea synthesis via coelectrolysis of CO2 and nitrate over heterostructured Cu−Bi catalysts publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.4c08564 – volume: 60 start-page: 10910 year: 2021 ident: 10.1016/j.mtcata.2025.100092_bib19 article-title: Unveiling electrochemical urea synthesis by co-activation of CO2 and N2 with Mott-Schottky heterostructure catalysts publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202101275 – volume: 11 start-page: 6191 year: 2023 ident: 10.1016/j.mtcata.2025.100092_bib29 article-title: Strengthening the metal center of Co−N4 active sites in a 1D−2D heterostructure for nitrate and nitrogen reduction reaction to ammonia publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.2c07114 – volume: 13 start-page: 5337 year: 2022 ident: 10.1016/j.mtcata.2025.100092_bib36 article-title: Identifying and tailoring C−N coupling site for efficient urea synthesis over diatomic Fe−Ni catalyst publication-title: Nat. Commun. doi: 10.1038/s41467-022-33066-6 – volume: 5 start-page: 2617 year: 2023 ident: 10.1016/j.mtcata.2025.100092_bib45 article-title: Boosting electrocatalytic urea production via promoting asymmetric C−N coupling publication-title: CCS Chem. doi: 10.31635/ccschem.023.202202408 – volume: 7 start-page: 3820 year: 2023 ident: 10.1016/j.mtcata.2025.100092_bib27 article-title: Progress of electrocatalytic urea synthesis: strategic design, reactor engineering, mechanistic details and techno-commercial study publication-title: Mater. Chem. Front. doi: 10.1039/D3QM00433C – volume: 63 year: 2024 ident: 10.1016/j.mtcata.2025.100092_bib39 article-title: The tandem nitrate and CO2 reduction for urea electrosynthesis: role of surface N-intermediates in CO2 capture and activation publication-title: Angew. Chem. Int. Ed. – ident: 10.1016/j.mtcata.2025.100092_bib18 doi: 10.1039/D2TA07531H – volume: 5 start-page: 290 year: 2021 ident: 10.1016/j.mtcata.2025.100092_bib23 article-title: Electrocatalytic nitrate reduction for sustainable ammonia production publication-title: Joule doi: 10.1016/j.joule.2020.12.025 – volume: 63 year: 2024 ident: 10.1016/j.mtcata.2025.100092_bib42 article-title: Highly efficient electrosynthesis of urea from CO2 and nitrate by a metal-organic framework with dual active sites publication-title: Angew. Chem. Int. Ed. – volume: 36 start-page: 2409697 year: 2024 ident: 10.1016/j.mtcata.2025.100092_bib44 article-title: Stabilization of Cuδ+ sites within MnO2 for superior urea electro-synthesis publication-title: Adv. Mater. doi: 10.1002/adma.202409697 – volume: 63 year: 2024 ident: 10.1016/j.mtcata.2025.100092_bib48 article-title: Dynamic reconstruction of two-dimensional defective Bi nanosheets for efficient electrocatalytic urea synthesis publication-title: Angew. Chem. Int. Ed. – volume: 5 start-page: 605 year: 2020 ident: 10.1016/j.mtcata.2025.100092_bib24 article-title: Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper-molecular solid catalyst publication-title: Nat. Sustain. – volume: 13 start-page: 13516 year: 2023 ident: 10.1016/j.mtcata.2025.100092_bib31 article-title: Controlling the metal-ligand coordination environment of manganese phthalocyanine in 1D−2D heterostructure for enhancing nitrate reduction to ammonia publication-title: ACS Catal. doi: 10.1021/acscatal.3c02747 – volume: 14 start-page: 4491 year: 2023 ident: 10.1016/j.mtcata.2025.100092_bib37 article-title: Efficient urea electrosynthesis from carbon dioxide and nitrate via alternating Cu−W bimetallic C−N coupling sites publication-title: Nat. Commun. doi: 10.1038/s41467-023-40273-2 – volume: 7 start-page: 785 year: 2024 ident: 10.1016/j.mtcata.2025.100092_bib12 article-title: Urea synthesis via electrocatalytic oxidative coupling of CO with NH3 on Pt publication-title: Nat. Catal. doi: 10.1038/s41929-024-01173-w – volume: 181 start-page: 88 year: 2016 ident: 10.1016/j.mtcata.2025.100092_bib10 article-title: Simultaneous electrocatalytic reduction of dinitrogen and carbon dioxide on conducting polymer electrodes publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2015.07.045 – volume: 63 year: 2024 ident: 10.1016/j.mtcata.2025.100092_bib46 article-title: Electron deficiency is more important than conductivity in C−N coupling for electrocatalytic urea synthesis publication-title: Angew. Chem. Int. Ed. – volume: 4 start-page: 868 year: 2021 ident: 10.1016/j.mtcata.2025.100092_bib2 article-title: Selective electrocatalytic synthesis of urea with nitrate and carbon dioxide publication-title: Nat. Sustain. doi: 10.1038/s41893-021-00741-3 – volume: 11 start-page: 5464 year: 2020 ident: 10.1016/j.mtcata.2025.100092_bib3 article-title: Electro-reduction of carbon dioxide at low over-potential at a metal-organic framework decorated cathode publication-title: Nat. Commun. doi: 10.1038/s41467-020-19236-4 – volume: 52 start-page: 1536015364 year: 2023 ident: 10.1016/j.mtcata.2025.100092_bib30 article-title: 1D/2D interface engineering of a CoPc-C3N4 heterostructure for boosting the nitrogen reduction reaction to NH3 publication-title: Dalton Trans. doi: 10.1039/D3DT01790G – volume: 35 start-page: 2300020 year: 2023 ident: 10.1016/j.mtcata.2025.100092_bib47 article-title: Dynamic reconstitution between copper single atoms and clusters for electrocatalytic urea synthesis publication-title: Adv. Mater. doi: 10.1002/adma.202300020 – volume: 11 start-page: 13249 year: 2023 ident: 10.1016/j.mtcata.2025.100092_bib26 article-title: Dual metal site-mediated efficient C−N coupling towards electrochemical urea synthesis publication-title: J. Mater. Chem. A. doi: 10.1039/D3TA01011B – volume: 15 start-page: 5230 year: 2021 ident: 10.1016/j.mtcata.2025.100092_bib28 article-title: Scalable production of cobalt phthalocyanine nanotubes: efficient and robust hollow electrocatalyst for ammonia synthesis at room temperature publication-title: ACS Nano doi: 10.1021/acsnano.0c10596 – volume: 34 start-page: 2408314 year: 2024 ident: 10.1016/j.mtcata.2025.100092_bib33 article-title: Boosting selective nitrogen oxidation to nitric acid by synergizing cobalt phthalocyanine on carbon nitride surface publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202408314 – volume: 1 start-page: 56 year: 2021 ident: 10.1016/j.mtcata.2025.100092_bib8 article-title: Methods for nitrogen activation by reduction and oxidation publication-title: Nat. Rev. Method. Prime. doi: 10.1038/s43586-021-00053-y – volume: 62 year: 2023 ident: 10.1016/j.mtcata.2025.100092_bib20 article-title: Single-atom or dual-atom in TiO2 nanosheet: which is the better choice for electrocatalytic urea synthesis publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202216835 – volume: 15 start-page: 34642 year: 2023 ident: 10.1016/j.mtcata.2025.100092_bib32 article-title: Selective electrocatalytic oxidation of nitrogen to nitric acid using manganese phthalocyanine publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.3c01847 – volume: 360 year: 2018 ident: 10.1016/j.mtcata.2025.100092_bib6 article-title: Beyond fossil fuel-driven nitrogen transformations publication-title: Science doi: 10.1126/science.aar6611 – volume: 9 start-page: 1795 year: 2018 ident: 10.1016/j.mtcata.2025.100092_bib14 article-title: Ambien ammonia synthesis via palladium-catalyzed electrohydrogenation of dinitrogen at low overpotential publication-title: Nat. Commun. doi: 10.1038/s41467-018-04213-9 – volume: 120 year: 2023 ident: 10.1016/j.mtcata.2025.100092_bib21 article-title: Efficient C−N coupling in the direct synthesis of urea from CO2 and N2 by amorphous SbxBi1-xOy clusters publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 3 start-page: 1468 year: 2021 ident: 10.1016/j.mtcata.2025.100092_bib35 article-title: Dual-sites tandem catalysis for C−N bond formation via electrocatalytic coupling of CO2 and nitrogenous small molecules publication-title: ACS Mater. Lett. doi: 10.1021/acsmaterialslett.1c00375 – volume: 6 start-page: 939 year: 2023 ident: 10.1016/j.mtcata.2025.100092_bib5 article-title: Selective electrochemical synthesis of urea from nitrate and CO2 via relay catalysis on hybrid catalysts publication-title: Nat. Catal. doi: 10.1038/s41929-023-01020-4 – volume: 32 start-page: 2200882 year: 2022 ident: 10.1016/j.mtcata.2025.100092_bib25 article-title: Understanding the site-selective electrocatalytic co-reduction mechanism for green urea synthesis using copper phthalocyanine nanotubes publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202200882 – volume: 7 start-page: 1564 year: 2020 ident: 10.1016/j.mtcata.2025.100092_bib9 article-title: Direct transformation of dinitrogen: synthesis of N-containing organic compounds via N−C bond formation publication-title: Nat. Sci. Rev. doi: 10.1093/nsr/nwaa142 – volume: 15 start-page: 8858 year: 2024 ident: 10.1016/j.mtcata.2025.100092_bib43 article-title: Ligand engineering towards electrocatalytic urea synthesis on a molecular catalyst publication-title: Nat. Commun. doi: 10.1038/s41467-024-52832-2 – volume: 7 year: 2024 ident: 10.1016/j.mtcata.2025.100092_bib50 article-title: Pulsed co-electrolysis of carbon dioxide and nitrate for sustainable urea synthesis publication-title: Nat. Sustain. doi: 10.1038/s41893-024-01302-0 – volume: 62 year: 2023 ident: 10.1016/j.mtcata.2025.100092_bib15 article-title: Electrocatalytic urea synthesis with 63.5% Faradaic efficiency and 100% N-selectivity via one-step C−N coupling publication-title: Angew. Chem. Int. Ed. – volume: 62 year: 2023 ident: 10.1016/j.mtcata.2025.100092_bib34 article-title: C-bound or O-bound surface: which one boosts electrocatalytic urea synthesis publication-title: Angew. Chem. Int. Ed. – volume: 2 start-page: 448 year: 2019 ident: 10.1016/j.mtcata.2025.100092_bib13 article-title: Promoting nitrogen reduction to ammonia with bismuth nanocrystals and potassium cations in water publication-title: Nat. Catal. doi: 10.1038/s41929-019-0241-7 – volume: 54 start-page: 1711 year: 2021 ident: 10.1016/j.mtcata.2025.100092_bib1 article-title: Expanding the boundary of biorefinery: Organonitrogen chemicals from biomass publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.0c00842 – volume: 12 start-page: 717 year: 2020 ident: 10.1016/j.mtcata.2025.100092_bib4 article-title: Coupling N2 and CO2 in H2O to synthesize urea under ambient conditions publication-title: Nat. Chem. doi: 10.1038/s41557-020-0481-9 – volume: 34 start-page: 2313420 year: 2024 ident: 10.1016/j.mtcata.2025.100092_bib17 article-title: Urea electrosynthesis accelerated by theoretical simulations publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202313420 – volume: 8 start-page: 1224 year: 2024 ident: 10.1016/j.mtcata.2025.100092_bib53 article-title: Green urea production for sustainable agriculture publication-title: Joule doi: 10.1016/j.joule.2024.02.021 – volume: 62 year: 2023 ident: 10.1016/j.mtcata.2025.100092_bib49 article-title: A universal approach for sustainable urea synthesis via intermediate assembly at the electrode/electrolyte interface publication-title: Angew. Chem. Int. Ed. |
SSID | ssj0002991647 |
Score | 2.2845294 |
SecondaryResourceType | review_article |
Snippet | The construction of C–N bond and synthesis of N-containing compounds directly from N2 is an extremely attractive subject. The co-electrolysis system coupled... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Index Database Publisher |
StartPage | 100092 |
SubjectTerms | Adsorption configuration C–N coupling Electrocatalysis Reaction mechanism Urea synthesis |
Title | Ambient urea synthesis via electrocatalytic C–N coupling |
URI | https://dx.doi.org/10.1016/j.mtcata.2025.100092 https://doaj.org/article/3874d87d28f045d1aaf31e50ef2ce352 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQJxYEAkT5kgfWiMRx4oStVK0QUjtRqZvlT1Sktoi2SF0Q_4F_yC_hLk5QWGBh8WA5dnIX-T0nd-8IuSpV4VWmfGSArEbcxj7SnokotqXlKkmLzGE28mic3034_TSbtkp9YUxYkAcOhrtOC8FtISwrPLAPmyjl08RlsfPMOGAPuPsC5rUOU7gHM6Q9XDS5clVA1xzllFBqiGUYGxCX7AcWVZL9LUhqwcxwn-zV_JD2wn0dkB23OCQ3vbnGvEWKIeR0tV0Aa1vNVvR1pmhdx6b6DLOFi2j_8_1jTM1yg7m2j0dkMhw89O-iuuhBZABFGKplmsQU1jID0KrKUpU5cwkeG3LhEgMdnhsbW_xF5jXTXIs0BZKQ5nmh8jg9Jp3FcuFOCGU249wUMEA4aBQgs08817l22nhluyRqHl8-B20L2QR9PclgLonmksFcXXKLNvoei8rUVQf4S9b-kn_5q0tEY2FZg3wAb5hq9uvyp_-x_BnZxSlDFNk56axfNu4CaMVaX1ZvELSjt8EXVefMuw |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ambient+urea+synthesis+via+electrocatalytic+C%E2%80%93N+coupling&rft.jtitle=Materials+Today+Catalysis&rft.au=Chen+Chen&rft.date=2025-03-01&rft.pub=Elsevier&rft.eissn=2949-754X&rft.volume=8&rft.spage=100092&rft_id=info:doi/10.1016%2Fj.mtcata.2025.100092&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_3874d87d28f045d1aaf31e50ef2ce352 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2949-754X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2949-754X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2949-754X&client=summon |