NEXUS: Neural cross-modal expression with subject-unified synthesis for brain–vision–language decoding
Visual information decoding from EEG signals presents significant challenges in brain–computer interface research, particularly when addressing cross-subject variability and multi-modal expression. Current approaches often struggle with subject-specific neural patterns and typically focus on single-...
Saved in:
Published in | Biomedical signal processing and control Vol. 112; p. 108400 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.02.2026
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Visual information decoding from EEG signals presents significant challenges in brain–computer interface research, particularly when addressing cross-subject variability and multi-modal expression. Current approaches often struggle with subject-specific neural patterns and typically focus on single-task objectives, which limits their practical applications. We propose NEXUS, a comprehensive framework that integrates subject-specific adaptations with multi-task learning for brain–vision–language decoding. NEXUS introduces a novel subject adaptation layer that processes EEG signals before branching into specialized spatial and temporal pathways, effectively capturing individual neural characteristics while maintaining architectural efficiency. Beyond the traditional classification and retrieval capabilities, our framework extends to text caption generation and image reconstruction, enabling richer interpretations of neural activity. The dual-task approach combining contrastive learning with matching prediction is further enhanced by cross-modal generation objectives, creating a synergistic learning environment where each task reinforces the others. Experimental results on the Things-EEG2 dataset demonstrate that NEXUS significantly outperforms existing methods in zero-shot classification and retrieval tasks, while also producing coherent text descriptions and visually meaningful image reconstructions from EEG signals. Most notably, our approach shows substantial improvements in cross-subject scenarios, reducing the performance gap between subject-dependent and subject-independent conditions. These advances mark an important step toward practical brain–computer interfaces that can effectively decode and express neural activity across different individuals and modalities. |
---|---|
AbstractList | Visual information decoding from EEG signals presents significant challenges in brain–computer interface research, particularly when addressing cross-subject variability and multi-modal expression. Current approaches often struggle with subject-specific neural patterns and typically focus on single-task objectives, which limits their practical applications. We propose NEXUS, a comprehensive framework that integrates subject-specific adaptations with multi-task learning for brain–vision–language decoding. NEXUS introduces a novel subject adaptation layer that processes EEG signals before branching into specialized spatial and temporal pathways, effectively capturing individual neural characteristics while maintaining architectural efficiency. Beyond the traditional classification and retrieval capabilities, our framework extends to text caption generation and image reconstruction, enabling richer interpretations of neural activity. The dual-task approach combining contrastive learning with matching prediction is further enhanced by cross-modal generation objectives, creating a synergistic learning environment where each task reinforces the others. Experimental results on the Things-EEG2 dataset demonstrate that NEXUS significantly outperforms existing methods in zero-shot classification and retrieval tasks, while also producing coherent text descriptions and visually meaningful image reconstructions from EEG signals. Most notably, our approach shows substantial improvements in cross-subject scenarios, reducing the performance gap between subject-dependent and subject-independent conditions. These advances mark an important step toward practical brain–computer interfaces that can effectively decode and express neural activity across different individuals and modalities. |
ArticleNumber | 108400 |
Author | Jin, Xiao Du, Yukun Wang, Yongxiong Zhang, Nan Huang, Shuai |
Author_xml | – sequence: 1 givenname: Xiao surname: Jin fullname: Jin, Xiao organization: University of Shanghai for Science and Technology, shanghai, 200093, China – sequence: 2 givenname: Yongxiong orcidid: 0000-0002-3242-0857 surname: Wang fullname: Wang, Yongxiong email: wyxiong@usst.edu.cn organization: University of Shanghai for Science and Technology, shanghai, 200093, China – sequence: 3 givenname: Shuai surname: Huang fullname: Huang, Shuai organization: University of Shanghai for Science and Technology, shanghai, 200093, China – sequence: 4 givenname: Yukun surname: Du fullname: Du, Yukun organization: National university of Defense technology, Changsha, 410000, China – sequence: 5 givenname: Nan surname: Zhang fullname: Zhang, Nan organization: China Pacific Life Insurance(Group) Co Ltd, shanghai, 200001, China |
BookMark | eNp9kM1OAjEURrvAREBfwFVfYLAtbZkxbgzBn4TgQkzcNZ32DnQCLWkZlJ3v4Bv6JM6Ia1f3y03Ozf3OAPV88IDQFSUjSqi8rkdl2pkRI0y0i5wT0kN9OuEyy0nBz9EgpZoQnk8o76N6MXt7fbnBC2ii3mATQ0rZNtg2w8cuQkouePzu9mucmrIGs88a7yoHFqej368huYSrEHEZtfPfn18H1xFt2Gi_avQKsAUTrPOrC3RW6U2Cy785RMv72XL6mM2fH56md_PMMMpIVgpmCQgjCy2EHnNti5JxygtmrBSlpsSCzoUUlIhCUstlpbWuJIi2kWbjIWKns79dIlRqF91Wx6OiRHWCVK06QaoTpE6CWuj2BEH72MFBVMk48Aasi21nZYP7D_8BsJZ2mQ |
Cites_doi | 10.1038/s41598-024-77923-4 10.1038/s41467-022-28793-9 10.1016/j.patrec.2021.11.019 10.1145/3123266.3127907 10.1016/j.bspc.2023.105497 10.1016/j.inffus.2025.103022 10.3390/electronics11132040 10.1109/CVPR.2018.00781 10.1109/CVPR.2017.479 10.1038/s41598-024-66228-1 10.1016/j.engappai.2025.111122 10.1109/TPAMI.2023.3263181 10.1109/TCYB.2024.3406159 10.1109/ICASSP49660.2025.10889580 10.1016/j.ins.2024.121141 |
ContentType | Journal Article |
Copyright | 2025 |
Copyright_xml | – notice: 2025 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.bspc.2025.108400 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_bspc_2025_108400 S1746809425009115 |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABFRF ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFO ACGFS ACNNM ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADMUD ADNMO ADTZH AEBSH AECPX AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AGCQF AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APXCP AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SPC SPCBC SST SSV SSZ T5K UNMZH ~G- AAYXX CITATION RIG |
ID | FETCH-LOGICAL-c2120-b52d0e5c69a55a34ad9b241492cd65ba10dea8565105961d46faaaf6e5871a23 |
IEDL.DBID | .~1 |
ISSN | 1746-8094 |
IngestDate | Thu Aug 14 00:19:54 EDT 2025 Sat Aug 30 17:14:11 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Image generalization Electroencephalogram Cross-subject Brain–computer interface |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2120-b52d0e5c69a55a34ad9b241492cd65ba10dea8565105961d46faaaf6e5871a23 |
ORCID | 0000-0002-3242-0857 |
OpenAccessLink | https://doi.org/10.1016/j.bspc.2025.108400 |
ParticipantIDs | crossref_primary_10_1016_j_bspc_2025_108400 elsevier_sciencedirect_doi_10_1016_j_bspc_2025_108400 |
PublicationCentury | 2000 |
PublicationDate | February 2026 2026-02-00 |
PublicationDateYYYYMMDD | 2026-02-01 |
PublicationDate_xml | – month: 02 year: 2026 text: February 2026 |
PublicationDecade | 2020 |
PublicationTitle | Biomedical signal processing and control |
PublicationYear | 2026 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Liu, Fan, Shi, Huang (b1) 2023; 45 Ahmadieh, Gassemi, Moradi (b39) 2024; 87 Vaswani (b13) 2017; 30 Zhuang, Tang, Wang, Zhang (b2) 2022; 33 C. Spampinato, S. Palazzo, I. Kavasidis, D. Giordano, M. Shah, Deep learning human mind for automated visual classification, in: IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 6809–6817. Chen, Wei (b8) 2024; 32 Ruder (b24) 2017 Kumari, Anwar, Bhattacharjee (b40) 2022; 153 Mishra, Sharma, Jha, Bhavsar (b38) 2023; 35 I. Kavasidis, S. Palazzo, C. Spampinato, D. Giordano, M. Shah, Brain2Image: Converting Brain Signals Into Images, in: Proceedings of the 25th ACM International Conference on Multimedia, 2017, pp. 1809–1817. Zhang, Wu, Wang, Zhang (b17) 2021 Lee, Yoon, Lee (b5) 2019; 52 A. Kendall, Y. Gal, R. Cipolla, Multi-task Learning Using Uncertainty to Weigh Losses for Scene Geometry and Semantics, in: IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 7482–7491. Li, Zhang, Zhang, Lei, Cui, Guo (b7) 2019; 40 Dosovitskiy (b14) 2020 de la Torre-Ortiz, Spapé, Ravaja, Ruotsalo (b20) 2024 Zhu, Wang, Zhang (b35) 2023; 136 Bai, Wang, Cao, Ge, Yuan, Shan (b28) 2023 S. Huang, Y. Wang, H. Luo, S. Jia, H. Chen, C. Qin, Z. He, R. Luo, SSAAD: A multi-scale temporal-frequency graph network for binary auditory attention detection with self-supervised learning, in: ICASSP 2025-2025 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP, 2025, pp. 1–5. Xue, Jin, Jiang, Guo, Liu (b22) 2024; 14 Li, Qin, Wu, Tang, Cao, Wei, Liu (b29) 2024 Huang, Wang, Luo (b19) 2025 Liu, Xie, Lin, Zhang, Wang (b9) 2022; 44 Zhu, Wang, Zhang (b34) 2022; 11 Wu, Xiong, Yu, Lin (b12) 2021 Li, Wei, Li, Zou, Qin, Liu (b21) 2024; 15 Li, Wei, Li, Zou, Qin, Liu (b30) 2024 Wang, Gong (b41) 2023; 520 Benchetrit, Banville, King (b3) 2024; 6 Horikawa, Kamitani (b4) 2023; 14 Chen, Kornblith, Norouzi, Hinton (b11) 2020 Huang, Wang, Luo (b26) 2025 Sun, Geng, Lin, Wang (b15) 2020; 42 W. Wang, L. Yao, L. Chen, B. Lin, D. Cai, X. He, W. Liu, CrossFormer: A Versatile Vision Transformer Based on Cross-scale Attention, in: International Conference on Computer Vision, 2021, pp. 16227–16237. Singh, Pandey, Miyapuram, Raman (b27) 2023; 13 Zhu, Liu, Free, Anjum, Panneerselvam (b33) 2024; 680 Song, Liu, Li, Shi, Wang, Gao (b6) 2024; 285 Guenther, Kosmyna, Maes (b23) 2024; 14 Du, Fu, Li, He (b32) 2023; 45 Lopez, Sigillo, Colonnese, Panella, Comminiello (b31) 2024 H. Zhao, Y. Wang, Z. Liu, J. Du, J. Han, Exploring Versatile Generative Architecture for Network-based EEG Decoding, in: IEEE International Conference on Multimedia and Expo, 2020, pp. 1–6. 10.1016/j.bspc.2025.108400_b16 Zhu (10.1016/j.bspc.2025.108400_b35) 2023; 136 10.1016/j.bspc.2025.108400_b36 10.1016/j.bspc.2025.108400_b37 Horikawa (10.1016/j.bspc.2025.108400_b4) 2023; 14 Lee (10.1016/j.bspc.2025.108400_b5) 2019; 52 Zhuang (10.1016/j.bspc.2025.108400_b2) 2022; 33 10.1016/j.bspc.2025.108400_b10 Benchetrit (10.1016/j.bspc.2025.108400_b3) 2024; 6 Chen (10.1016/j.bspc.2025.108400_b8) 2024; 32 Xue (10.1016/j.bspc.2025.108400_b22) 2024; 14 Singh (10.1016/j.bspc.2025.108400_b27) 2023; 13 Li (10.1016/j.bspc.2025.108400_b7) 2019; 40 Liu (10.1016/j.bspc.2025.108400_b9) 2022; 44 Sun (10.1016/j.bspc.2025.108400_b15) 2020; 42 Li (10.1016/j.bspc.2025.108400_b30) 2024 Wu (10.1016/j.bspc.2025.108400_b12) 2021 Li (10.1016/j.bspc.2025.108400_b29) 2024 Liu (10.1016/j.bspc.2025.108400_b1) 2023; 45 10.1016/j.bspc.2025.108400_b18 Wang (10.1016/j.bspc.2025.108400_b41) 2023; 520 Mishra (10.1016/j.bspc.2025.108400_b38) 2023; 35 Ruder (10.1016/j.bspc.2025.108400_b24) 2017 Huang (10.1016/j.bspc.2025.108400_b26) 2025 Zhu (10.1016/j.bspc.2025.108400_b33) 2024; 680 de la Torre-Ortiz (10.1016/j.bspc.2025.108400_b20) 2024 Du (10.1016/j.bspc.2025.108400_b32) 2023; 45 Kumari (10.1016/j.bspc.2025.108400_b40) 2022; 153 Dosovitskiy (10.1016/j.bspc.2025.108400_b14) 2020 Vaswani (10.1016/j.bspc.2025.108400_b13) 2017; 30 Li (10.1016/j.bspc.2025.108400_b21) 2024; 15 Chen (10.1016/j.bspc.2025.108400_b11) 2020 Ahmadieh (10.1016/j.bspc.2025.108400_b39) 2024; 87 Song (10.1016/j.bspc.2025.108400_b6) 2024; 285 Guenther (10.1016/j.bspc.2025.108400_b23) 2024; 14 10.1016/j.bspc.2025.108400_b25 Zhu (10.1016/j.bspc.2025.108400_b34) 2022; 11 Bai (10.1016/j.bspc.2025.108400_b28) 2023 Zhang (10.1016/j.bspc.2025.108400_b17) 2021 Huang (10.1016/j.bspc.2025.108400_b19) 2025 Lopez (10.1016/j.bspc.2025.108400_b31) 2024 |
References_xml | – start-page: 1 year: 2020 end-page: 21 ident: b14 article-title: An image is worth 16x16 words: Transformers for image recognition at scale publication-title: International Conference on Learning Representations – start-page: 1597 year: 2020 end-page: 1607 ident: b11 article-title: A simple framework for contrastive learning of visual representations publication-title: International Conference on Machine Learning – volume: 32 start-page: 183 year: 2024 end-page: 193 ident: b8 article-title: Mind’s eye: Image recognition by EEG via multimodal similarity-keeping contrastive learning publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 87 year: 2024 ident: b39 article-title: Visual image reconstruction based on EEG signals using a generative adversarial and deep fuzzy neural network publication-title: Biomed. Signal Process. Control. – year: 2024 ident: b20 article-title: Cross-subject EEG feedback for implicit image generation publication-title: IEEE Trans. Cybern. – volume: 33 start-page: 6719 year: 2022 end-page: 6737 ident: b2 article-title: Brain activity decoding with deep learning: A survey publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 14 start-page: 27170 year: 2024 ident: b22 article-title: A hybrid local–global neural network for visual classification using raw EEG signals publication-title: Sci. Rep. – volume: 14 start-page: 3723 year: 2023 ident: b4 article-title: Deep learning-based reconstruction of natural movies from brain activity publication-title: Nat. Commun. – year: 2024 ident: b31 article-title: Guess what I think: Streamlined EEG-to-image generation with latent diffusion models – volume: 153 start-page: 29 year: 2022 end-page: 35 ident: b40 article-title: Automated visual stimuli evoked multi-channel EEG signal classification using EEGCapsNet publication-title: Pattern Recognit. Lett. – volume: 44 start-page: 6501 year: 2022 end-page: 6515 ident: b9 article-title: Hierarchical vision transformer using low-level feature distillation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – year: 2025 ident: b19 article-title: CCSUMSP: A cross-subject Chinese speech decoding framework with unified topology and multi-modal semantic pre-training publication-title: Inf. Fusion – volume: 42 start-page: 2987 year: 2020 end-page: 3007 ident: b15 article-title: A survey on visual transformer publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – year: 2023 ident: b28 article-title: Dreamdiffusion: Generating high-quality images from brain eeg signals – volume: 680 year: 2024 ident: b33 article-title: OPT-CO: Optimizing pre-trained transformer models for efficient COVID-19 classification with stochastic configuration networks publication-title: Inform. Sci. – start-page: 20996 year: 2021 end-page: 21008 ident: b17 article-title: Contrastive learning of global and local features for medical image segmentation with limited annotations publication-title: Neural Information Processing Systems – reference: C. Spampinato, S. Palazzo, I. Kavasidis, D. Giordano, M. Shah, Deep learning human mind for automated visual classification, in: IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 6809–6817. – volume: 45 start-page: 10641 year: 2023 end-page: 10665 ident: b1 article-title: Brain encoding and decoding in human vision: A survey publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – year: 2024 ident: b29 article-title: RealMind: Advancing visual decoding and language interaction via EEG signals – volume: 285 year: 2024 ident: b6 article-title: Decoding natural images from EEG for object recognition publication-title: NeuroImage – volume: 35 start-page: 9181 year: 2023 end-page: 9192 ident: b38 article-title: Neurogan: image reconstruction from EEG signals via an attention-based GAN publication-title: Neural Comput. Appl. – volume: 30 start-page: 5998 year: 2017 end-page: 6008 ident: b13 article-title: Attention is all you need publication-title: Adv. Neural Inf. Process. Syst. – year: 2025 ident: b26 article-title: A dual-branch generative adversarial network with self-supervised enhancement for robust auditory attention decoding publication-title: Eng. Appl. Artif. Intell. – volume: 45 start-page: 10760 year: 2023 end-page: 10777 ident: b32 article-title: Decoding visual neural representations by multimodal learning of brain-visual-linguistic features publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – reference: S. Huang, Y. Wang, H. Luo, S. Jia, H. Chen, C. Qin, Z. He, R. Luo, SSAAD: A multi-scale temporal-frequency graph network for binary auditory attention detection with self-supervised learning, in: ICASSP 2025-2025 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP, 2025, pp. 1–5. – reference: H. Zhao, Y. Wang, Z. Liu, J. Du, J. Han, Exploring Versatile Generative Architecture for Network-based EEG Decoding, in: IEEE International Conference on Multimedia and Expo, 2020, pp. 1–6. – volume: 11 start-page: 2040 year: 2022 ident: b34 article-title: ROENet: A ResNet-based output ensemble for malaria parasite classification publication-title: Electronics – volume: 520 start-page: 159 year: 2023 end-page: 168 ident: b41 article-title: Visual decoding from EEG to recover original stimuli using diffusion models publication-title: Neurocomputing – volume: 52 start-page: 1 year: 2019 end-page: 38 ident: b5 article-title: EEG-based brain-computer interfaces: A thorough literature survey publication-title: ACM Comput. Surv. – year: 2017 ident: b24 article-title: An overview of multi-task learning in deep neural networks – volume: 15 start-page: 1123 year: 2024 ident: b21 article-title: Visual decoding and reconstruction via EEG embeddings with guided diffusion publication-title: Nat. Commun. – start-page: 12716 year: 2021 end-page: 12725 ident: b12 article-title: Contrastive Learning Visual Representations with Data Augmentation – volume: 6 start-page: 127 year: 2024 end-page: 140 ident: b3 article-title: Brain decoding: Toward real-time reconstruction of visual perception publication-title: Nat. Mach. Intell. – volume: 136 start-page: 2127 year: 2023 ident: b35 article-title: A survey of convolutional neural network in breast cancer publication-title: Comput. Model. Eng. Sci.: CMES – volume: 13 start-page: 14582 year: 2023 ident: b27 article-title: EEG2IMAGE: Image reconstruction from EEG brain signals publication-title: Sci. Rep. – volume: 14 start-page: 16436 year: 2024 ident: b23 article-title: Image classification and reconstruction from low-density EEG publication-title: Sci. Rep. – reference: A. Kendall, Y. Gal, R. Cipolla, Multi-task Learning Using Uncertainty to Weigh Losses for Scene Geometry and Semantics, in: IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 7482–7491. – reference: I. Kavasidis, S. Palazzo, C. Spampinato, D. Giordano, M. Shah, Brain2Image: Converting Brain Signals Into Images, in: Proceedings of the 25th ACM International Conference on Multimedia, 2017, pp. 1809–1817. – volume: 40 start-page: 219 year: 2019 end-page: 228 ident: b7 article-title: EEG signal classification based on deep neural network publication-title: IRBM – reference: W. Wang, L. Yao, L. Chen, B. Lin, D. Cai, X. He, W. Liu, CrossFormer: A Versatile Vision Transformer Based on Cross-scale Attention, in: International Conference on Computer Vision, 2021, pp. 16227–16237. – year: 2024 ident: b30 article-title: Visual decoding and reconstruction via eeg embeddings with guided diffusion – volume: 33 start-page: 6719 issue: 12 year: 2022 ident: 10.1016/j.bspc.2025.108400_b2 article-title: Brain activity decoding with deep learning: A survey publication-title: IEEE Trans. Neural Netw. Learn. Syst. – start-page: 1 year: 2020 ident: 10.1016/j.bspc.2025.108400_b14 article-title: An image is worth 16x16 words: Transformers for image recognition at scale – year: 2023 ident: 10.1016/j.bspc.2025.108400_b28 – volume: 136 start-page: 2127 issue: 3 year: 2023 ident: 10.1016/j.bspc.2025.108400_b35 article-title: A survey of convolutional neural network in breast cancer publication-title: Comput. Model. Eng. Sci.: CMES – volume: 14 start-page: 27170 issue: 1 year: 2024 ident: 10.1016/j.bspc.2025.108400_b22 article-title: A hybrid local–global neural network for visual classification using raw EEG signals publication-title: Sci. Rep. doi: 10.1038/s41598-024-77923-4 – volume: 520 start-page: 159 year: 2023 ident: 10.1016/j.bspc.2025.108400_b41 article-title: Visual decoding from EEG to recover original stimuli using diffusion models publication-title: Neurocomputing – volume: 32 start-page: 183 issue: 1 year: 2024 ident: 10.1016/j.bspc.2025.108400_b8 article-title: Mind’s eye: Image recognition by EEG via multimodal similarity-keeping contrastive learning publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 15 start-page: 1123 issue: 1 year: 2024 ident: 10.1016/j.bspc.2025.108400_b21 article-title: Visual decoding and reconstruction via EEG embeddings with guided diffusion publication-title: Nat. Commun. doi: 10.1038/s41467-022-28793-9 – volume: 52 start-page: 1 issue: 1 year: 2019 ident: 10.1016/j.bspc.2025.108400_b5 article-title: EEG-based brain-computer interfaces: A thorough literature survey publication-title: ACM Comput. Surv. – ident: 10.1016/j.bspc.2025.108400_b10 – start-page: 12716 year: 2021 ident: 10.1016/j.bspc.2025.108400_b12 – volume: 153 start-page: 29 year: 2022 ident: 10.1016/j.bspc.2025.108400_b40 article-title: Automated visual stimuli evoked multi-channel EEG signal classification using EEGCapsNet publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2021.11.019 – volume: 42 start-page: 2987 issue: 12 year: 2020 ident: 10.1016/j.bspc.2025.108400_b15 article-title: A survey on visual transformer publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – year: 2024 ident: 10.1016/j.bspc.2025.108400_b31 – year: 2024 ident: 10.1016/j.bspc.2025.108400_b29 – ident: 10.1016/j.bspc.2025.108400_b36 doi: 10.1145/3123266.3127907 – year: 2024 ident: 10.1016/j.bspc.2025.108400_b30 – volume: 14 start-page: 3723 issue: 1 year: 2023 ident: 10.1016/j.bspc.2025.108400_b4 article-title: Deep learning-based reconstruction of natural movies from brain activity publication-title: Nat. Commun. – volume: 44 start-page: 6501 issue: 10 year: 2022 ident: 10.1016/j.bspc.2025.108400_b9 article-title: Hierarchical vision transformer using low-level feature distillation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 35 start-page: 9181 issue: 12 year: 2023 ident: 10.1016/j.bspc.2025.108400_b38 article-title: Neurogan: image reconstruction from EEG signals via an attention-based GAN publication-title: Neural Comput. Appl. – ident: 10.1016/j.bspc.2025.108400_b18 – volume: 87 year: 2024 ident: 10.1016/j.bspc.2025.108400_b39 article-title: Visual image reconstruction based on EEG signals using a generative adversarial and deep fuzzy neural network publication-title: Biomed. Signal Process. Control. doi: 10.1016/j.bspc.2023.105497 – year: 2025 ident: 10.1016/j.bspc.2025.108400_b19 article-title: CCSUMSP: A cross-subject Chinese speech decoding framework with unified topology and multi-modal semantic pre-training publication-title: Inf. Fusion doi: 10.1016/j.inffus.2025.103022 – volume: 11 start-page: 2040 issue: 13 year: 2022 ident: 10.1016/j.bspc.2025.108400_b34 article-title: ROENet: A ResNet-based output ensemble for malaria parasite classification publication-title: Electronics doi: 10.3390/electronics11132040 – ident: 10.1016/j.bspc.2025.108400_b25 doi: 10.1109/CVPR.2018.00781 – ident: 10.1016/j.bspc.2025.108400_b37 doi: 10.1109/CVPR.2017.479 – volume: 14 start-page: 16436 issue: 1 year: 2024 ident: 10.1016/j.bspc.2025.108400_b23 article-title: Image classification and reconstruction from low-density EEG publication-title: Sci. Rep. doi: 10.1038/s41598-024-66228-1 – volume: 30 start-page: 5998 year: 2017 ident: 10.1016/j.bspc.2025.108400_b13 article-title: Attention is all you need publication-title: Adv. Neural Inf. Process. Syst. – year: 2025 ident: 10.1016/j.bspc.2025.108400_b26 article-title: A dual-branch generative adversarial network with self-supervised enhancement for robust auditory attention decoding publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2025.111122 – volume: 45 start-page: 10760 issue: 9 year: 2023 ident: 10.1016/j.bspc.2025.108400_b32 article-title: Decoding visual neural representations by multimodal learning of brain-visual-linguistic features publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2023.3263181 – volume: 40 start-page: 219 issue: 4 year: 2019 ident: 10.1016/j.bspc.2025.108400_b7 article-title: EEG signal classification based on deep neural network publication-title: IRBM – year: 2024 ident: 10.1016/j.bspc.2025.108400_b20 article-title: Cross-subject EEG feedback for implicit image generation publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2024.3406159 – volume: 6 start-page: 127 year: 2024 ident: 10.1016/j.bspc.2025.108400_b3 article-title: Brain decoding: Toward real-time reconstruction of visual perception publication-title: Nat. Mach. Intell. – ident: 10.1016/j.bspc.2025.108400_b16 doi: 10.1109/ICASSP49660.2025.10889580 – start-page: 20996 year: 2021 ident: 10.1016/j.bspc.2025.108400_b17 article-title: Contrastive learning of global and local features for medical image segmentation with limited annotations – volume: 45 start-page: 10641 issue: 9 year: 2023 ident: 10.1016/j.bspc.2025.108400_b1 article-title: Brain encoding and decoding in human vision: A survey publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 680 year: 2024 ident: 10.1016/j.bspc.2025.108400_b33 article-title: OPT-CO: Optimizing pre-trained transformer models for efficient COVID-19 classification with stochastic configuration networks publication-title: Inform. Sci. doi: 10.1016/j.ins.2024.121141 – volume: 285 year: 2024 ident: 10.1016/j.bspc.2025.108400_b6 article-title: Decoding natural images from EEG for object recognition publication-title: NeuroImage – volume: 13 start-page: 14582 issue: 1 year: 2023 ident: 10.1016/j.bspc.2025.108400_b27 article-title: EEG2IMAGE: Image reconstruction from EEG brain signals publication-title: Sci. Rep. – start-page: 1597 year: 2020 ident: 10.1016/j.bspc.2025.108400_b11 article-title: A simple framework for contrastive learning of visual representations – year: 2017 ident: 10.1016/j.bspc.2025.108400_b24 |
SSID | ssj0048714 |
Score | 2.389895 |
Snippet | Visual information decoding from EEG signals presents significant challenges in brain–computer interface research, particularly when addressing cross-subject... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 108400 |
SubjectTerms | Brain–computer interface Cross-subject Electroencephalogram Image generalization |
Title | NEXUS: Neural cross-modal expression with subject-unified synthesis for brain–vision–language decoding |
URI | https://dx.doi.org/10.1016/j.bspc.2025.108400 |
Volume | 112 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8MwGA5DL3oQP3F-jBy8SVzaJlnrbYyNqbjLNtitJE0KHdgNu4FexP_gP_SX-KZNZYJ48JaWpJQn4X2ehOd9g9CVx00oJe0QQUNDbEFyEpk0IoZGMCDwXX7F40gMp-x-xmcN1KtzYayt0sX-KqaX0dq9aTs028ssa49BS4sQdidA4kB6ZaI5Yx27ym_evm0eoMfL-t62M7G9XeJM5fFSxdKWMfS5tdoxm-X2GzltEM5gH-05pYi71c8coIbJD9HuRv3AIzQf9WfT8S22FTaga_lR8rTQ0DYvzuGaY3vUiou1sicuZJ1nKahOXLzmIP2KrMCgWrGyF0V8vn9UmebQqI8xsYbtqaW3YzQZ9Ce9IXGXJ5AE2IgSxX1NDU9EJDmXAZM6UsDWLPITLbiSHtVGhiDnrMASnmYilVKmwnBATPrBCdrKF7k5RdgkoQlUKkXIE9ahUnlcp8r4OvCpDgxtousatHhZlciIa-_YPLYQxxbiuIK4iXiNa_xjomOI4X-MO_vnuHO0A0_OaH2BtlbPa3MJOmKlWuVCaaHt7t3DcPQFWazKmg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LSsNAFB1KXagL8Yn1OQt3MnTymDFxV4oS7WNjC92FmcwEKpgW04Lu_Af_0C_x3mYCFcSFuyGZG8JJuOfMcO8ZQq48YSOl-A2TPLIMDclZbPOYWR5DQOC7_orBUCbj8HEiJg3SrXthsKzS5f4qp6-ytbvSdmi259Np-wm0tIxgdQIkDqSHjeYb6E4lmmSj89BLhnVCBkm-svjG-QwDXO9MVealyzk6GfoCq-1CbHT7jZ_WOOd-l-w4sUg71fvskYYt9sn2moXgAXke3k3GT7cUTTZg6uqh7GVmYGzfXJFrQXG3lZZLjZsubFlMcxCetHwvQP2V05KCcKUaz4r4-visms1hUO9kUgMrVGS4QzK6vxt1E-bOT2AZEBJnWviGW5HJWAmhglCZWANhh7GfGSm08rixKgJFhxpLeiaUuVIql1YAYsoPjkizmBX2mFCbRTbQuZKRyMIbrrQnTK6tbwKfm8DyFrmuQUvnlUtGWpePPacIcYoQpxXELSJqXNMf3zqFNP5H3Mk_4y7JZjIa9NP-w7B3Srbgjqu7PiPNxevSnoOsWOgL99t8A1Z5zUs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NEXUS%3A+Neural+cross-modal+expression+with+subject-unified+synthesis+for+brain%E2%80%93vision%E2%80%93language+decoding&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Jin%2C+Xiao&rft.au=Wang%2C+Yongxiong&rft.au=Huang%2C+Shuai&rft.au=Du%2C+Yukun&rft.date=2026-02-01&rft.pub=Elsevier+Ltd&rft.issn=1746-8094&rft.volume=112&rft_id=info:doi/10.1016%2Fj.bspc.2025.108400&rft.externalDocID=S1746809425009115 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon |