Dynamic Wave Propagation in Porous Media Semi-Infinite Domains

The problem of dynamic wave propagation in semi‐infinite domains is of great importance, especially, in subjects of applied mechanics and geomechanics, such as the issues of earthquake wave propagation in an infinite half‐space and soil‐structure interaction under seismic loading. In such problems,...

Full description

Saved in:
Bibliographic Details
Published inProceedings in applied mathematics and mechanics Vol. 10; no. 1; pp. 499 - 500
Main Authors Heider, Yousef, Markert, Bernd, Ehlers, Wolfgang
Format Journal Article
LanguageEnglish
Published Berlin WILEY-VCH Verlag 01.12.2010
WILEY‐VCH Verlag
Online AccessGet full text

Cover

Loading…
Abstract The problem of dynamic wave propagation in semi‐infinite domains is of great importance, especially, in subjects of applied mechanics and geomechanics, such as the issues of earthquake wave propagation in an infinite half‐space and soil‐structure interaction under seismic loading. In such problems, the elastic waves are supposed to propagate to infinity, which requires a special treatment of the boundaries in initial boundary‐value problems (IBVP). Saturated porous materials, e. g. soil, basically represent volumetrically coupled solid‐fluid aggregates. Based on the continuum‐mechanical principles and the established macroscopic Theory of Porous Media (TPM) [1, 2], the governing balance equations yield a coupled system of partial differential equations (PDE). Restricting the discussion to the isothermal and geometrically linear case, this system comprises the solid and fluid momentum balances and the overall volume balance, and can be conveniently treated numerically following an implicit monolithic approach [3]. Therefore, the equations are firstly discretised in space using the mixed Finite Element Method (FEM) together with quasi‐static Infinite Elements (IE) at the boundaries that represent the extension of the domain to infinity [4], and secondly in time using an appropriate implicit time‐integration scheme. Additionally, a stable implementation of the Viscous Damping Boundary (VDB) method [5] for the simulation of transient waves at infinity is presented, which implicitly treats the damping boundary terms in a weakly imposed sense. The proposed algorithm is implemented into the FE tool PANDAS and tested on a two‐dimensional IBVP. (© 2010 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim)
AbstractList The problem of dynamic wave propagation in semi‐infinite domains is of great importance, especially, in subjects of applied mechanics and geomechanics, such as the issues of earthquake wave propagation in an infinite half‐space and soil‐structure interaction under seismic loading. In such problems, the elastic waves are supposed to propagate to infinity, which requires a special treatment of the boundaries in initial boundary‐value problems (IBVP). Saturated porous materials, e. g. soil, basically represent volumetrically coupled solid‐fluid aggregates. Based on the continuum‐mechanical principles and the established macroscopic Theory of Porous Media (TPM) [1, 2], the governing balance equations yield a coupled system of partial differential equations (PDE). Restricting the discussion to the isothermal and geometrically linear case, this system comprises the solid and fluid momentum balances and the overall volume balance, and can be conveniently treated numerically following an implicit monolithic approach [3]. Therefore, the equations are firstly discretised in space using the mixed Finite Element Method (FEM) together with quasi‐static Infinite Elements (IE) at the boundaries that represent the extension of the domain to infinity [4], and secondly in time using an appropriate implicit time‐integration scheme. Additionally, a stable implementation of the Viscous Damping Boundary (VDB) method [5] for the simulation of transient waves at infinity is presented, which implicitly treats the damping boundary terms in a weakly imposed sense. The proposed algorithm is implemented into the FE tool PANDAS and tested on a two‐dimensional IBVP. (© 2010 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim)
Author Markert, Bernd
Ehlers, Wolfgang
Heider, Yousef
Author_xml – sequence: 1
  givenname: Yousef
  surname: Heider
  fullname: Heider, Yousef
  email: heider@mechbau.uni-stuttgart.de
  organization: Institute of Applied Mechanics (CE), Pfaffenwaldring 7, 70569 Stuttgart, Germany Internet: http://www.mechbau.uni-stuttgart.de/ls2
– sequence: 2
  givenname: Bernd
  surname: Markert
  fullname: Markert, Bernd
  organization: Institute of Applied Mechanics (CE), Pfaffenwaldring 7, 70569 Stuttgart, Germany Internet: http://www.mechbau.uni-stuttgart.de/ls2
– sequence: 3
  givenname: Wolfgang
  surname: Ehlers
  fullname: Ehlers, Wolfgang
  organization: Institute of Applied Mechanics (CE), Pfaffenwaldring 7, 70569 Stuttgart, Germany Internet: http://www.mechbau.uni-stuttgart.de/ls2
BookMark eNqF0E1rAjEQBuBQLFRtrz3nD6zNZNfNeimIViuoFWrxGGJ2tqR1E0m2H_77rrWIFErJYXJ4n2F4W6RhnUVCroF1gDF-s1Vl2eEM6scTfkaakIKIBEuhcfK_IK0QXuo8pDFrktvhzqrSaLpS70gX3m3Vs6qMs9RYunDevQU6w9wo-oiliSa2MNZUSIeuVMaGS3JeqE3Aq5_ZJk-ju-XgPpo-jCeD_jTSHDiPkiwvoNAQC1ynvUyDyDXyLBWoAUGxOGfdrEgEgzUma80VYKZVN6-TAEmPx22SHPZq70LwWEhtqu87K6_MRgKT-w7kvgN57KBmnV9s602p_O5v0DuAD7PB3T9puejPZqc2OlgTKvw8WuVfZSpi0ZWr-VjOxZRl4-VIruIvkt6AKg
CitedBy_id crossref_primary_10_1007_s11440_020_01139_9
Cites_doi 10.1007/s12572-009-0001-z
10.1016/0045-7949(84)90019-1
10.1002/nme.2789
10.1061/JMCEA3.0001144
ContentType Journal Article
Copyright Copyright © 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: Copyright © 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
AAYXX
CITATION
DOI 10.1002/pamm.201010242
DatabaseName Istex
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1617-7061
EndPage 500
ExternalDocumentID 10_1002_pamm_201010242
PAMM201010242
ark_67375_WNG_N7L08GTF_W
Genre article
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OC
31~
33P
3SF
50Y
50Z
51W
51X
52M
52N
52O
52P
52T
52U
52W
52X
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABPVW
ACAHQ
ACCZN
ACGFS
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEIGN
AEIMD
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OK1
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
RNS
ROL
RWI
RX1
SUPJJ
TUS
UB1
V2E
V8K
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WRC
WYISQ
XBAML
XG1
XV2
ZZTAW
~IA
~WT
AAHQN
AAMNL
AAYCA
AFWVQ
ALVPJ
AAYXX
ABJNI
ADMLS
AEYWJ
AGHNM
AGYGG
AMVHM
CITATION
ID FETCH-LOGICAL-c2122-48df1fc137eb698c17dce2867ec1e1a03d058f4701be4bc2a1e8ca5d8c1114923
IEDL.DBID DR2
ISSN 1617-7061
IngestDate Tue Jul 01 03:56:00 EDT 2025
Thu Apr 24 22:51:14 EDT 2025
Wed Jan 22 16:38:02 EST 2025
Wed Oct 30 10:05:04 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 1
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2122-48df1fc137eb698c17dce2867ec1e1a03d058f4701be4bc2a1e8ca5d8c1114923
Notes ark:/67375/WNG-N7L08GTF-W
istex:9B643C3462C7BB5AAE30965340F49C75A6A9E947
ArticleID:PAMM201010242
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/pamm.201010242
PageCount 2
ParticipantIDs crossref_citationtrail_10_1002_pamm_201010242
crossref_primary_10_1002_pamm_201010242
wiley_primary_10_1002_pamm_201010242_PAMM201010242
istex_primary_ark_67375_WNG_N7L08GTF_W
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-12
December 2010
2010-12-00
PublicationDateYYYYMMDD 2010-12-01
PublicationDate_xml – month: 12
  year: 2010
  text: 2010-12
PublicationDecade 2010
PublicationPlace Berlin
PublicationPlace_xml – name: Berlin
PublicationTitle Proceedings in applied mathematics and mechanics
PublicationTitleAlternate Proc. Appl. Math. Mech
PublicationYear 2010
Publisher WILEY-VCH Verlag
WILEY‐VCH Verlag
Publisher_xml – name: WILEY-VCH Verlag
– name: WILEY‐VCH Verlag
References e_1_2_1_6_2
e_1_2_1_4_2
e_1_2_1_5_2
e_1_2_1_2_2
e_1_2_1_3_2
References_xml – ident: e_1_2_1_2_2
  doi: 10.1007/s12572-009-0001-z
– ident: e_1_2_1_5_2
  doi: 10.1016/0045-7949(84)90019-1
– ident: e_1_2_1_4_2
  doi: 10.1002/nme.2789
– ident: e_1_2_1_3_2
– ident: e_1_2_1_6_2
  doi: 10.1061/JMCEA3.0001144
SSID ssj0021630
Score 1.7477319
Snippet The problem of dynamic wave propagation in semi‐infinite domains is of great importance, especially, in subjects of applied mechanics and geomechanics, such as...
SourceID crossref
wiley
istex
SourceType Enrichment Source
Index Database
Publisher
StartPage 499
Title Dynamic Wave Propagation in Porous Media Semi-Infinite Domains
URI https://api.istex.fr/ark:/67375/WNG-N7L08GTF-W/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpamm.201010242
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bT8IwFG6MvuiDdyPe0gejT4O121h5k4iARghRCLwtZ11rCDIIF2N88if4G_0lth1MMTEm-rjkdNnOac_3dTv9DkKnirCBmgagIsBsy5WSWRB53JIgwKWR7wij3Vmr56st96bjdb6c4k_0IdIPbnplmHytFziE49ynaOgQ-n1TmkU0zKgkrAu2NCu6S_WjqCIb5kSkgmnLV8g1V220aW5x-AIqrWgHPy-yVQM35Q0E8wdNqkx62ekkzPKXbxqO_3mTTbQ-46K4mEyeLbQk4m20VkuFXMc76KKUdKzHbXgSuDFSW-wHE0vcjXFjMBpMx1j_6wF8L_rd99e361h2NY3FpUEfuvF4F7XKV83LqjVrumBxhWLUclkkieTE0c1SCowTP-KCsrwvOBEEbCeyPSZd3yahcENOgQjGwYuUpdpaKbq4h5bjQSz2EdbpQvACUGGDC0CYHeZ9yZgLEiIHIIOsudMDPlMk140xHoNES5kG2jNB6pkMOk_th4kWx4-WZyaGqRmMerqCzfeCdr0S1P1bm1Wa5aCdQdRE5pf7BY1irZZeHfxl0CFapWklzBFanoym4ljxmUl4YubsBz5J7EE
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NThsxEB6VcCgcaCkgwl99QPS0sHZ2s84NBIQA2Shqg8LNmvXaKIJsUH4Q6qmPwDPyJLW9yVapVCGV40rj1e7M2PONPf4GYN8ANjRugMYC3PcCrbmHaSg9jQoDlkYV5bg741a1cRNc3YazakJ7Fybnhyg23OzMcOu1neB2Q_roD2voI_b7rjaL2jizAIu2rbfLqr4XDFLMwA13J9IEai8ysWvG2-izo_nxc3Fp0ar4eR6vuoBT_wTJ7FPzOpP7w8k4OZQ__2JxfNe_fIaVKRwlJ7n_rMIHlX2B5bjgch2twfFZ3rSedPFJkfbQZNl3zpykl5H2YDiYjIg97kHyQ_V7r79eLjPds0iWnA362MtG63BTP--cNrxp3wVPmkDGvICnmmpJK7ZfSo1LGqVSMV6NlKSKol9J_ZDrIPJpooJEMqSKSwxTI2myK4MYN6CUDTK1CcSuGErWkCkfA0TK_aQaac4D1JhWEMvgzbQu5JSU3PbGeBA5nTITVjOi0EwZvhXyjzkdxz8lD5wRCzEc3tsitigU3daFaEVNn1906qJbBuZM88b7RPskjounrf8Z9BU-NjpxUzQvW9fbsMSKwpgdKI2HE7Vr4M042XMO_BsQyPBc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JbtswEB00CRCkh6bNgjrdeAjSkxKSpizmlqCus9owssC5ESOKDIzEsuGlKHrqJ-Qb-yUhKVutCxQFkqOAoSDNDPkepeEbgG1H2NClAboISBoJa2WEWawjiwYFz5KqCdqdzVbt-Fqc3sQ3f5ziL_Qhyg9ufmaE9dpP8EFm936Lhg6w1wulWczDzAIsiRqVPq_rF6WAFHdsIxyJdDgdJQ66ZrKNlO_Nj5-DpSXv4e_zdDXgTWMVcPakRZnJ3e5knO7qH3-JOD7nVV7DqykZJYdF9ryBFyZfg5fNUsl1tA4H9aJlPengN0PaQ7fHvg3BJN2ctPvD_mRE_M8eJJem1_318-Ekt13PY0m938NuPtqA68bXqy_H0bTrQqQdjPFIyMwyq1nVd0vZl5olmTZc1hKjmWFIqxmNpRUJZakRqebIjNQYZ87S7a0cX9yExbyfm7dA_Hph9D5yQ1EgMknTWmKlFGgxqyJWIJo5XempJLnvjHGvCjFlrrxnVOmZCnwu7QeFGMc_LXdCDEszHN75ErYkVp3WkWol51QeXTVUpwI8ROY_91Ptw2azvNp6yqBPsNyuN9T5SevsHazwsirmPSyOhxPzwXGbcfoxpO8jXzPvFA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+Wave+Propagation+in+Porous+Media+Semi%E2%80%90Infinite+Domains&rft.jtitle=Proceedings+in+applied+mathematics+and+mechanics&rft.au=Heider%2C+Yousef&rft.au=Markert%2C+Bernd&rft.au=Ehlers%2C+Wolfgang&rft.date=2010-12-01&rft.pub=WILEY%E2%80%90VCH+Verlag&rft.issn=1617-7061&rft.eissn=1617-7061&rft.volume=10&rft.issue=1&rft.spage=499&rft.epage=500&rft_id=info:doi/10.1002%2Fpamm.201010242&rft.externalDBID=10.1002%252Fpamm.201010242&rft.externalDocID=PAMM201010242
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1617-7061&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1617-7061&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1617-7061&client=summon