NEXUS: Neural cross-modal expression with subject-unified synthesis for brain–vision–language decoding

Visual information decoding from EEG signals presents significant challenges in brain–computer interface research, particularly when addressing cross-subject variability and multi-modal expression. Current approaches often struggle with subject-specific neural patterns and typically focus on single-...

Full description

Saved in:
Bibliographic Details
Published inBiomedical signal processing and control Vol. 112; p. 108400
Main Authors Jin, Xiao, Wang, Yongxiong, Huang, Shuai, Du, Yukun, Zhang, Nan
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.02.2026
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Visual information decoding from EEG signals presents significant challenges in brain–computer interface research, particularly when addressing cross-subject variability and multi-modal expression. Current approaches often struggle with subject-specific neural patterns and typically focus on single-task objectives, which limits their practical applications. We propose NEXUS, a comprehensive framework that integrates subject-specific adaptations with multi-task learning for brain–vision–language decoding. NEXUS introduces a novel subject adaptation layer that processes EEG signals before branching into specialized spatial and temporal pathways, effectively capturing individual neural characteristics while maintaining architectural efficiency. Beyond the traditional classification and retrieval capabilities, our framework extends to text caption generation and image reconstruction, enabling richer interpretations of neural activity. The dual-task approach combining contrastive learning with matching prediction is further enhanced by cross-modal generation objectives, creating a synergistic learning environment where each task reinforces the others. Experimental results on the Things-EEG2 dataset demonstrate that NEXUS significantly outperforms existing methods in zero-shot classification and retrieval tasks, while also producing coherent text descriptions and visually meaningful image reconstructions from EEG signals. Most notably, our approach shows substantial improvements in cross-subject scenarios, reducing the performance gap between subject-dependent and subject-independent conditions. These advances mark an important step toward practical brain–computer interfaces that can effectively decode and express neural activity across different individuals and modalities.
AbstractList Visual information decoding from EEG signals presents significant challenges in brain–computer interface research, particularly when addressing cross-subject variability and multi-modal expression. Current approaches often struggle with subject-specific neural patterns and typically focus on single-task objectives, which limits their practical applications. We propose NEXUS, a comprehensive framework that integrates subject-specific adaptations with multi-task learning for brain–vision–language decoding. NEXUS introduces a novel subject adaptation layer that processes EEG signals before branching into specialized spatial and temporal pathways, effectively capturing individual neural characteristics while maintaining architectural efficiency. Beyond the traditional classification and retrieval capabilities, our framework extends to text caption generation and image reconstruction, enabling richer interpretations of neural activity. The dual-task approach combining contrastive learning with matching prediction is further enhanced by cross-modal generation objectives, creating a synergistic learning environment where each task reinforces the others. Experimental results on the Things-EEG2 dataset demonstrate that NEXUS significantly outperforms existing methods in zero-shot classification and retrieval tasks, while also producing coherent text descriptions and visually meaningful image reconstructions from EEG signals. Most notably, our approach shows substantial improvements in cross-subject scenarios, reducing the performance gap between subject-dependent and subject-independent conditions. These advances mark an important step toward practical brain–computer interfaces that can effectively decode and express neural activity across different individuals and modalities.
ArticleNumber 108400
Author Jin, Xiao
Du, Yukun
Wang, Yongxiong
Zhang, Nan
Huang, Shuai
Author_xml – sequence: 1
  givenname: Xiao
  surname: Jin
  fullname: Jin, Xiao
  organization: University of Shanghai for Science and Technology, shanghai, 200093, China
– sequence: 2
  givenname: Yongxiong
  orcidid: 0000-0002-3242-0857
  surname: Wang
  fullname: Wang, Yongxiong
  email: wyxiong@usst.edu.cn
  organization: University of Shanghai for Science and Technology, shanghai, 200093, China
– sequence: 3
  givenname: Shuai
  surname: Huang
  fullname: Huang, Shuai
  organization: University of Shanghai for Science and Technology, shanghai, 200093, China
– sequence: 4
  givenname: Yukun
  surname: Du
  fullname: Du, Yukun
  organization: National university of Defense technology, Changsha, 410000, China
– sequence: 5
  givenname: Nan
  surname: Zhang
  fullname: Zhang, Nan
  organization: China Pacific Life Insurance(Group) Co Ltd, shanghai, 200001, China
BookMark eNp9kM1OAjEURrvAREBfwFVfYLAtbZkxbgzBn4TgQkzcNZ32DnQCLWkZlJ3v4Bv6JM6Ia1f3y03Ozf3OAPV88IDQFSUjSqi8rkdl2pkRI0y0i5wT0kN9OuEyy0nBz9EgpZoQnk8o76N6MXt7fbnBC2ii3mATQ0rZNtg2w8cuQkouePzu9mucmrIGs88a7yoHFqej368huYSrEHEZtfPfn18H1xFt2Gi_avQKsAUTrPOrC3RW6U2Cy785RMv72XL6mM2fH56md_PMMMpIVgpmCQgjCy2EHnNti5JxygtmrBSlpsSCzoUUlIhCUstlpbWuJIi2kWbjIWKns79dIlRqF91Wx6OiRHWCVK06QaoTpE6CWuj2BEH72MFBVMk48Aasi21nZYP7D_8BsJZ2mQ
Cites_doi 10.1038/s41598-024-77923-4
10.1038/s41467-022-28793-9
10.1016/j.patrec.2021.11.019
10.1145/3123266.3127907
10.1016/j.bspc.2023.105497
10.1016/j.inffus.2025.103022
10.3390/electronics11132040
10.1109/CVPR.2018.00781
10.1109/CVPR.2017.479
10.1038/s41598-024-66228-1
10.1016/j.engappai.2025.111122
10.1109/TPAMI.2023.3263181
10.1109/TCYB.2024.3406159
10.1109/ICASSP49660.2025.10889580
10.1016/j.ins.2024.121141
ContentType Journal Article
Copyright 2025
Copyright_xml – notice: 2025
DBID AAYXX
CITATION
DOI 10.1016/j.bspc.2025.108400
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_bspc_2025_108400
S1746809425009115
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AGCQF
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SST
SSV
SSZ
T5K
UNMZH
~G-
AAYXX
CITATION
RIG
ID FETCH-LOGICAL-c2120-b52d0e5c69a55a34ad9b241492cd65ba10dea8565105961d46faaaf6e5871a23
IEDL.DBID .~1
ISSN 1746-8094
IngestDate Thu Aug 14 00:19:54 EDT 2025
Sat Aug 30 17:14:11 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Image generalization
Electroencephalogram
Cross-subject
Brain–computer interface
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2120-b52d0e5c69a55a34ad9b241492cd65ba10dea8565105961d46faaaf6e5871a23
ORCID 0000-0002-3242-0857
OpenAccessLink https://doi.org/10.1016/j.bspc.2025.108400
ParticipantIDs crossref_primary_10_1016_j_bspc_2025_108400
elsevier_sciencedirect_doi_10_1016_j_bspc_2025_108400
PublicationCentury 2000
PublicationDate February 2026
2026-02-00
PublicationDateYYYYMMDD 2026-02-01
PublicationDate_xml – month: 02
  year: 2026
  text: February 2026
PublicationDecade 2020
PublicationTitle Biomedical signal processing and control
PublicationYear 2026
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Liu, Fan, Shi, Huang (b1) 2023; 45
Ahmadieh, Gassemi, Moradi (b39) 2024; 87
Vaswani (b13) 2017; 30
Zhuang, Tang, Wang, Zhang (b2) 2022; 33
C. Spampinato, S. Palazzo, I. Kavasidis, D. Giordano, M. Shah, Deep learning human mind for automated visual classification, in: IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 6809–6817.
Chen, Wei (b8) 2024; 32
Ruder (b24) 2017
Kumari, Anwar, Bhattacharjee (b40) 2022; 153
Mishra, Sharma, Jha, Bhavsar (b38) 2023; 35
I. Kavasidis, S. Palazzo, C. Spampinato, D. Giordano, M. Shah, Brain2Image: Converting Brain Signals Into Images, in: Proceedings of the 25th ACM International Conference on Multimedia, 2017, pp. 1809–1817.
Zhang, Wu, Wang, Zhang (b17) 2021
Lee, Yoon, Lee (b5) 2019; 52
A. Kendall, Y. Gal, R. Cipolla, Multi-task Learning Using Uncertainty to Weigh Losses for Scene Geometry and Semantics, in: IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 7482–7491.
Li, Zhang, Zhang, Lei, Cui, Guo (b7) 2019; 40
Dosovitskiy (b14) 2020
de la Torre-Ortiz, Spapé, Ravaja, Ruotsalo (b20) 2024
Zhu, Wang, Zhang (b35) 2023; 136
Bai, Wang, Cao, Ge, Yuan, Shan (b28) 2023
S. Huang, Y. Wang, H. Luo, S. Jia, H. Chen, C. Qin, Z. He, R. Luo, SSAAD: A multi-scale temporal-frequency graph network for binary auditory attention detection with self-supervised learning, in: ICASSP 2025-2025 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP, 2025, pp. 1–5.
Xue, Jin, Jiang, Guo, Liu (b22) 2024; 14
Li, Qin, Wu, Tang, Cao, Wei, Liu (b29) 2024
Huang, Wang, Luo (b19) 2025
Liu, Xie, Lin, Zhang, Wang (b9) 2022; 44
Zhu, Wang, Zhang (b34) 2022; 11
Wu, Xiong, Yu, Lin (b12) 2021
Li, Wei, Li, Zou, Qin, Liu (b21) 2024; 15
Li, Wei, Li, Zou, Qin, Liu (b30) 2024
Wang, Gong (b41) 2023; 520
Benchetrit, Banville, King (b3) 2024; 6
Horikawa, Kamitani (b4) 2023; 14
Chen, Kornblith, Norouzi, Hinton (b11) 2020
Huang, Wang, Luo (b26) 2025
Sun, Geng, Lin, Wang (b15) 2020; 42
W. Wang, L. Yao, L. Chen, B. Lin, D. Cai, X. He, W. Liu, CrossFormer: A Versatile Vision Transformer Based on Cross-scale Attention, in: International Conference on Computer Vision, 2021, pp. 16227–16237.
Singh, Pandey, Miyapuram, Raman (b27) 2023; 13
Zhu, Liu, Free, Anjum, Panneerselvam (b33) 2024; 680
Song, Liu, Li, Shi, Wang, Gao (b6) 2024; 285
Guenther, Kosmyna, Maes (b23) 2024; 14
Du, Fu, Li, He (b32) 2023; 45
Lopez, Sigillo, Colonnese, Panella, Comminiello (b31) 2024
H. Zhao, Y. Wang, Z. Liu, J. Du, J. Han, Exploring Versatile Generative Architecture for Network-based EEG Decoding, in: IEEE International Conference on Multimedia and Expo, 2020, pp. 1–6.
10.1016/j.bspc.2025.108400_b16
Zhu (10.1016/j.bspc.2025.108400_b35) 2023; 136
10.1016/j.bspc.2025.108400_b36
10.1016/j.bspc.2025.108400_b37
Horikawa (10.1016/j.bspc.2025.108400_b4) 2023; 14
Lee (10.1016/j.bspc.2025.108400_b5) 2019; 52
Zhuang (10.1016/j.bspc.2025.108400_b2) 2022; 33
10.1016/j.bspc.2025.108400_b10
Benchetrit (10.1016/j.bspc.2025.108400_b3) 2024; 6
Chen (10.1016/j.bspc.2025.108400_b8) 2024; 32
Xue (10.1016/j.bspc.2025.108400_b22) 2024; 14
Singh (10.1016/j.bspc.2025.108400_b27) 2023; 13
Li (10.1016/j.bspc.2025.108400_b7) 2019; 40
Liu (10.1016/j.bspc.2025.108400_b9) 2022; 44
Sun (10.1016/j.bspc.2025.108400_b15) 2020; 42
Li (10.1016/j.bspc.2025.108400_b30) 2024
Wu (10.1016/j.bspc.2025.108400_b12) 2021
Li (10.1016/j.bspc.2025.108400_b29) 2024
Liu (10.1016/j.bspc.2025.108400_b1) 2023; 45
10.1016/j.bspc.2025.108400_b18
Wang (10.1016/j.bspc.2025.108400_b41) 2023; 520
Mishra (10.1016/j.bspc.2025.108400_b38) 2023; 35
Ruder (10.1016/j.bspc.2025.108400_b24) 2017
Huang (10.1016/j.bspc.2025.108400_b26) 2025
Zhu (10.1016/j.bspc.2025.108400_b33) 2024; 680
de la Torre-Ortiz (10.1016/j.bspc.2025.108400_b20) 2024
Du (10.1016/j.bspc.2025.108400_b32) 2023; 45
Kumari (10.1016/j.bspc.2025.108400_b40) 2022; 153
Dosovitskiy (10.1016/j.bspc.2025.108400_b14) 2020
Vaswani (10.1016/j.bspc.2025.108400_b13) 2017; 30
Li (10.1016/j.bspc.2025.108400_b21) 2024; 15
Chen (10.1016/j.bspc.2025.108400_b11) 2020
Ahmadieh (10.1016/j.bspc.2025.108400_b39) 2024; 87
Song (10.1016/j.bspc.2025.108400_b6) 2024; 285
Guenther (10.1016/j.bspc.2025.108400_b23) 2024; 14
10.1016/j.bspc.2025.108400_b25
Zhu (10.1016/j.bspc.2025.108400_b34) 2022; 11
Bai (10.1016/j.bspc.2025.108400_b28) 2023
Zhang (10.1016/j.bspc.2025.108400_b17) 2021
Huang (10.1016/j.bspc.2025.108400_b19) 2025
Lopez (10.1016/j.bspc.2025.108400_b31) 2024
References_xml – start-page: 1
  year: 2020
  end-page: 21
  ident: b14
  article-title: An image is worth 16x16 words: Transformers for image recognition at scale
  publication-title: International Conference on Learning Representations
– start-page: 1597
  year: 2020
  end-page: 1607
  ident: b11
  article-title: A simple framework for contrastive learning of visual representations
  publication-title: International Conference on Machine Learning
– volume: 32
  start-page: 183
  year: 2024
  end-page: 193
  ident: b8
  article-title: Mind’s eye: Image recognition by EEG via multimodal similarity-keeping contrastive learning
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 87
  year: 2024
  ident: b39
  article-title: Visual image reconstruction based on EEG signals using a generative adversarial and deep fuzzy neural network
  publication-title: Biomed. Signal Process. Control.
– year: 2024
  ident: b20
  article-title: Cross-subject EEG feedback for implicit image generation
  publication-title: IEEE Trans. Cybern.
– volume: 33
  start-page: 6719
  year: 2022
  end-page: 6737
  ident: b2
  article-title: Brain activity decoding with deep learning: A survey
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 14
  start-page: 27170
  year: 2024
  ident: b22
  article-title: A hybrid local–global neural network for visual classification using raw EEG signals
  publication-title: Sci. Rep.
– volume: 14
  start-page: 3723
  year: 2023
  ident: b4
  article-title: Deep learning-based reconstruction of natural movies from brain activity
  publication-title: Nat. Commun.
– year: 2024
  ident: b31
  article-title: Guess what I think: Streamlined EEG-to-image generation with latent diffusion models
– volume: 153
  start-page: 29
  year: 2022
  end-page: 35
  ident: b40
  article-title: Automated visual stimuli evoked multi-channel EEG signal classification using EEGCapsNet
  publication-title: Pattern Recognit. Lett.
– volume: 44
  start-page: 6501
  year: 2022
  end-page: 6515
  ident: b9
  article-title: Hierarchical vision transformer using low-level feature distillation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– year: 2025
  ident: b19
  article-title: CCSUMSP: A cross-subject Chinese speech decoding framework with unified topology and multi-modal semantic pre-training
  publication-title: Inf. Fusion
– volume: 42
  start-page: 2987
  year: 2020
  end-page: 3007
  ident: b15
  article-title: A survey on visual transformer
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– year: 2023
  ident: b28
  article-title: Dreamdiffusion: Generating high-quality images from brain eeg signals
– volume: 680
  year: 2024
  ident: b33
  article-title: OPT-CO: Optimizing pre-trained transformer models for efficient COVID-19 classification with stochastic configuration networks
  publication-title: Inform. Sci.
– start-page: 20996
  year: 2021
  end-page: 21008
  ident: b17
  article-title: Contrastive learning of global and local features for medical image segmentation with limited annotations
  publication-title: Neural Information Processing Systems
– reference: C. Spampinato, S. Palazzo, I. Kavasidis, D. Giordano, M. Shah, Deep learning human mind for automated visual classification, in: IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 6809–6817.
– volume: 45
  start-page: 10641
  year: 2023
  end-page: 10665
  ident: b1
  article-title: Brain encoding and decoding in human vision: A survey
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– year: 2024
  ident: b29
  article-title: RealMind: Advancing visual decoding and language interaction via EEG signals
– volume: 285
  year: 2024
  ident: b6
  article-title: Decoding natural images from EEG for object recognition
  publication-title: NeuroImage
– volume: 35
  start-page: 9181
  year: 2023
  end-page: 9192
  ident: b38
  article-title: Neurogan: image reconstruction from EEG signals via an attention-based GAN
  publication-title: Neural Comput. Appl.
– volume: 30
  start-page: 5998
  year: 2017
  end-page: 6008
  ident: b13
  article-title: Attention is all you need
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2025
  ident: b26
  article-title: A dual-branch generative adversarial network with self-supervised enhancement for robust auditory attention decoding
  publication-title: Eng. Appl. Artif. Intell.
– volume: 45
  start-page: 10760
  year: 2023
  end-page: 10777
  ident: b32
  article-title: Decoding visual neural representations by multimodal learning of brain-visual-linguistic features
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: S. Huang, Y. Wang, H. Luo, S. Jia, H. Chen, C. Qin, Z. He, R. Luo, SSAAD: A multi-scale temporal-frequency graph network for binary auditory attention detection with self-supervised learning, in: ICASSP 2025-2025 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP, 2025, pp. 1–5.
– reference: H. Zhao, Y. Wang, Z. Liu, J. Du, J. Han, Exploring Versatile Generative Architecture for Network-based EEG Decoding, in: IEEE International Conference on Multimedia and Expo, 2020, pp. 1–6.
– volume: 11
  start-page: 2040
  year: 2022
  ident: b34
  article-title: ROENet: A ResNet-based output ensemble for malaria parasite classification
  publication-title: Electronics
– volume: 520
  start-page: 159
  year: 2023
  end-page: 168
  ident: b41
  article-title: Visual decoding from EEG to recover original stimuli using diffusion models
  publication-title: Neurocomputing
– volume: 52
  start-page: 1
  year: 2019
  end-page: 38
  ident: b5
  article-title: EEG-based brain-computer interfaces: A thorough literature survey
  publication-title: ACM Comput. Surv.
– year: 2017
  ident: b24
  article-title: An overview of multi-task learning in deep neural networks
– volume: 15
  start-page: 1123
  year: 2024
  ident: b21
  article-title: Visual decoding and reconstruction via EEG embeddings with guided diffusion
  publication-title: Nat. Commun.
– start-page: 12716
  year: 2021
  end-page: 12725
  ident: b12
  article-title: Contrastive Learning Visual Representations with Data Augmentation
– volume: 6
  start-page: 127
  year: 2024
  end-page: 140
  ident: b3
  article-title: Brain decoding: Toward real-time reconstruction of visual perception
  publication-title: Nat. Mach. Intell.
– volume: 136
  start-page: 2127
  year: 2023
  ident: b35
  article-title: A survey of convolutional neural network in breast cancer
  publication-title: Comput. Model. Eng. Sci.: CMES
– volume: 13
  start-page: 14582
  year: 2023
  ident: b27
  article-title: EEG2IMAGE: Image reconstruction from EEG brain signals
  publication-title: Sci. Rep.
– volume: 14
  start-page: 16436
  year: 2024
  ident: b23
  article-title: Image classification and reconstruction from low-density EEG
  publication-title: Sci. Rep.
– reference: A. Kendall, Y. Gal, R. Cipolla, Multi-task Learning Using Uncertainty to Weigh Losses for Scene Geometry and Semantics, in: IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 7482–7491.
– reference: I. Kavasidis, S. Palazzo, C. Spampinato, D. Giordano, M. Shah, Brain2Image: Converting Brain Signals Into Images, in: Proceedings of the 25th ACM International Conference on Multimedia, 2017, pp. 1809–1817.
– volume: 40
  start-page: 219
  year: 2019
  end-page: 228
  ident: b7
  article-title: EEG signal classification based on deep neural network
  publication-title: IRBM
– reference: W. Wang, L. Yao, L. Chen, B. Lin, D. Cai, X. He, W. Liu, CrossFormer: A Versatile Vision Transformer Based on Cross-scale Attention, in: International Conference on Computer Vision, 2021, pp. 16227–16237.
– year: 2024
  ident: b30
  article-title: Visual decoding and reconstruction via eeg embeddings with guided diffusion
– volume: 33
  start-page: 6719
  issue: 12
  year: 2022
  ident: 10.1016/j.bspc.2025.108400_b2
  article-title: Brain activity decoding with deep learning: A survey
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– start-page: 1
  year: 2020
  ident: 10.1016/j.bspc.2025.108400_b14
  article-title: An image is worth 16x16 words: Transformers for image recognition at scale
– year: 2023
  ident: 10.1016/j.bspc.2025.108400_b28
– volume: 136
  start-page: 2127
  issue: 3
  year: 2023
  ident: 10.1016/j.bspc.2025.108400_b35
  article-title: A survey of convolutional neural network in breast cancer
  publication-title: Comput. Model. Eng. Sci.: CMES
– volume: 14
  start-page: 27170
  issue: 1
  year: 2024
  ident: 10.1016/j.bspc.2025.108400_b22
  article-title: A hybrid local–global neural network for visual classification using raw EEG signals
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-024-77923-4
– volume: 520
  start-page: 159
  year: 2023
  ident: 10.1016/j.bspc.2025.108400_b41
  article-title: Visual decoding from EEG to recover original stimuli using diffusion models
  publication-title: Neurocomputing
– volume: 32
  start-page: 183
  issue: 1
  year: 2024
  ident: 10.1016/j.bspc.2025.108400_b8
  article-title: Mind’s eye: Image recognition by EEG via multimodal similarity-keeping contrastive learning
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 15
  start-page: 1123
  issue: 1
  year: 2024
  ident: 10.1016/j.bspc.2025.108400_b21
  article-title: Visual decoding and reconstruction via EEG embeddings with guided diffusion
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-28793-9
– volume: 52
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.bspc.2025.108400_b5
  article-title: EEG-based brain-computer interfaces: A thorough literature survey
  publication-title: ACM Comput. Surv.
– ident: 10.1016/j.bspc.2025.108400_b10
– start-page: 12716
  year: 2021
  ident: 10.1016/j.bspc.2025.108400_b12
– volume: 153
  start-page: 29
  year: 2022
  ident: 10.1016/j.bspc.2025.108400_b40
  article-title: Automated visual stimuli evoked multi-channel EEG signal classification using EEGCapsNet
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2021.11.019
– volume: 42
  start-page: 2987
  issue: 12
  year: 2020
  ident: 10.1016/j.bspc.2025.108400_b15
  article-title: A survey on visual transformer
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– year: 2024
  ident: 10.1016/j.bspc.2025.108400_b31
– year: 2024
  ident: 10.1016/j.bspc.2025.108400_b29
– ident: 10.1016/j.bspc.2025.108400_b36
  doi: 10.1145/3123266.3127907
– year: 2024
  ident: 10.1016/j.bspc.2025.108400_b30
– volume: 14
  start-page: 3723
  issue: 1
  year: 2023
  ident: 10.1016/j.bspc.2025.108400_b4
  article-title: Deep learning-based reconstruction of natural movies from brain activity
  publication-title: Nat. Commun.
– volume: 44
  start-page: 6501
  issue: 10
  year: 2022
  ident: 10.1016/j.bspc.2025.108400_b9
  article-title: Hierarchical vision transformer using low-level feature distillation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 35
  start-page: 9181
  issue: 12
  year: 2023
  ident: 10.1016/j.bspc.2025.108400_b38
  article-title: Neurogan: image reconstruction from EEG signals via an attention-based GAN
  publication-title: Neural Comput. Appl.
– ident: 10.1016/j.bspc.2025.108400_b18
– volume: 87
  year: 2024
  ident: 10.1016/j.bspc.2025.108400_b39
  article-title: Visual image reconstruction based on EEG signals using a generative adversarial and deep fuzzy neural network
  publication-title: Biomed. Signal Process. Control.
  doi: 10.1016/j.bspc.2023.105497
– year: 2025
  ident: 10.1016/j.bspc.2025.108400_b19
  article-title: CCSUMSP: A cross-subject Chinese speech decoding framework with unified topology and multi-modal semantic pre-training
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2025.103022
– volume: 11
  start-page: 2040
  issue: 13
  year: 2022
  ident: 10.1016/j.bspc.2025.108400_b34
  article-title: ROENet: A ResNet-based output ensemble for malaria parasite classification
  publication-title: Electronics
  doi: 10.3390/electronics11132040
– ident: 10.1016/j.bspc.2025.108400_b25
  doi: 10.1109/CVPR.2018.00781
– ident: 10.1016/j.bspc.2025.108400_b37
  doi: 10.1109/CVPR.2017.479
– volume: 14
  start-page: 16436
  issue: 1
  year: 2024
  ident: 10.1016/j.bspc.2025.108400_b23
  article-title: Image classification and reconstruction from low-density EEG
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-024-66228-1
– volume: 30
  start-page: 5998
  year: 2017
  ident: 10.1016/j.bspc.2025.108400_b13
  article-title: Attention is all you need
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2025
  ident: 10.1016/j.bspc.2025.108400_b26
  article-title: A dual-branch generative adversarial network with self-supervised enhancement for robust auditory attention decoding
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2025.111122
– volume: 45
  start-page: 10760
  issue: 9
  year: 2023
  ident: 10.1016/j.bspc.2025.108400_b32
  article-title: Decoding visual neural representations by multimodal learning of brain-visual-linguistic features
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2023.3263181
– volume: 40
  start-page: 219
  issue: 4
  year: 2019
  ident: 10.1016/j.bspc.2025.108400_b7
  article-title: EEG signal classification based on deep neural network
  publication-title: IRBM
– year: 2024
  ident: 10.1016/j.bspc.2025.108400_b20
  article-title: Cross-subject EEG feedback for implicit image generation
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2024.3406159
– volume: 6
  start-page: 127
  year: 2024
  ident: 10.1016/j.bspc.2025.108400_b3
  article-title: Brain decoding: Toward real-time reconstruction of visual perception
  publication-title: Nat. Mach. Intell.
– ident: 10.1016/j.bspc.2025.108400_b16
  doi: 10.1109/ICASSP49660.2025.10889580
– start-page: 20996
  year: 2021
  ident: 10.1016/j.bspc.2025.108400_b17
  article-title: Contrastive learning of global and local features for medical image segmentation with limited annotations
– volume: 45
  start-page: 10641
  issue: 9
  year: 2023
  ident: 10.1016/j.bspc.2025.108400_b1
  article-title: Brain encoding and decoding in human vision: A survey
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 680
  year: 2024
  ident: 10.1016/j.bspc.2025.108400_b33
  article-title: OPT-CO: Optimizing pre-trained transformer models for efficient COVID-19 classification with stochastic configuration networks
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2024.121141
– volume: 285
  year: 2024
  ident: 10.1016/j.bspc.2025.108400_b6
  article-title: Decoding natural images from EEG for object recognition
  publication-title: NeuroImage
– volume: 13
  start-page: 14582
  issue: 1
  year: 2023
  ident: 10.1016/j.bspc.2025.108400_b27
  article-title: EEG2IMAGE: Image reconstruction from EEG brain signals
  publication-title: Sci. Rep.
– start-page: 1597
  year: 2020
  ident: 10.1016/j.bspc.2025.108400_b11
  article-title: A simple framework for contrastive learning of visual representations
– year: 2017
  ident: 10.1016/j.bspc.2025.108400_b24
SSID ssj0048714
Score 2.389895
Snippet Visual information decoding from EEG signals presents significant challenges in brain–computer interface research, particularly when addressing cross-subject...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 108400
SubjectTerms Brain–computer interface
Cross-subject
Electroencephalogram
Image generalization
Title NEXUS: Neural cross-modal expression with subject-unified synthesis for brain–vision–language decoding
URI https://dx.doi.org/10.1016/j.bspc.2025.108400
Volume 112
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8MwGA5DL3oQP3F-jBy8SVzaJlnrbYyNqbjLNtitJE0KHdgNu4FexP_gP_SX-KZNZYJ48JaWpJQn4X2ehOd9g9CVx00oJe0QQUNDbEFyEpk0IoZGMCDwXX7F40gMp-x-xmcN1KtzYayt0sX-KqaX0dq9aTs028ssa49BS4sQdidA4kB6ZaI5Yx27ym_evm0eoMfL-t62M7G9XeJM5fFSxdKWMfS5tdoxm-X2GzltEM5gH-05pYi71c8coIbJD9HuRv3AIzQf9WfT8S22FTaga_lR8rTQ0DYvzuGaY3vUiou1sicuZJ1nKahOXLzmIP2KrMCgWrGyF0V8vn9UmebQqI8xsYbtqaW3YzQZ9Ce9IXGXJ5AE2IgSxX1NDU9EJDmXAZM6UsDWLPITLbiSHtVGhiDnrMASnmYilVKmwnBATPrBCdrKF7k5RdgkoQlUKkXIE9ahUnlcp8r4OvCpDgxtousatHhZlciIa-_YPLYQxxbiuIK4iXiNa_xjomOI4X-MO_vnuHO0A0_OaH2BtlbPa3MJOmKlWuVCaaHt7t3DcPQFWazKmg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LSsNAFB1KXagL8Yn1OQt3MnTymDFxV4oS7WNjC92FmcwEKpgW04Lu_Af_0C_x3mYCFcSFuyGZG8JJuOfMcO8ZQq48YSOl-A2TPLIMDclZbPOYWR5DQOC7_orBUCbj8HEiJg3SrXthsKzS5f4qp6-ytbvSdmi259Np-wm0tIxgdQIkDqSHjeYb6E4lmmSj89BLhnVCBkm-svjG-QwDXO9MVealyzk6GfoCq-1CbHT7jZ_WOOd-l-w4sUg71fvskYYt9sn2moXgAXke3k3GT7cUTTZg6uqh7GVmYGzfXJFrQXG3lZZLjZsubFlMcxCetHwvQP2V05KCcKUaz4r4-visms1hUO9kUgMrVGS4QzK6vxt1E-bOT2AZEBJnWviGW5HJWAmhglCZWANhh7GfGSm08rixKgJFhxpLeiaUuVIql1YAYsoPjkizmBX2mFCbRTbQuZKRyMIbrrQnTK6tbwKfm8DyFrmuQUvnlUtGWpePPacIcYoQpxXELSJqXNMf3zqFNP5H3Mk_4y7JZjIa9NP-w7B3Srbgjqu7PiPNxevSnoOsWOgL99t8A1Z5zUs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NEXUS%3A+Neural+cross-modal+expression+with+subject-unified+synthesis+for+brain%E2%80%93vision%E2%80%93language+decoding&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Jin%2C+Xiao&rft.au=Wang%2C+Yongxiong&rft.au=Huang%2C+Shuai&rft.au=Du%2C+Yukun&rft.date=2026-02-01&rft.pub=Elsevier+Ltd&rft.issn=1746-8094&rft.volume=112&rft_id=info:doi/10.1016%2Fj.bspc.2025.108400&rft.externalDocID=S1746809425009115
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon