Adding exogenous protein relieves the toxicity of nanoparticles to anammox granular sludge by adsorption and the formation of eco-coronas
MgO nanoparticles (NPs) are widely used in bactericides, fuel cells and electronic materials and are frequently detected in aquatic environments. Anaerobic ammonium oxidation (anammox) is a highly efficient and economical autotrophic nitrogen removal process. To date, the effects of MgO NPs on anamm...
Saved in:
Published in | Environmental science. Nano Vol. 9; no. 5; pp. 1794 - 184 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
19.05.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | MgO nanoparticles (NPs) are widely used in bactericides, fuel cells and electronic materials and are frequently detected in aquatic environments. Anaerobic ammonium oxidation (anammox) is a highly efficient and economical autotrophic nitrogen removal process. To date, the effects of MgO NPs on anammox granular sludge have remained unknown. This work systematically evaluated the short- and long-term effects of MgO NPs on anammox process performance and explored an effective strategy to relieve stress. The half maximal inhibitory concentration (IC
50
) of MgO NPs to anammox granular sludge was 69.5 mg L
−1
. During the long-term experiment, the anammox process experienced a reduction in nitrogen removal ability under the stress of 50.0 mg L
−1
MgO NPs. Moreover, the enzymatic activity and synthesis of heme c significantly decreased. Adding 40.0 mg L
−1
bull serum albumin (BSA) effectively relieved the stress caused by 50.0 mg L
−1
MgO NPs, and the anammox activity recovered to 97.0% of the original level. Multiple spectral analyses verified the adsorption of MgO NPs by BSA. Furthermore, the formation of an eco-corona was observed by transmission electron microscopy, which also contributed to decreasing the biotoxicity of the MgO NPs. The results of this study provide guidance for treating NP-containing wastewater during the anammox process.
MgO nanoparticles (NPs) are widely used in bactericides, fuel cells and electronic materials and are frequently detected in aquatic environments. |
---|---|
AbstractList | MgO nanoparticles (NPs) are widely used in bactericides, fuel cells and electronic materials and are frequently detected in aquatic environments. Anaerobic ammonium oxidation (anammox) is a highly efficient and economical autotrophic nitrogen removal process. To date, the effects of MgO NPs on anammox granular sludge have remained unknown. This work systematically evaluated the short- and long-term effects of MgO NPs on anammox process performance and explored an effective strategy to relieve stress. The half maximal inhibitory concentration (IC
50
) of MgO NPs to anammox granular sludge was 69.5 mg L
−1
. During the long-term experiment, the anammox process experienced a reduction in nitrogen removal ability under the stress of 50.0 mg L
−1
MgO NPs. Moreover, the enzymatic activity and synthesis of heme c significantly decreased. Adding 40.0 mg L
−1
bull serum albumin (BSA) effectively relieved the stress caused by 50.0 mg L
−1
MgO NPs, and the anammox activity recovered to 97.0% of the original level. Multiple spectral analyses verified the adsorption of MgO NPs by BSA. Furthermore, the formation of an eco-corona was observed by transmission electron microscopy, which also contributed to decreasing the biotoxicity of the MgO NPs. The results of this study provide guidance for treating NP-containing wastewater during the anammox process.
MgO nanoparticles (NPs) are widely used in bactericides, fuel cells and electronic materials and are frequently detected in aquatic environments. MgO nanoparticles (NPs) are widely used in bactericides, fuel cells and electronic materials and are frequently detected in aquatic environments. Anaerobic ammonium oxidation (anammox) is a highly efficient and economical autotrophic nitrogen removal process. To date, the effects of MgO NPs on anammox granular sludge have remained unknown. This work systematically evaluated the short- and long-term effects of MgO NPs on anammox process performance and explored an effective strategy to relieve stress. The half maximal inhibitory concentration (IC50) of MgO NPs to anammox granular sludge was 69.5 mg L−1. During the long-term experiment, the anammox process experienced a reduction in nitrogen removal ability under the stress of 50.0 mg L−1 MgO NPs. Moreover, the enzymatic activity and synthesis of heme c significantly decreased. Adding 40.0 mg L−1 bull serum albumin (BSA) effectively relieved the stress caused by 50.0 mg L−1 MgO NPs, and the anammox activity recovered to 97.0% of the original level. Multiple spectral analyses verified the adsorption of MgO NPs by BSA. Furthermore, the formation of an eco-corona was observed by transmission electron microscopy, which also contributed to decreasing the biotoxicity of the MgO NPs. The results of this study provide guidance for treating NP-containing wastewater during the anammox process. MgO nanoparticles (NPs) are widely used in bactericides, fuel cells and electronic materials and are frequently detected in aquatic environments. Anaerobic ammonium oxidation (anammox) is a highly efficient and economical autotrophic nitrogen removal process. To date, the effects of MgO NPs on anammox granular sludge have remained unknown. This work systematically evaluated the short- and long-term effects of MgO NPs on anammox process performance and explored an effective strategy to relieve stress. The half maximal inhibitory concentration (IC 50 ) of MgO NPs to anammox granular sludge was 69.5 mg L −1 . During the long-term experiment, the anammox process experienced a reduction in nitrogen removal ability under the stress of 50.0 mg L −1 MgO NPs. Moreover, the enzymatic activity and synthesis of heme c significantly decreased. Adding 40.0 mg L −1 bull serum albumin (BSA) effectively relieved the stress caused by 50.0 mg L −1 MgO NPs, and the anammox activity recovered to 97.0% of the original level. Multiple spectral analyses verified the adsorption of MgO NPs by BSA. Furthermore, the formation of an eco-corona was observed by transmission electron microscopy, which also contributed to decreasing the biotoxicity of the MgO NPs. The results of this study provide guidance for treating NP-containing wastewater during the anammox process. |
Author | Ma, Wen-Jie Yao, Yu-Xi Wang, Xin Li, Gui-Feng Lin, Yan-Xu Fan, Nian-Si Guo, Jie-Yun Cheng, Ya-Fei Zhang, Jiang-Tao Jin, Ren-Cun |
AuthorAffiliation | School of Life and Environmental Sciences Hangzhou Normal University Laboratory of Water Pollution Remediation |
AuthorAffiliation_xml | – name: Laboratory of Water Pollution Remediation – name: School of Life and Environmental Sciences – name: Hangzhou Normal University |
Author_xml | – sequence: 1 givenname: Wen-Jie surname: Ma fullname: Ma, Wen-Jie – sequence: 2 givenname: Xin surname: Wang fullname: Wang, Xin – sequence: 3 givenname: Jiang-Tao surname: Zhang fullname: Zhang, Jiang-Tao – sequence: 4 givenname: Jie-Yun surname: Guo fullname: Guo, Jie-Yun – sequence: 5 givenname: Yan-Xu surname: Lin fullname: Lin, Yan-Xu – sequence: 6 givenname: Yu-Xi surname: Yao fullname: Yao, Yu-Xi – sequence: 7 givenname: Gui-Feng surname: Li fullname: Li, Gui-Feng – sequence: 8 givenname: Ya-Fei surname: Cheng fullname: Cheng, Ya-Fei – sequence: 9 givenname: Nian-Si surname: Fan fullname: Fan, Nian-Si – sequence: 10 givenname: Ren-Cun surname: Jin fullname: Jin, Ren-Cun |
BookMark | eNpFkc1OwzAQhC1UJErphTuSJW5IATtO4uRYlfIjIbjAOXJsJ7hKvMF2UPsIvDVpi8ppV7OfZrWz52hiwWqELim5pYQVd4pqSyhluTxB05ikNMppRifHPmVnaO79mpCRilOW8Sn6WShlbIP1BhptYfC4dxC0sdjp1uhv7XH41DjAxkgTthhqbIWFXrhgZLubAhZWdB1scOOEHVrhsG8H1WhcbbFQHlwfDNiRUnurGlwn9sropSVEEhxY4S_QaS1ar-d_dYY-Hlbvy6fo5e3xebl4iWRMaYjySnJOOVNE0pzWScEIl1VS5UznKVX1qKqCsFylBYsrkShe84TIVDGmC8E5m6Hrg-946NegfSjXMDg7rizjLMuSImHFjro5UNKB907XZe9MJ9y2pKTcpV3e09XrPu3lCF8dYOflkfv_BvsFYwF_-g |
CitedBy_id | crossref_primary_10_1021_acsestwater_3c00778 crossref_primary_10_1021_acs_est_4c01731 crossref_primary_10_1021_acsnano_2c09964 |
Cites_doi | 10.1016/j.cej.2021.130815 10.1016/j.jenvman.2019.01.054 10.1016/j.watres.2006.01.023 10.1007/s11783-020-1309-y 10.1016/j.plaphy.2014.05.006 10.1016/j.watres.2020.115978 10.1016/j.biortech.2016.08.084 10.1016/j.scitotenv.2021.150009 10.1016/j.scitotenv.2020.141469 10.1007/s00267-010-9440-3 10.1016/j.saa.2018.11.024 10.1021/sc500121w 10.1016/j.watres.2010.06.067 10.1016/j.watres.2019.114952 10.1002/wer.1342 10.1016/j.jhazmat.2020.122130 10.1016/j.jenvman.2018.05.089 10.1016/j.jiec.2020.02.018 10.1038/nrmicro.2016.94 10.1016/j.apsoil.2019.08.008 10.1016/j.cell.2007.06.049 10.1016/j.watres.2021.117319 10.1016/j.jprot.2015.09.005 10.1016/j.biortech.2018.06.094 10.1016/j.colsurfa.2021.126765 10.1016/j.watres.2020.116603 10.1016/j.jhazmat.2016.08.044 10.1016/j.scitotenv.2020.141618 10.1016/j.chemosphere.2019.06.006 10.2175/106143012X13373575830593 10.1016/j.chemosphere.2021.130414 10.1016/j.watres.2008.02.014 10.1016/j.scitotenv.2018.12.377 10.1016/j.jece.2021.105028 10.1016/j.jphotochem.2005.04.040 10.1021/acsnano.9b08263 10.1021/acs.est.8b03180 10.1111/j.1753-4887.1997.tb01588.x 10.1021/es703238h 10.1021/acs.est.0c01469 10.1016/j.biortech.2020.123264 10.1016/j.envres.2020.109842 10.1016/j.scitotenv.2017.12.016 10.1016/j.cej.2017.09.072 10.1016/j.jhazmat.2020.122965 10.1021/acs.est.1c00804 10.1016/j.cej.2015.05.081 10.1016/j.chemosphere.2015.12.060 10.1016/j.biortech.2016.02.097 10.1016/j.cej.2012.05.014 10.1016/j.biortech.2021.124945 10.1021/acs.est.1c05203 10.1016/j.envres.2020.110669 10.1016/j.jhazmat.2021.126661 10.1016/j.watres.2019.03.046 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2022 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2022 |
DBID | AAYXX CITATION 7QH 7ST 7UA C1K F1W H97 L.G SOI |
DOI | 10.1039/d1en01138c |
DatabaseName | CrossRef Aqualine Environment Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional Environment Abstracts |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional ASFA: Aquatic Sciences and Fisheries Abstracts Aqualine Environment Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2051-8161 |
EndPage | 184 |
ExternalDocumentID | 10_1039_D1EN01138C d1en01138c |
GroupedDBID | 0R 4.4 AAEMU AAGNR AAIWI AAJAE AANOJ ABASK ABDVN ABGFH ABRYZ ACGFS ACLDK ADMRA ADSRN AFRAH AGRSR AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ANUXI ASKNT AUDPV BLAPV BSQNT C6K CKLOX EBS ECGLT EE0 EF- H13 HZ H~N J3I JG O-G O9- RCNCU RIG RPMJG RRC RSCEA -JG 0R~ AARTK AAWGC AAXHV AAYXX ABEMK ABJNI ABPDG ABXOH AEFDR AENGV AETIL AFLYV AFOGI AGEGJ AHGCF AKBGW APEMP CITATION GGIMP HZ~ RAOCF RVUXY 7QH 7ST 7UA C1K F1W H97 L.G SOI |
ID | FETCH-LOGICAL-c211t-8bc77173d0c181f49307cb4b83e851dfc18d9038d5932ba4d7f740c5d33e9a773 |
ISSN | 2051-8153 |
IngestDate | Thu Oct 10 20:09:29 EDT 2024 Fri Aug 23 03:18:42 EDT 2024 Fri May 20 04:30:52 EDT 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c211t-8bc77173d0c181f49307cb4b83e851dfc18d9038d5932ba4d7f740c5d33e9a773 |
Notes | https://doi.org/10.1039/d1en01138c Electronic supplementary information (ESI) available. See DOI |
ORCID | 0000-0002-1337-7531 0000-0001-8640-8223 |
PQID | 2666494397 |
PQPubID | 2047519 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2666494397 rsc_primary_d1en01138c crossref_primary_10_1039_D1EN01138C |
PublicationCentury | 2000 |
PublicationDate | 2022-05-19 |
PublicationDateYYYYMMDD | 2022-05-19 |
PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-19 day: 19 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Environmental science. Nano |
PublicationYear | 2022 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Kohanski (D1EN01138C/cit49/1) 2007; 130 Lin (D1EN01138C/cit1/1) 2021; 751 Zhang (D1EN01138C/cit15/1) 2018; 622 Boleij (D1EN01138C/cit61/1) 2019; 164 Flemming (D1EN01138C/cit25/1) 2016; 14 Lotti (D1EN01138C/cit51/1) 2019; 236 Junaid (D1EN01138C/cit57/1) 2021; 201 Wang (D1EN01138C/cit40/1) 2006; 177 Chen (D1EN01138C/cit59/1) 2017; 321 Ma (D1EN01138C/cit44/1) 2019; 659 Ma (D1EN01138C/cit6/1) 2021; 278 Anupama (D1EN01138C/cit30/1) 2008; 42 Seo (D1EN01138C/cit11/1) 2022; 9 Jin (D1EN01138C/cit8/1) 2012; 197 Ma (D1EN01138C/cit4/1) 2020; 92 Cervantes-Aviles (D1EN01138C/cit20/1) 2021; 189 Meng (D1EN01138C/cit38/1) 2016; 147 Liu (D1EN01138C/cit47/1) 2018; 5 Mazari (D1EN01138C/cit13/1) 2021; 9 Shiu (D1EN01138C/cit55/1) 2020; 748 Pagliaccia (D1EN01138C/cit50/1) 2021; 424 Nasser (D1EN01138C/cit58/1) 2016; 137 Huang (D1EN01138C/cit24/1) 2021; 803 Xu (D1EN01138C/cit18/1) 2020; 398 Zhao (D1EN01138C/cit2/1) 2019; 156 Cheng (D1EN01138C/cit33/1) 2020; 54 Mise (D1EN01138C/cit45/1) 2020; 145 Li (D1EN01138C/cit9/1) 2019; 6 Ma (D1EN01138C/cit21/1) 2018; 222 Fu (D1EN01138C/cit7/1) 2021; 15 Wang (D1EN01138C/cit46/1) 2020; 389 Clydesdale (D1EN01138C/cit43/1) 1997; 55 Boleij (D1EN01138C/cit60/1) 2018; 52 APHA (D1EN01138C/cit29/1) 2005 Arumugam (D1EN01138C/cit39/1) 2019; 210 Choi (D1EN01138C/cit48/1) 2008; 42 Zhang (D1EN01138C/cit32/1) 2021; 330 Zhang (D1EN01138C/cit31/1) 2016; 208 Cheng (D1EN01138C/cit28/1) 2020; 307 Oliveira (D1EN01138C/cit19/1) 2014; 82 Liao (D1EN01138C/cit42/1) 2021; 55 Gao (D1EN01138C/cit14/1) 2018; 9 Munoz (D1EN01138C/cit12/1) 2022; 9 Wang (D1EN01138C/cit36/1) 2010; 44 Zhang (D1EN01138C/cit41/1) 2018; 266 Chang (D1EN01138C/cit34/1) 2021; 624 Li (D1EN01138C/cit52/1) 2021; 55 Guo (D1EN01138C/cit54/1) 2016; 220 Afridi (D1EN01138C/cit53/1) 2020; 86 Natarajan (D1EN01138C/cit56/1) 2020; 188 Le (D1EN01138C/cit3/1) 2010; 45 Zhang (D1EN01138C/cit16/1) 2018; 332 Natarajan (D1EN01138C/cit27/1) 2021; 194 Peng (D1EN01138C/cit37/1) 2019; 13 Lazareva (D1EN01138C/cit10/1) 2014; 2 Liu (D1EN01138C/cit22/1) 2012; 84 Ma (D1EN01138C/cit5/1) 2021; 426 Xu (D1EN01138C/cit17/1) 2019; 233 Sheng (D1EN01138C/cit35/1) 2006; 40 Zhang (D1EN01138C/cit23/1) 2015; 279 Dong (D1EN01138C/cit26/1) 2020; 182 |
References_xml | – issn: 2005 publication-title: Standard methods for the examination of water and wastewater doi: APHA AEF – volume: 426 start-page: 130815 year: 2021 ident: D1EN01138C/cit5/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.130815 contributor: fullname: Ma – volume: 236 start-page: 649 year: 2019 ident: D1EN01138C/cit51/1 publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2019.01.054 contributor: fullname: Lotti – volume: 40 start-page: 1233 year: 2006 ident: D1EN01138C/cit35/1 publication-title: Water Res. doi: 10.1016/j.watres.2006.01.023 contributor: fullname: Sheng – volume: 15 start-page: 1 year: 2021 ident: D1EN01138C/cit7/1 publication-title: Front. Environ. Sci. Eng. doi: 10.1007/s11783-020-1309-y contributor: fullname: Fu – volume: 82 start-page: 66 year: 2014 ident: D1EN01138C/cit19/1 publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2014.05.006 contributor: fullname: Oliveira – volume: 182 start-page: 115978 year: 2020 ident: D1EN01138C/cit26/1 publication-title: Water Res. doi: 10.1016/j.watres.2020.115978 contributor: fullname: Dong – volume: 220 start-page: 641 year: 2016 ident: D1EN01138C/cit54/1 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2016.08.084 contributor: fullname: Guo – volume: 803 start-page: 150009 year: 2021 ident: D1EN01138C/cit24/1 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.150009 contributor: fullname: Huang – volume: 748 start-page: 141469 year: 2020 ident: D1EN01138C/cit55/1 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.141469 contributor: fullname: Shiu – volume: 45 start-page: 662 year: 2010 ident: D1EN01138C/cit3/1 publication-title: Environ. Manage. doi: 10.1007/s00267-010-9440-3 contributor: fullname: Le – volume: 210 start-page: 299 year: 2019 ident: D1EN01138C/cit39/1 publication-title: Spectrochim. Acta, Part A doi: 10.1016/j.saa.2018.11.024 contributor: fullname: Arumugam – volume: 2 start-page: 1656 year: 2014 ident: D1EN01138C/cit10/1 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/sc500121w contributor: fullname: Lazareva – volume: 44 start-page: 5499 year: 2010 ident: D1EN01138C/cit36/1 publication-title: Water Res. doi: 10.1016/j.watres.2010.06.067 contributor: fullname: Wang – volume: 164 start-page: 114952 year: 2019 ident: D1EN01138C/cit61/1 publication-title: Water Res. doi: 10.1016/j.watres.2019.114952 contributor: fullname: Boleij – volume: 92 start-page: 1899 year: 2020 ident: D1EN01138C/cit4/1 publication-title: Water Environ. Res. doi: 10.1002/wer.1342 contributor: fullname: Ma – volume: 389 start-page: 122130 year: 2020 ident: D1EN01138C/cit46/1 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2020.122130 contributor: fullname: Wang – volume: 222 start-page: 475 year: 2018 ident: D1EN01138C/cit21/1 publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2018.05.089 contributor: fullname: Ma – volume: 86 start-page: 113 year: 2020 ident: D1EN01138C/cit53/1 publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2020.02.018 contributor: fullname: Afridi – volume: 14 start-page: 563 year: 2016 ident: D1EN01138C/cit25/1 publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro.2016.94 contributor: fullname: Flemming – volume: 145 start-page: 103346 year: 2020 ident: D1EN01138C/cit45/1 publication-title: Appl. Soil Ecol. doi: 10.1016/j.apsoil.2019.08.008 contributor: fullname: Mise – volume: 130 start-page: 797 year: 2007 ident: D1EN01138C/cit49/1 publication-title: Cell doi: 10.1016/j.cell.2007.06.049 contributor: fullname: Kohanski – volume: 201 start-page: 117319 year: 2021 ident: D1EN01138C/cit57/1 publication-title: Water Res. doi: 10.1016/j.watres.2021.117319 contributor: fullname: Junaid – volume: 137 start-page: 45 year: 2016 ident: D1EN01138C/cit58/1 publication-title: J. Proteomics doi: 10.1016/j.jprot.2015.09.005 contributor: fullname: Nasser – volume: 266 start-page: 507 year: 2018 ident: D1EN01138C/cit41/1 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2018.06.094 contributor: fullname: Zhang – volume: 624 start-page: 126765 year: 2021 ident: D1EN01138C/cit34/1 publication-title: Colloids Surf., A doi: 10.1016/j.colsurfa.2021.126765 contributor: fullname: Chang – volume: 9 start-page: 606 year: 2022 ident: D1EN01138C/cit12/1 publication-title: Environ. Sci.: Nano contributor: fullname: Munoz – volume: 9 start-page: 454 year: 2022 ident: D1EN01138C/cit11/1 publication-title: Environ. Sci.: Nano contributor: fullname: Seo – volume: 189 start-page: 116603 year: 2021 ident: D1EN01138C/cit20/1 publication-title: Water Res. doi: 10.1016/j.watres.2020.116603 contributor: fullname: Cervantes-Aviles – volume: 321 start-page: 81 year: 2017 ident: D1EN01138C/cit59/1 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2016.08.044 contributor: fullname: Chen – volume: 751 start-page: 141618 year: 2021 ident: D1EN01138C/cit1/1 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.141618 contributor: fullname: Lin – volume: 233 start-page: 625 year: 2019 ident: D1EN01138C/cit17/1 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.06.006 contributor: fullname: Xu – volume: 84 start-page: 569 year: 2012 ident: D1EN01138C/cit22/1 publication-title: Water Environ. Res. doi: 10.2175/106143012X13373575830593 contributor: fullname: Liu – volume: 278 start-page: 130414 year: 2021 ident: D1EN01138C/cit6/1 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2021.130414 contributor: fullname: Ma – volume-title: Standard methods for the examination of water and wastewater year: 2005 ident: D1EN01138C/cit29/1 contributor: fullname: APHA – volume: 42 start-page: 2796 year: 2008 ident: D1EN01138C/cit30/1 publication-title: Water Res. doi: 10.1016/j.watres.2008.02.014 contributor: fullname: Anupama – volume: 659 start-page: 568 year: 2019 ident: D1EN01138C/cit44/1 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.12.377 contributor: fullname: Ma – volume: 6 start-page: 3501 year: 2019 ident: D1EN01138C/cit9/1 publication-title: Environ. Sci.: Nano contributor: fullname: Li – volume: 9 start-page: 105028 year: 2021 ident: D1EN01138C/cit13/1 publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2021.105028 contributor: fullname: Mazari – volume: 177 start-page: 6 year: 2006 ident: D1EN01138C/cit40/1 publication-title: J. Photochem. Photobiol., A doi: 10.1016/j.jphotochem.2005.04.040 contributor: fullname: Wang – volume: 13 start-page: 14500 year: 2019 ident: D1EN01138C/cit37/1 publication-title: ACS Nano doi: 10.1021/acsnano.9b08263 contributor: fullname: Peng – volume: 52 start-page: 13127 year: 2018 ident: D1EN01138C/cit60/1 publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b03180 contributor: fullname: Boleij – volume: 55 start-page: 413 year: 1997 ident: D1EN01138C/cit43/1 publication-title: Nutr. Rev. doi: 10.1111/j.1753-4887.1997.tb01588.x contributor: fullname: Clydesdale – volume: 42 start-page: 4583 year: 2008 ident: D1EN01138C/cit48/1 publication-title: Environ. Sci. Technol. doi: 10.1021/es703238h contributor: fullname: Choi – volume: 54 start-page: 12959 year: 2020 ident: D1EN01138C/cit33/1 publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.0c01469 contributor: fullname: Cheng – volume: 307 start-page: 123264 year: 2020 ident: D1EN01138C/cit28/1 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2020.123264 contributor: fullname: Cheng – volume: 188 start-page: 109842 year: 2020 ident: D1EN01138C/cit56/1 publication-title: Environ. Res. doi: 10.1016/j.envres.2020.109842 contributor: fullname: Natarajan – volume: 622 start-page: 402 year: 2018 ident: D1EN01138C/cit15/1 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.12.016 contributor: fullname: Zhang – volume: 332 start-page: 42 year: 2018 ident: D1EN01138C/cit16/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.09.072 contributor: fullname: Zhang – volume: 9 start-page: 14 year: 2018 ident: D1EN01138C/cit14/1 publication-title: NANO contributor: fullname: Gao – volume: 398 start-page: 122965 year: 2020 ident: D1EN01138C/cit18/1 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2020.122965 contributor: fullname: Xu – volume: 55 start-page: 13561 year: 2021 ident: D1EN01138C/cit42/1 publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.1c00804 contributor: fullname: Liao – volume: 279 start-page: 912 year: 2015 ident: D1EN01138C/cit23/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2015.05.081 contributor: fullname: Zhang – volume: 147 start-page: 248 year: 2016 ident: D1EN01138C/cit38/1 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2015.12.060 contributor: fullname: Meng – volume: 208 start-page: 161 year: 2016 ident: D1EN01138C/cit31/1 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2016.02.097 contributor: fullname: Zhang – volume: 197 start-page: 67 year: 2012 ident: D1EN01138C/cit8/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2012.05.014 contributor: fullname: Jin – volume: 330 start-page: 124945 year: 2021 ident: D1EN01138C/cit32/1 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2021.124945 contributor: fullname: Zhang – volume: 55 start-page: 16627 issue: 24 year: 2021 ident: D1EN01138C/cit52/1 publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.1c05203 contributor: fullname: Li – volume: 194 start-page: 110669 year: 2021 ident: D1EN01138C/cit27/1 publication-title: Environ. Res. doi: 10.1016/j.envres.2020.110669 contributor: fullname: Natarajan – volume: 5 start-page: 2899 year: 2018 ident: D1EN01138C/cit47/1 publication-title: Environ. Sci.: Nano contributor: fullname: Liu – volume: 424 start-page: 126661 year: 2021 ident: D1EN01138C/cit50/1 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2021.126661 contributor: fullname: Pagliaccia – volume: 156 start-page: 297 year: 2019 ident: D1EN01138C/cit2/1 publication-title: Water Res. doi: 10.1016/j.watres.2019.03.046 contributor: fullname: Zhao |
SSID | ssj0001125367 |
Score | 2.3102133 |
Snippet | MgO nanoparticles (NPs) are widely used in bactericides, fuel cells and electronic materials and are frequently detected in aquatic environments. Anaerobic... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Publisher |
StartPage | 1794 |
SubjectTerms | Adsorption Ammonium Ammonium compounds Aquatic environment Coronas Electron microscopy Electronic materials Enzymatic activity Enzyme activity Fuel cells Fuel technology Heme Long-term effects Magnesium oxide Nanoparticles Nitrogen removal Oxidation Removal Serum Serum albumin Sludge Stress Toxicity Transmission electron microscopy Wastewater Wastewater treatment |
Title | Adding exogenous protein relieves the toxicity of nanoparticles to anammox granular sludge by adsorption and the formation of eco-coronas |
URI | https://www.proquest.com/docview/2666494397 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwELW63QsXBIIVhQVZghtySeKksY_VUlgq2FNXKqfIsZ1VJZSs2kQq_AP41YwTf2QFSMAliux2FHlexm8mM2OEXiUiqTSPNOFRJElaJTFh8BrBXSpoojJBY1M7_OlqcXmdrrfZdjL5Mcpa6tpyLr_9tq7kf7QKY6BXUyX7D5r1QmEA7kG_cAUNw_WvdLxUfUmKPja21WrfdWGoUNlp00_W0Mq2Oe6kzbyoRQ1esk2GM7xT1AKe9_j6BvasPiP18KUzFVzASoU6NPvBorg0S1_qaGSB40qkaYBgE4xcfD-UzrmCS6nnxow3Ifzdp_bpmqx34duQjVxvdx6vPpq9BhDfkI3wEt53wxejnSafu3ocugCv13Q95cHCJWARCIuHbsFzPR4bOrQ7E81HSMxG5tZYk9HWHQ-nzf2yK0TUNFVVsa7BmlEmw97nMxLD5Ak6TUzTwCk6Xa42Hz6GiB1wQdofSeyf2_W7pfxNEHCX4QS35WTvzpTpucvmAbpvnQ68HPT-EE10_Qh9H9CDPXqwRQ926MGgcuzQg5sK30EPzGCLHuzQgwf04PIrDuiBX6lelEePkTVCz2N0_W61ubgk9mAOIpM4bgkrZW6yN1QkgSBWKYeNQpZpyagGAq8qGFU8okxl4B2UIlV5laeRzBSlmos8p2doWje1foKwrBYsZ5kSOgI5SjDBIs24qGA8i0s5Qy_dYha3Q_-Vos-boLx4G6-u-iW_mKFzt86FfT8PBVDPRcoN4Z6hM1h7__-gqqd_mniG7gXAnqNpu-_0c2CfbfnCwuIns2GNRg |
link.rule.ids | 315,783,787,27937,27938 |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adding+exogenous+protein+relieves+the+toxicity+of+nanoparticles+to+anammox+granular+sludge+by+adsorption+and+the+formation+of+eco-coronas&rft.jtitle=Environmental+science.+Nano&rft.au=Ma%2C+Wen-Jie&rft.au=Wang%2C+Xin&rft.au=Zhang%2C+Jiang-Tao&rft.au=Guo%2C+Jie-Yun&rft.date=2022-05-19&rft.issn=2051-8153&rft.eissn=2051-8161&rft.volume=9&rft.issue=5&rft.spage=1794&rft.epage=184&rft_id=info:doi/10.1039%2Fd1en01138c&rft.externalDocID=d1en01138c |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2051-8153&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2051-8153&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2051-8153&client=summon |