Estimating Carbon Dioxide Emissions in Two California Cities Using Bayesian Inversion and Satellite Measurements
NASA's Orbiting Carbon Observatories (OCO‐2 and OCO‐3) provide measurements of column‐averaged carbon dioxide concentrations (XCO2) with sufficient spatial resolution and precision to constrain bottom‐up estimates of CO2 fluxes at regional scales. We use Bayesian inversion methods assimilating...
Saved in:
Published in | Geophysical research letters Vol. 51; no. 20 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Washington
John Wiley & Sons, Inc
28.10.2024
Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | NASA's Orbiting Carbon Observatories (OCO‐2 and OCO‐3) provide measurements of column‐averaged carbon dioxide concentrations (XCO2) with sufficient spatial resolution and precision to constrain bottom‐up estimates of CO2 fluxes at regional scales. We use Bayesian inversion methods assimilating satellite retrievals to improve estimates of CO2 fluxes in the South Coast Air Basin (SoCAB) which surrounds Los Angeles, and in the San Francisco Bay Area Air Basin (SFBA). We study 2020 to understand the impact of the COVID‐19 lockdowns and an active wildfire season. Our results indicated that a 50% (30%) reduction in CO2 emissions relative to 2015 during the COVID‐19 lockdown period was consistent with OCO measurements for SFBA (SoCAB). We find that posterior wildfire emissions differed significantly from the prior at the scale of individual wildfires, though with large uncertainties, and that wildfire emissions in SFBA are significant, attributing 72% of the region's CO2 emissions during August 2020 to wildfires.
Plain Language Summary
Satellites can measure variations in carbon dioxide concentrations over urban areas. These measurements can be combined with models of the atmosphere to validate estimates of carbon dioxide emissions. We use this approach to better understand emissions in and around San Francisco and Los Angeles, the two major cities in California. We study the year 2020 to see how emissions changed in response to COVID‐19 lockdowns and to observe emissions from wildfires. The satellite measurements combined with the atmospheric model provide us with updated emission estimates that more closely match the measurements and provide greater certainty than our initial estimate of emissions. We also observe reduced emissions during lockdowns in both cities, updated emissions at the scale of individual wildfires, and large emissions from wildfires during peak wildfire season in the San Francisco Bay Area.
Key Points
Satellite measurements can be used to validate emission inventories of CO2 within urban areas of California
Changes in CO2 emissions due to COVID‐19 lockdowns and wildfires in 2020 are captured by satellites
During August 2020, wildfires were responsible for 72% of CO2 emissions in the Bay Area |
---|---|
AbstractList | Abstract NASA's Orbiting Carbon Observatories (OCO‐2 and OCO‐3) provide measurements of column‐averaged carbon dioxide concentrations (XCO2) with sufficient spatial resolution and precision to constrain bottom‐up estimates of CO2 fluxes at regional scales. We use Bayesian inversion methods assimilating satellite retrievals to improve estimates of CO2 fluxes in the South Coast Air Basin (SoCAB) which surrounds Los Angeles, and in the San Francisco Bay Area Air Basin (SFBA). We study 2020 to understand the impact of the COVID‐19 lockdowns and an active wildfire season. Our results indicated that a 50% (30%) reduction in CO2 emissions relative to 2015 during the COVID‐19 lockdown period was consistent with OCO measurements for SFBA (SoCAB). We find that posterior wildfire emissions differed significantly from the prior at the scale of individual wildfires, though with large uncertainties, and that wildfire emissions in SFBA are significant, attributing 72% of the region's CO2 emissions during August 2020 to wildfires. NASA's Orbiting Carbon Observatories (OCO‐2 and OCO‐3) provide measurements of column‐averaged carbon dioxide concentrations (XCO2) with sufficient spatial resolution and precision to constrain bottom‐up estimates of CO2 fluxes at regional scales. We use Bayesian inversion methods assimilating satellite retrievals to improve estimates of CO2 fluxes in the South Coast Air Basin (SoCAB) which surrounds Los Angeles, and in the San Francisco Bay Area Air Basin (SFBA). We study 2020 to understand the impact of the COVID‐19 lockdowns and an active wildfire season. Our results indicated that a 50% (30%) reduction in CO2 emissions relative to 2015 during the COVID‐19 lockdown period was consistent with OCO measurements for SFBA (SoCAB). We find that posterior wildfire emissions differed significantly from the prior at the scale of individual wildfires, though with large uncertainties, and that wildfire emissions in SFBA are significant, attributing 72% of the region's CO2 emissions during August 2020 to wildfires. Abstract NASA's Orbiting Carbon Observatories (OCO‐2 and OCO‐3) provide measurements of column‐averaged carbon dioxide concentrations (XCO 2 ) with sufficient spatial resolution and precision to constrain bottom‐up estimates of CO 2 fluxes at regional scales. We use Bayesian inversion methods assimilating satellite retrievals to improve estimates of CO 2 fluxes in the South Coast Air Basin (SoCAB) which surrounds Los Angeles, and in the San Francisco Bay Area Air Basin (SFBA). We study 2020 to understand the impact of the COVID‐19 lockdowns and an active wildfire season. Our results indicated that a 50% (30%) reduction in CO 2 emissions relative to 2015 during the COVID‐19 lockdown period was consistent with OCO measurements for SFBA (SoCAB). We find that posterior wildfire emissions differed significantly from the prior at the scale of individual wildfires, though with large uncertainties, and that wildfire emissions in SFBA are significant, attributing 72% of the region's CO 2 emissions during August 2020 to wildfires. Plain Language Summary Satellites can measure variations in carbon dioxide concentrations over urban areas. These measurements can be combined with models of the atmosphere to validate estimates of carbon dioxide emissions. We use this approach to better understand emissions in and around San Francisco and Los Angeles, the two major cities in California. We study the year 2020 to see how emissions changed in response to COVID‐19 lockdowns and to observe emissions from wildfires. The satellite measurements combined with the atmospheric model provide us with updated emission estimates that more closely match the measurements and provide greater certainty than our initial estimate of emissions. We also observe reduced emissions during lockdowns in both cities, updated emissions at the scale of individual wildfires, and large emissions from wildfires during peak wildfire season in the San Francisco Bay Area. Key Points Satellite measurements can be used to validate emission inventories of CO 2 within urban areas of California Changes in CO 2 emissions due to COVID‐19 lockdowns and wildfires in 2020 are captured by satellites During August 2020, wildfires were responsible for 72% of CO 2 emissions in the Bay Area NASA's Orbiting Carbon Observatories (OCO‐2 and OCO‐3) provide measurements of column‐averaged carbon dioxide concentrations (XCO2) with sufficient spatial resolution and precision to constrain bottom‐up estimates of CO2 fluxes at regional scales. We use Bayesian inversion methods assimilating satellite retrievals to improve estimates of CO2 fluxes in the South Coast Air Basin (SoCAB) which surrounds Los Angeles, and in the San Francisco Bay Area Air Basin (SFBA). We study 2020 to understand the impact of the COVID‐19 lockdowns and an active wildfire season. Our results indicated that a 50% (30%) reduction in CO2 emissions relative to 2015 during the COVID‐19 lockdown period was consistent with OCO measurements for SFBA (SoCAB). We find that posterior wildfire emissions differed significantly from the prior at the scale of individual wildfires, though with large uncertainties, and that wildfire emissions in SFBA are significant, attributing 72% of the region's CO2 emissions during August 2020 to wildfires. Plain Language Summary Satellites can measure variations in carbon dioxide concentrations over urban areas. These measurements can be combined with models of the atmosphere to validate estimates of carbon dioxide emissions. We use this approach to better understand emissions in and around San Francisco and Los Angeles, the two major cities in California. We study the year 2020 to see how emissions changed in response to COVID‐19 lockdowns and to observe emissions from wildfires. The satellite measurements combined with the atmospheric model provide us with updated emission estimates that more closely match the measurements and provide greater certainty than our initial estimate of emissions. We also observe reduced emissions during lockdowns in both cities, updated emissions at the scale of individual wildfires, and large emissions from wildfires during peak wildfire season in the San Francisco Bay Area. Key Points Satellite measurements can be used to validate emission inventories of CO2 within urban areas of California Changes in CO2 emissions due to COVID‐19 lockdowns and wildfires in 2020 are captured by satellites During August 2020, wildfires were responsible for 72% of CO2 emissions in the Bay Area |
Author | Johnson, Matthew S. Turner, Alexander J. Dadheech, Nikhil Hamilton, Sofia D. Wu, Dien Jeong, Seongeun Fischer, Marc L. |
Author_xml | – sequence: 1 givenname: Sofia D. orcidid: 0000-0002-3662-5737 surname: Hamilton fullname: Hamilton, Sofia D. email: sdhamilton@lbl.gov organization: Lawrence Berkeley National Laboratory – sequence: 2 givenname: Dien surname: Wu fullname: Wu, Dien organization: California Institute of Technology – sequence: 3 givenname: Matthew S. surname: Johnson fullname: Johnson, Matthew S. organization: NASA Ames Research Center – sequence: 4 givenname: Alexander J. orcidid: 0000-0003-1406-7372 surname: Turner fullname: Turner, Alexander J. organization: University of Washington – sequence: 5 givenname: Marc L. orcidid: 0000-0001-7956-2361 surname: Fischer fullname: Fischer, Marc L. organization: Lawrence Berkeley National Laboratory – sequence: 6 givenname: Nikhil orcidid: 0000-0001-6324-5337 surname: Dadheech fullname: Dadheech, Nikhil organization: University of Washington – sequence: 7 givenname: Seongeun orcidid: 0000-0003-2032-0127 surname: Jeong fullname: Jeong, Seongeun organization: Lawrence Berkeley National Laboratory |
BookMark | eNp9kU1vEzEQhi3USqQtN36AJa4Exh_r3T1CCGmkoEqlPVuzu-PK0cYO9oaSf4_TIMSJkaUZeZ739VhzxS5CDMTYWwEfBMj2owSpVxtRooJXbCZarecNQH3BZgBtqWVtXrOrnLcAoECJGdsv8-R3OPnwxBeYuhj4Fx9_-YH4cudz9jFk7gN_eI6lP3oXU_DIF37ylPljPuk-45Gyx8DX4Selk4RjGPh3nGgc_UT8G2E-JNpRmPINu3Q4ZnrzJ1-zx6_Lh8XtfHO3Wi8-bea9FFLMB-Vk23ethA6HRmlqkFrTKdCVrqGvOyNqXdqqb7CSg-qhcSCgb5yjGo1T12x99h0ibu0-lU-mo43o7ctFTE8W0-T7kWwtnUGlKuNEp-vBtB1WpLGcVpvBUPF6d_bap_jjQHmy23hIoYxvVRm2amrZVoV6f6b6FHNO5P6-KsCe9mP_3U_B5Rl_9iMd_8va1f3GNKoR6jdblJMI |
Cites_doi | 10.1029/2023GL103834 10.1002/2017JD027359 10.1002/2016GL070885 10.1016/j.rse.2021.112314 10.1029/2021GL092744 10.1007/s10546‐005‐9030‐8 10.5194/gmd‐15‐8411‐2022 10.5281/zenodo.4018123 10.5194/amt‐16‐581‐2023 10.1175/MWR3199.1 10.1016/j.envpol.2022.119888 10.1111/cdev.12169 10.1029/2018JD029933 10.5281/zenodo.3931948 10.5194/gmd‐11‐4843‐2018 10.1021/acs.est.3c09642 10.5281/zenodo.7229674 10.5194/acp‐19‐2991‐2019 10.5194/acp‐16‐9591‐2016 10.1016/B978-0-12-814952-2.00007-1 10.1111/geb.13498 10.1038/s41467‐020‐20871‐0 10.1029/2010JD015139 10.1175/BAMS‐87‐3‐343 10.1088/1748‐9326/ad3cf7 10.3390/rs15204904 10.5194/acp‐19‐9797‐2019 10.5194/acp‐17‐8313‐2017 10.1002/2016GL067843 10.1525/elementa.2023.00102 10.5194/gmd‐14‐3633‐2021 10.1117/1.2898457 10.1088/1748‐9326/ac0660 10.1088/1748‐9326/ad0f74 10.5194/acp‐16‐13449‐2016 10.5194/amt‐5‐99‐2012 10.1002/eap.2763 10.1016/j.rse.2021.112625 10.1029/2023GL104376 10.3334/ORNLDAAC/1810 10.1029/2020JD032974 10.5194/gmd‐6‐583‐2013 10.5194/amt‐16‐109‐2023 10.1029/2022AV000732 10.1098/rsta.2010.0240 10.5194/essd‐11‐1291‐2019 10.5194/essd‐12‐699‐2020 10.5194/amt‐10‐2759‐2017 10.5194/essd‐13‐357‐2021 10.1029/2020GL090037 10.1088/1748‐9326/ab9cfe 10.1525/elementa.188 10.1029/2012GL052738 |
ContentType | Journal Article |
Copyright | 2024. The Author(s). 2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024. The Author(s). – notice: 2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P WIN AAYXX CITATION 7TG 7TN 8FD F1W FR3 H8D H96 KL. KR7 L.G L7M DOA |
DOI | 10.1029/2024GL111150 |
DatabaseName | Wiley-Blackwell Open Access Collection Wiley Online Library Journals CrossRef Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Directory of Open Access Journals |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | Aerospace Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley-Blackwell Open Access Collection url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology Physics |
EISSN | 1944-8007 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_72f6a3356f1b47d69ba5e4ae4a946d6e 10_1029_2024GL111150 GRL68381 |
Genre | article |
GeographicLocations | Los Angeles California San Francisco Bay California United States--US |
GeographicLocations_xml | – name: California – name: Los Angeles California – name: San Francisco Bay – name: United States--US |
GrantInformation_xml | – fundername: NASA funderid: 80HQTR21T010 |
GroupedDBID | -DZ -~X 05W 0R~ 1OB 1OC 24P 33P 50Y 5GY 5VS 702 8-1 A00 AAESR AAHHS AAIHA AAXRX AAZKR ABCUV ABPPZ ACAHQ ACCFJ ACCZN ACGFO ACGFS ACGOD ACIWK ACNCT ACPOU ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEFZC AENEX AEQDE AEUQT AFBPY AFGKR AFPWT AFRAH AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALXUD AMYDB AVUZU AZFZN AZVAB BENPR BMXJE BRXPI CS3 DCZOG DPXWK DRFUL DRSTM DU5 EBS F5P G-S GODZA GROUPED_DOAJ HZ~ LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MSFUL MSSTM MXFUL MXSTM MY~ O9- OK1 P-X P2P P2W R.K RNS ROL SUPJJ TN5 TWZ UPT WBKPD WH7 WIH WIN WXSBR WYJ XSW ZZTAW ~02 ~OA ~~A AAYXX CITATION 7TG 7TN 8FD F1W FR3 H8D H96 KL. KR7 L.G L7M |
ID | FETCH-LOGICAL-c2121-d3f29cb920bad834e8ae96b3045470c7b6174b923c8a52d3c08f010c8ffe7a6f3 |
IEDL.DBID | DOA |
ISSN | 0094-8276 |
IngestDate | Mon Nov 11 19:42:54 EST 2024 Thu Nov 07 07:20:28 EST 2024 Wed Nov 13 12:44:39 EST 2024 Wed Oct 30 09:55:58 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 20 |
Language | English |
License | Attribution-NonCommercial-NoDerivs |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2121-d3f29cb920bad834e8ae96b3045470c7b6174b923c8a52d3c08f010c8ffe7a6f3 |
ORCID | 0000-0002-3662-5737 0000-0003-1406-7372 0000-0001-7956-2361 0000-0001-6324-5337 0000-0003-2032-0127 |
OpenAccessLink | https://doaj.org/article/72f6a3356f1b47d69ba5e4ae4a946d6e |
PQID | 3121587295 |
PQPubID | 54723 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_72f6a3356f1b47d69ba5e4ae4a946d6e proquest_journals_3121587295 crossref_primary_10_1029_2024GL111150 wiley_primary_10_1029_2024GL111150_GRL68381 |
PublicationCentury | 2000 |
PublicationDate | 28 October 2024 |
PublicationDateYYYYMMDD | 2024-10-28 |
PublicationDate_xml | – month: 10 year: 2024 text: 28 October 2024 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | Washington |
PublicationPlace_xml | – name: Washington |
PublicationTitle | Geophysical research letters |
PublicationYear | 2024 |
Publisher | John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
References | e_1_2_7_1_55_1 e_1_2_7_1_11_1 e_1_2_7_1_32_1 e_1_2_7_1_57_1 e_1_2_7_1_13_1 e_1_2_7_1_34_1 National Oceanic and Atmospheric Administration Global Monitoring Laboratory (e_1_2_7_1_27_1) 2023 e_1_2_7_1_51_1 e_1_2_7_1_30_1 e_1_2_7_1_53_1 e_1_2_7_2_3_1 e_1_2_7_2_7_1 e_1_2_7_2_5_1 e_1_2_7_1_5_1 e_1_2_7_1_29_1 e_1_2_7_1_7_1 e_1_2_7_1_25_1 e_1_2_7_1_48_1 e_1_2_7_1_3_1 e_1_2_7_1_21_1 e_1_2_7_1_44_1 e_1_2_7_1_23_1 e_1_2_7_1_46_1 e_1_2_7_1_9_1 e_1_2_7_1_40_1 e_1_2_7_1_63_1 e_1_2_7_1_42_1 e_1_2_7_1_61_1 e_1_2_7_1_18_1 e_1_2_7_1_14_1 e_1_2_7_1_37_1 e_1_2_7_1_16_1 e_1_2_7_1_39_1 e_1_2_7_1_58_1 e_1_2_7_1_10_1 e_1_2_7_1_33_1 e_1_2_7_1_54_1 e_1_2_7_1_12_1 e_1_2_7_1_35_1 e_1_2_7_1_56_1 e_1_2_7_1_50_1 e_1_2_7_1_31_1 e_1_2_7_1_52_1 e_1_2_7_2_2_1 e_1_2_7_2_6_1 e_1_2_7_2_4_1 e_1_2_7_1_6_1 e_1_2_7_1_8_1 e_1_2_7_1_2_1 e_1_2_7_1_26_1 e_1_2_7_1_47_1 e_1_2_7_1_4_1 e_1_2_7_1_28_1 e_1_2_7_1_49_1 e_1_2_7_1_22_1 e_1_2_7_1_43_1 e_1_2_7_1_24_1 e_1_2_7_1_45_1 e_1_2_7_1_20_1 e_1_2_7_1_41_1 e_1_2_7_1_62_1 e_1_2_7_1_60_1 e_1_2_7_1_19_1 e_1_2_7_1_15_1 e_1_2_7_1_36_1 e_1_2_7_1_17_1 Seto K. C. (e_1_2_7_1_38_1) 2014 e_1_2_7_1_59_1 |
References_xml | – ident: e_1_2_7_1_63_1 doi: 10.1029/2023GL103834 – ident: e_1_2_7_1_7_1 – ident: e_1_2_7_1_13_1 doi: 10.1002/2017JD027359 – ident: e_1_2_7_1_17_1 doi: 10.1002/2016GL070885 – ident: e_1_2_7_1_22_1 doi: 10.1016/j.rse.2021.112314 – ident: e_1_2_7_1_60_1 doi: 10.1029/2021GL092744 – ident: e_1_2_7_2_4_1 doi: 10.1007/s10546‐005‐9030‐8 – ident: e_1_2_7_1_50_1 doi: 10.5194/gmd‐15‐8411‐2022 – ident: e_1_2_7_1_28_1 – ident: e_1_2_7_1_55_1 doi: 10.5281/zenodo.4018123 – ident: e_1_2_7_1_57_1 doi: 10.5194/amt‐16‐581‐2023 – ident: e_1_2_7_2_2_1 doi: 10.1175/MWR3199.1 – ident: e_1_2_7_1_20_1 doi: 10.1016/j.envpol.2022.119888 – ident: e_1_2_7_1_49_1 doi: 10.1111/cdev.12169 – ident: e_1_2_7_1_45_1 doi: 10.1029/2018JD029933 – ident: e_1_2_7_2_6_1 – ident: e_1_2_7_1_32_1 doi: 10.5281/zenodo.3931948 – ident: e_1_2_7_1_56_1 doi: 10.5194/gmd‐11‐4843‐2018 – ident: e_1_2_7_1_2_1 doi: 10.1021/acs.est.3c09642 – ident: e_1_2_7_1_30_1 – ident: e_1_2_7_1_6_1 – ident: e_1_2_7_1_51_1 doi: 10.5281/zenodo.7229674 – ident: e_1_2_7_1_5_1 doi: 10.5194/acp‐19‐2991‐2019 – ident: e_1_2_7_1_33_1 doi: 10.5194/acp‐16‐9591‐2016 – ident: e_1_2_7_1_12_1 doi: 10.1016/B978-0-12-814952-2.00007-1 – ident: e_1_2_7_1_37_1 doi: 10.1111/geb.13498 – ident: e_1_2_7_1_16_1 doi: 10.1038/s41467‐020‐20871‐0 – ident: e_1_2_7_2_7_1 doi: 10.1029/2010JD015139 – volume-title: Climate change 2014: Mitigation of climate change. Contribution of working group III to the fifth assessment report of the intergovernmental panel on climate change year: 2014 ident: e_1_2_7_1_38_1 contributor: fullname: Seto K. C. – ident: e_1_2_7_1_41_1 – ident: e_1_2_7_1_44_1 – ident: e_1_2_7_2_3_1 doi: 10.1175/BAMS‐87‐3‐343 – ident: e_1_2_7_1_8_1 doi: 10.1088/1748‐9326/ad3cf7 – ident: e_1_2_7_1_47_1 – ident: e_1_2_7_2_5_1 – ident: e_1_2_7_1_58_1 doi: 10.3390/rs15204904 – ident: e_1_2_7_1_10_1 doi: 10.5194/acp‐19‐9797‐2019 – ident: e_1_2_7_1_52_1 doi: 10.5194/acp‐17‐8313‐2017 – ident: e_1_2_7_1_19_1 doi: 10.1002/2016GL067843 – ident: e_1_2_7_1_25_1 doi: 10.1525/elementa.2023.00102 – ident: e_1_2_7_1_54_1 doi: 10.5194/gmd‐14‐3633‐2021 – ident: e_1_2_7_1_9_1 doi: 10.1117/1.2898457 – ident: e_1_2_7_1_18_1 doi: 10.1088/1748‐9326/ac0660 – ident: e_1_2_7_1_29_1 doi: 10.1088/1748‐9326/ad0f74 – ident: e_1_2_7_1_40_1 doi: 10.5194/acp‐16‐13449‐2016 – ident: e_1_2_7_1_31_1 doi: 10.5194/amt‐5‐99‐2012 – ident: e_1_2_7_1_42_1 doi: 10.1002/eap.2763 – ident: e_1_2_7_1_24_1 doi: 10.1016/j.rse.2021.112625 – ident: e_1_2_7_1_36_1 doi: 10.1029/2023GL104376 – ident: e_1_2_7_1_14_1 doi: 10.3334/ORNLDAAC/1810 – ident: e_1_2_7_1_15_1 doi: 10.1029/2020JD032974 – ident: e_1_2_7_1_61_1 doi: 10.5194/gmd‐6‐583‐2013 – ident: e_1_2_7_1_26_1 – ident: e_1_2_7_1_34_1 – ident: e_1_2_7_1_4_1 doi: 10.5194/amt‐16‐109‐2023 – ident: e_1_2_7_1_48_1 – year: 2023 ident: e_1_2_7_1_27_1 article-title: Earth system research Laboratories publication-title: CarbonTracker CT2022 contributor: fullname: National Oceanic and Atmospheric Administration Global Monitoring Laboratory – ident: e_1_2_7_1_35_1 – ident: e_1_2_7_1_62_1 doi: 10.1029/2022AV000732 – ident: e_1_2_7_1_59_1 doi: 10.1098/rsta.2010.0240 – ident: e_1_2_7_1_3_1 doi: 10.5194/essd‐11‐1291‐2019 – ident: e_1_2_7_1_21_1 doi: 10.5194/essd‐12‐699‐2020 – ident: e_1_2_7_1_53_1 doi: 10.5194/amt‐10‐2759‐2017 – ident: e_1_2_7_1_43_1 doi: 10.5194/essd‐13‐357‐2021 – ident: e_1_2_7_1_46_1 doi: 10.1029/2020GL090037 – ident: e_1_2_7_1_39_1 doi: 10.1088/1748‐9326/ab9cfe – ident: e_1_2_7_1_11_1 doi: 10.1525/elementa.188 – ident: e_1_2_7_1_23_1 doi: 10.1029/2012GL052738 |
SSID | ssj0003031 |
Score | 2.5067124 |
Snippet | NASA's Orbiting Carbon Observatories (OCO‐2 and OCO‐3) provide measurements of column‐averaged carbon dioxide concentrations (XCO2) with sufficient spatial... Abstract NASA's Orbiting Carbon Observatories (OCO‐2 and OCO‐3) provide measurements of column‐averaged carbon dioxide concentrations (XCO 2 ) with sufficient... Abstract NASA's Orbiting Carbon Observatories (OCO‐2 and OCO‐3) provide measurements of column‐averaged carbon dioxide concentrations (XCO2) with sufficient... |
SourceID | doaj proquest crossref wiley |
SourceType | Open Website Aggregation Database Publisher |
SubjectTerms | Atmospheric models Bayesian analysis Bayesian atmospheric inversion Bayesian theory California Carbon dioxide Carbon dioxide concentration Carbon dioxide emissions Carbon dioxide flux Cities CO2 emissions COVID-19 Emission measurements Emissions Emissions control Estimates Fluxes Mathematical models Observatories OCO satellite Probability theory Satellite observation Satellites Spatial discrimination Spatial resolution Urban areas Wildfires XCO2 |
SummonAdditionalLinks | – databaseName: Wiley-Blackwell Open Access Collection dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9swEBajY9CX0nUtTdsNPbRPxTSRZFl6XLI0pbSj9Af0zZxkqeTFDnHG1v9-d4qbpC-DgR-MLIG48-m-O-k-MXaKbidKr1XmjHeZ0ipmkMcqEyZHfzggzE61w7c_9dWTun7On7uEG9XCLPkhVgk3soy0XpOBg2s7sgHiyMSoXU1uyOIpZP9IpDHEnS_U3WolxuV5eWOeVZkRhe4OvuP4i83R71xSYu5_Bzc3QWvyOpe7bKeDi_z7Ur-f2YdQ77FPk3Qd7yu-pQOcvv3CZmO0VUKf9Qsfwdw1Nf8xbf5Mq8DHqErKibV8WvPH3w1f12PxUSJU5engAB_Ca6CaSk7kGymNxqGu-AMk1s5F4LfrhGK7z54ux4-jq6y7TSHz6J4GWSWjsN5Z0XdQGamCgWC1o51SVfR94RDLKPwsvYFcVNL3TcRgzZsYQwE6ygO2VTd1OGQcQ0BwAwjGRKOouBVBULTaGA9QAPgeO3sTaDlbkmaUabNb2HJT8D02JGmv-hDVdWpo5i9lZzllIaIGKXMdB04VlbYO8qAAH6t0pUOPnbzpquzsry0lkWbgtGzeY-dJf_-cSDm5v9EGwcvRf_U-ZtvUTq5MmBO2tZj_Cl8Royzct_Qj_gWfbtxj priority: 102 providerName: Wiley-Blackwell |
Title | Estimating Carbon Dioxide Emissions in Two California Cities Using Bayesian Inversion and Satellite Measurements |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2024GL111150 https://www.proquest.com/docview/3121587295 https://doaj.org/article/72f6a3356f1b47d69ba5e4ae4a946d6e |
Volume | 51 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB1BERIXxKdYKCsf4IQisrbj2Md22W6FWoSgiyou0dix0V6yVXdR23_PjJOlywUuSDlESRSNZpKZN_bMG4A3FHaSCkYX3gZfaKNTgVVqC2kriocTxuzcO3z6yRwv9Mfz6nxn1BfXhPX0wL3i3tcyGVSqMmnidd0a57GKGulw2rQmZu9bum0yNfhgcsz9rDynCytrM5S8l9Jxtq_nJ-wpuNd-Jxhlzv4_gOYuXM3x5ugRPByAojjoBXwMd2L3BO7P8yDeGzrLpZth_RQuZvSXMu7sfogpXvpVJz4sV9fLNooZGZFXw9Zi2Ymzq5W47cQS00ylKnLJgDjEm8jdlIJpN_ICmsCuFV8x83Vuoji9XUpcP4PF0exselwMcxSKQIFpUrQqSRe8k6XH1iodLUZnPO-R6roMtScUo-m2ChYr2apQ2kRpWrApxRpNUs9hr1t18QUISv7QTzBam6zmtlaCP8kZawNijRhG8Har0Oaip8to8ja3dM2u4kdwyNr-_QyTXOcLZPpmMH3zL9OPYH9rq2b489aNYroMEstVI3iX7fdXQZr5lxNjCba8_B8SvYIH_HKObdLuw97m8md8TaBl48dwV-rPY7h38G3xfTHOX-svqGPn2Q |
link.rule.ids | 315,783,787,867,2109,11574,27936,27937,46064,46488,50826,50935 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwELbQEIIXxE9RtoEf4AlFtLbj2I-s61qgnRB00t6ss2NPfUmmttO2_547N-u6FySkPESJrVi-nO-7891nxj6h2UkyaFV4E3yhtEoFlKkuhCnRHg4Is1Pt8OxUT87Uj_PyvDvnlGphNvwQ24AbaUZer0nBKSDdsQ0QSSa67Wo8JZUnn_0xfsdQTpdQv7ZLMa7PmyPzrCqMqHSX-Y79v-72fmCTMnX_A7y5i1qz2Tl5wZ53eJF_2wj4JXsUm1fsyTifx3uLdzmDM6xes8sRKivBz-aCD2Hp24YfL9qbRR35CGVJQbEVXzR8ft3y-4IsPsyMqjxnDvAjuI1UVMmJfSPH0Tg0Nf8DmbZzHfnsPqK4esPOTkbz4aTojlMoAtqnQVHLJGzwVvQ91EaqaCBa7WmrVFX9UHkEMwpfy2CgFLUMfZPQWwsmpViBTvIt22vaJr5jHH1A8AOIxiSjqLoVUVCy2pgAUAGEHvt8N6HucsOa4fJut7Bud-J77Ihme9uGuK7zg3Z54TrVcZVIGqQsdRp4VdXaeiijArys0rWOPXZwJyvXKeDKSWLNwGHZsse-ZPn9cyBu_HuqDaKX9__V-iN7OpnPpm76_fTnPntGbciuCXPA9tbLq3iIgGXtP-Sf8i-qOt_X |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxELZQKxAXxFOkFPABTmhFsvZ67WObJimQVggaVHGxxq8ql90oCYL-e2acbZpekJD2sNr1riyPx_PNeOYzY-_Q7CThlSyc9q6QSqYCqhSKUldoDweE2al2-Oxcnc7k58vqsgu4US3Mhh9iG3AjzcjrNSn4IqSObIA4MtFrl5MpaTy57PsINEqc4ftHP2Y_Z9u1GBfozZl5Rha6rFWX-o5_-Lj7_R2jlLn77wDOXdia7c74MXvUAUZ-tJHwE3YvNk_Z_Uk-kPca73IKp189Y4sRaivhz-aKD2Hp2oafzNs_8xD5CIVJUbEVnzf84nfLbyuy-DBTqvKcOsCP4TpSVSUn-o0cSOPQBP4dMm_nOvKz25Di6jmbjUcXw9OiO0-h8GigBkUQqTTembLvIGgho4ZolKO9Uln3fe0QzUh8LbyGqgzC93VCd83rlGINKokXbK9pm_iScXQCwQ0gap20pPJWhEHJKK09QA3ge-z9zYDaxYY2w-bt7tLY3YHvsWMa7W0bIrvOD9rlle10x9ZlUiBEpdLAyToo46CKEvAyUgUVe-zwRla208CVFUSbgd0yVY99yPL7Z0fs5NtUaYQvB__V-i178PVkbKefzr-8Yg-pCdm1Uh-yvfXyV3yNgGXt3nSz8i-f6ODG |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimating+Carbon+Dioxide+Emissions+in+Two+California+Cities+Using+Bayesian+Inversion+and+Satellite+Measurements&rft.jtitle=Geophysical+research+letters&rft.au=Sofia+D.+Hamilton&rft.au=Dien+Wu&rft.au=Matthew+S.+Johnson&rft.au=Alexander+J.+Turner&rft.date=2024-10-28&rft.pub=Wiley&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=51&rft.issue=20&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2024GL111150&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_72f6a3356f1b47d69ba5e4ae4a946d6e |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon |