Adding exogenous protein relieves the toxicity of nanoparticles to anammox granular sludge by adsorption and the formation of eco-coronas

MgO nanoparticles (NPs) are widely used in bactericides, fuel cells and electronic materials and are frequently detected in aquatic environments. Anaerobic ammonium oxidation (anammox) is a highly efficient and economical autotrophic nitrogen removal process. To date, the effects of MgO NPs on anamm...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science. Nano Vol. 9; no. 5; pp. 1794 - 184
Main Authors Ma, Wen-Jie, Wang, Xin, Zhang, Jiang-Tao, Guo, Jie-Yun, Lin, Yan-Xu, Yao, Yu-Xi, Li, Gui-Feng, Cheng, Ya-Fei, Fan, Nian-Si, Jin, Ren-Cun
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 19.05.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract MgO nanoparticles (NPs) are widely used in bactericides, fuel cells and electronic materials and are frequently detected in aquatic environments. Anaerobic ammonium oxidation (anammox) is a highly efficient and economical autotrophic nitrogen removal process. To date, the effects of MgO NPs on anammox granular sludge have remained unknown. This work systematically evaluated the short- and long-term effects of MgO NPs on anammox process performance and explored an effective strategy to relieve stress. The half maximal inhibitory concentration (IC 50 ) of MgO NPs to anammox granular sludge was 69.5 mg L −1 . During the long-term experiment, the anammox process experienced a reduction in nitrogen removal ability under the stress of 50.0 mg L −1 MgO NPs. Moreover, the enzymatic activity and synthesis of heme c significantly decreased. Adding 40.0 mg L −1 bull serum albumin (BSA) effectively relieved the stress caused by 50.0 mg L −1 MgO NPs, and the anammox activity recovered to 97.0% of the original level. Multiple spectral analyses verified the adsorption of MgO NPs by BSA. Furthermore, the formation of an eco-corona was observed by transmission electron microscopy, which also contributed to decreasing the biotoxicity of the MgO NPs. The results of this study provide guidance for treating NP-containing wastewater during the anammox process. MgO nanoparticles (NPs) are widely used in bactericides, fuel cells and electronic materials and are frequently detected in aquatic environments.
AbstractList MgO nanoparticles (NPs) are widely used in bactericides, fuel cells and electronic materials and are frequently detected in aquatic environments. Anaerobic ammonium oxidation (anammox) is a highly efficient and economical autotrophic nitrogen removal process. To date, the effects of MgO NPs on anammox granular sludge have remained unknown. This work systematically evaluated the short- and long-term effects of MgO NPs on anammox process performance and explored an effective strategy to relieve stress. The half maximal inhibitory concentration (IC 50 ) of MgO NPs to anammox granular sludge was 69.5 mg L −1 . During the long-term experiment, the anammox process experienced a reduction in nitrogen removal ability under the stress of 50.0 mg L −1 MgO NPs. Moreover, the enzymatic activity and synthesis of heme c significantly decreased. Adding 40.0 mg L −1 bull serum albumin (BSA) effectively relieved the stress caused by 50.0 mg L −1 MgO NPs, and the anammox activity recovered to 97.0% of the original level. Multiple spectral analyses verified the adsorption of MgO NPs by BSA. Furthermore, the formation of an eco-corona was observed by transmission electron microscopy, which also contributed to decreasing the biotoxicity of the MgO NPs. The results of this study provide guidance for treating NP-containing wastewater during the anammox process. MgO nanoparticles (NPs) are widely used in bactericides, fuel cells and electronic materials and are frequently detected in aquatic environments.
MgO nanoparticles (NPs) are widely used in bactericides, fuel cells and electronic materials and are frequently detected in aquatic environments. Anaerobic ammonium oxidation (anammox) is a highly efficient and economical autotrophic nitrogen removal process. To date, the effects of MgO NPs on anammox granular sludge have remained unknown. This work systematically evaluated the short- and long-term effects of MgO NPs on anammox process performance and explored an effective strategy to relieve stress. The half maximal inhibitory concentration (IC50) of MgO NPs to anammox granular sludge was 69.5 mg L−1. During the long-term experiment, the anammox process experienced a reduction in nitrogen removal ability under the stress of 50.0 mg L−1 MgO NPs. Moreover, the enzymatic activity and synthesis of heme c significantly decreased. Adding 40.0 mg L−1 bull serum albumin (BSA) effectively relieved the stress caused by 50.0 mg L−1 MgO NPs, and the anammox activity recovered to 97.0% of the original level. Multiple spectral analyses verified the adsorption of MgO NPs by BSA. Furthermore, the formation of an eco-corona was observed by transmission electron microscopy, which also contributed to decreasing the biotoxicity of the MgO NPs. The results of this study provide guidance for treating NP-containing wastewater during the anammox process.
MgO nanoparticles (NPs) are widely used in bactericides, fuel cells and electronic materials and are frequently detected in aquatic environments. Anaerobic ammonium oxidation (anammox) is a highly efficient and economical autotrophic nitrogen removal process. To date, the effects of MgO NPs on anammox granular sludge have remained unknown. This work systematically evaluated the short- and long-term effects of MgO NPs on anammox process performance and explored an effective strategy to relieve stress. The half maximal inhibitory concentration (IC 50 ) of MgO NPs to anammox granular sludge was 69.5 mg L −1 . During the long-term experiment, the anammox process experienced a reduction in nitrogen removal ability under the stress of 50.0 mg L −1 MgO NPs. Moreover, the enzymatic activity and synthesis of heme c significantly decreased. Adding 40.0 mg L −1 bull serum albumin (BSA) effectively relieved the stress caused by 50.0 mg L −1 MgO NPs, and the anammox activity recovered to 97.0% of the original level. Multiple spectral analyses verified the adsorption of MgO NPs by BSA. Furthermore, the formation of an eco-corona was observed by transmission electron microscopy, which also contributed to decreasing the biotoxicity of the MgO NPs. The results of this study provide guidance for treating NP-containing wastewater during the anammox process.
Author Ma, Wen-Jie
Yao, Yu-Xi
Wang, Xin
Li, Gui-Feng
Lin, Yan-Xu
Fan, Nian-Si
Guo, Jie-Yun
Cheng, Ya-Fei
Zhang, Jiang-Tao
Jin, Ren-Cun
AuthorAffiliation School of Life and Environmental Sciences
Hangzhou Normal University
Laboratory of Water Pollution Remediation
AuthorAffiliation_xml – name: Laboratory of Water Pollution Remediation
– name: School of Life and Environmental Sciences
– name: Hangzhou Normal University
Author_xml – sequence: 1
  givenname: Wen-Jie
  surname: Ma
  fullname: Ma, Wen-Jie
– sequence: 2
  givenname: Xin
  surname: Wang
  fullname: Wang, Xin
– sequence: 3
  givenname: Jiang-Tao
  surname: Zhang
  fullname: Zhang, Jiang-Tao
– sequence: 4
  givenname: Jie-Yun
  surname: Guo
  fullname: Guo, Jie-Yun
– sequence: 5
  givenname: Yan-Xu
  surname: Lin
  fullname: Lin, Yan-Xu
– sequence: 6
  givenname: Yu-Xi
  surname: Yao
  fullname: Yao, Yu-Xi
– sequence: 7
  givenname: Gui-Feng
  surname: Li
  fullname: Li, Gui-Feng
– sequence: 8
  givenname: Ya-Fei
  surname: Cheng
  fullname: Cheng, Ya-Fei
– sequence: 9
  givenname: Nian-Si
  surname: Fan
  fullname: Fan, Nian-Si
– sequence: 10
  givenname: Ren-Cun
  surname: Jin
  fullname: Jin, Ren-Cun
BookMark eNpFkc1OwzAQhC1UJErphTuSJW5IATtO4uRYlfIjIbjAOXJsJ7hKvMF2UPsIvDVpi8ppV7OfZrWz52hiwWqELim5pYQVd4pqSyhluTxB05ikNMppRifHPmVnaO79mpCRilOW8Sn6WShlbIP1BhptYfC4dxC0sdjp1uhv7XH41DjAxkgTthhqbIWFXrhgZLubAhZWdB1scOOEHVrhsG8H1WhcbbFQHlwfDNiRUnurGlwn9sropSVEEhxY4S_QaS1ar-d_dYY-Hlbvy6fo5e3xebl4iWRMaYjySnJOOVNE0pzWScEIl1VS5UznKVX1qKqCsFylBYsrkShe84TIVDGmC8E5m6Hrg-946NegfSjXMDg7rizjLMuSImHFjro5UNKB907XZe9MJ9y2pKTcpV3e09XrPu3lCF8dYOflkfv_BvsFYwF_-g
CitedBy_id crossref_primary_10_1021_acsestwater_3c00778
crossref_primary_10_1021_acs_est_4c01731
crossref_primary_10_1021_acsnano_2c09964
Cites_doi 10.1016/j.cej.2021.130815
10.1016/j.jenvman.2019.01.054
10.1016/j.watres.2006.01.023
10.1007/s11783-020-1309-y
10.1016/j.plaphy.2014.05.006
10.1016/j.watres.2020.115978
10.1016/j.biortech.2016.08.084
10.1016/j.scitotenv.2021.150009
10.1016/j.scitotenv.2020.141469
10.1007/s00267-010-9440-3
10.1016/j.saa.2018.11.024
10.1021/sc500121w
10.1016/j.watres.2010.06.067
10.1016/j.watres.2019.114952
10.1002/wer.1342
10.1016/j.jhazmat.2020.122130
10.1016/j.jenvman.2018.05.089
10.1016/j.jiec.2020.02.018
10.1038/nrmicro.2016.94
10.1016/j.apsoil.2019.08.008
10.1016/j.cell.2007.06.049
10.1016/j.watres.2021.117319
10.1016/j.jprot.2015.09.005
10.1016/j.biortech.2018.06.094
10.1016/j.colsurfa.2021.126765
10.1016/j.watres.2020.116603
10.1016/j.jhazmat.2016.08.044
10.1016/j.scitotenv.2020.141618
10.1016/j.chemosphere.2019.06.006
10.2175/106143012X13373575830593
10.1016/j.chemosphere.2021.130414
10.1016/j.watres.2008.02.014
10.1016/j.scitotenv.2018.12.377
10.1016/j.jece.2021.105028
10.1016/j.jphotochem.2005.04.040
10.1021/acsnano.9b08263
10.1021/acs.est.8b03180
10.1111/j.1753-4887.1997.tb01588.x
10.1021/es703238h
10.1021/acs.est.0c01469
10.1016/j.biortech.2020.123264
10.1016/j.envres.2020.109842
10.1016/j.scitotenv.2017.12.016
10.1016/j.cej.2017.09.072
10.1016/j.jhazmat.2020.122965
10.1021/acs.est.1c00804
10.1016/j.cej.2015.05.081
10.1016/j.chemosphere.2015.12.060
10.1016/j.biortech.2016.02.097
10.1016/j.cej.2012.05.014
10.1016/j.biortech.2021.124945
10.1021/acs.est.1c05203
10.1016/j.envres.2020.110669
10.1016/j.jhazmat.2021.126661
10.1016/j.watres.2019.03.046
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2022
Copyright_xml – notice: Copyright Royal Society of Chemistry 2022
DBID AAYXX
CITATION
7QH
7ST
7UA
C1K
F1W
H97
L.G
SOI
DOI 10.1039/d1en01138c
DatabaseName CrossRef
Aqualine
Environment Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environment Abstracts
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ASFA: Aquatic Sciences and Fisheries Abstracts
Aqualine
Environment Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Aquatic Science & Fisheries Abstracts (ASFA) Professional
CrossRef
DeliveryMethod fulltext_linktorsrc
EISSN 2051-8161
EndPage 184
ExternalDocumentID 10_1039_D1EN01138C
d1en01138c
GroupedDBID 0R
4.4
AAEMU
AAGNR
AAIWI
AAJAE
AANOJ
ABASK
ABDVN
ABGFH
ABRYZ
ACGFS
ACLDK
ADMRA
ADSRN
AFRAH
AGRSR
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ANUXI
ASKNT
AUDPV
BLAPV
BSQNT
C6K
CKLOX
EBS
ECGLT
EE0
EF-
H13
HZ
H~N
J3I
JG
O-G
O9-
RCNCU
RIG
RPMJG
RRC
RSCEA
-JG
0R~
AARTK
AAWGC
AAXHV
AAYXX
ABEMK
ABJNI
ABPDG
ABXOH
AEFDR
AENGV
AETIL
AFLYV
AFOGI
AGEGJ
AHGCF
AKBGW
APEMP
CITATION
GGIMP
HZ~
RAOCF
RVUXY
7QH
7ST
7UA
C1K
F1W
H97
L.G
SOI
ID FETCH-LOGICAL-c211t-8bc77173d0c181f49307cb4b83e851dfc18d9038d5932ba4d7f740c5d33e9a773
ISSN 2051-8153
IngestDate Thu Oct 10 20:09:29 EDT 2024
Fri Aug 23 03:18:42 EDT 2024
Fri May 20 04:30:52 EDT 2022
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c211t-8bc77173d0c181f49307cb4b83e851dfc18d9038d5932ba4d7f740c5d33e9a773
Notes https://doi.org/10.1039/d1en01138c
Electronic supplementary information (ESI) available. See DOI
ORCID 0000-0002-1337-7531
0000-0001-8640-8223
PQID 2666494397
PQPubID 2047519
PageCount 11
ParticipantIDs proquest_journals_2666494397
rsc_primary_d1en01138c
crossref_primary_10_1039_D1EN01138C
PublicationCentury 2000
PublicationDate 2022-05-19
PublicationDateYYYYMMDD 2022-05-19
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-19
  day: 19
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Environmental science. Nano
PublicationYear 2022
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Kohanski (D1EN01138C/cit49/1) 2007; 130
Lin (D1EN01138C/cit1/1) 2021; 751
Zhang (D1EN01138C/cit15/1) 2018; 622
Boleij (D1EN01138C/cit61/1) 2019; 164
Flemming (D1EN01138C/cit25/1) 2016; 14
Lotti (D1EN01138C/cit51/1) 2019; 236
Junaid (D1EN01138C/cit57/1) 2021; 201
Wang (D1EN01138C/cit40/1) 2006; 177
Chen (D1EN01138C/cit59/1) 2017; 321
Ma (D1EN01138C/cit44/1) 2019; 659
Ma (D1EN01138C/cit6/1) 2021; 278
Anupama (D1EN01138C/cit30/1) 2008; 42
Seo (D1EN01138C/cit11/1) 2022; 9
Jin (D1EN01138C/cit8/1) 2012; 197
Ma (D1EN01138C/cit4/1) 2020; 92
Cervantes-Aviles (D1EN01138C/cit20/1) 2021; 189
Meng (D1EN01138C/cit38/1) 2016; 147
Liu (D1EN01138C/cit47/1) 2018; 5
Mazari (D1EN01138C/cit13/1) 2021; 9
Shiu (D1EN01138C/cit55/1) 2020; 748
Pagliaccia (D1EN01138C/cit50/1) 2021; 424
Nasser (D1EN01138C/cit58/1) 2016; 137
Huang (D1EN01138C/cit24/1) 2021; 803
Xu (D1EN01138C/cit18/1) 2020; 398
Zhao (D1EN01138C/cit2/1) 2019; 156
Cheng (D1EN01138C/cit33/1) 2020; 54
Mise (D1EN01138C/cit45/1) 2020; 145
Li (D1EN01138C/cit9/1) 2019; 6
Ma (D1EN01138C/cit21/1) 2018; 222
Fu (D1EN01138C/cit7/1) 2021; 15
Wang (D1EN01138C/cit46/1) 2020; 389
Clydesdale (D1EN01138C/cit43/1) 1997; 55
Boleij (D1EN01138C/cit60/1) 2018; 52
APHA (D1EN01138C/cit29/1) 2005
Arumugam (D1EN01138C/cit39/1) 2019; 210
Choi (D1EN01138C/cit48/1) 2008; 42
Zhang (D1EN01138C/cit32/1) 2021; 330
Zhang (D1EN01138C/cit31/1) 2016; 208
Cheng (D1EN01138C/cit28/1) 2020; 307
Oliveira (D1EN01138C/cit19/1) 2014; 82
Liao (D1EN01138C/cit42/1) 2021; 55
Gao (D1EN01138C/cit14/1) 2018; 9
Munoz (D1EN01138C/cit12/1) 2022; 9
Wang (D1EN01138C/cit36/1) 2010; 44
Zhang (D1EN01138C/cit41/1) 2018; 266
Chang (D1EN01138C/cit34/1) 2021; 624
Li (D1EN01138C/cit52/1) 2021; 55
Guo (D1EN01138C/cit54/1) 2016; 220
Afridi (D1EN01138C/cit53/1) 2020; 86
Natarajan (D1EN01138C/cit56/1) 2020; 188
Le (D1EN01138C/cit3/1) 2010; 45
Zhang (D1EN01138C/cit16/1) 2018; 332
Natarajan (D1EN01138C/cit27/1) 2021; 194
Peng (D1EN01138C/cit37/1) 2019; 13
Lazareva (D1EN01138C/cit10/1) 2014; 2
Liu (D1EN01138C/cit22/1) 2012; 84
Ma (D1EN01138C/cit5/1) 2021; 426
Xu (D1EN01138C/cit17/1) 2019; 233
Sheng (D1EN01138C/cit35/1) 2006; 40
Zhang (D1EN01138C/cit23/1) 2015; 279
Dong (D1EN01138C/cit26/1) 2020; 182
References_xml – issn: 2005
  publication-title: Standard methods for the examination of water and wastewater
  doi: APHA AEF
– volume: 426
  start-page: 130815
  year: 2021
  ident: D1EN01138C/cit5/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.130815
  contributor:
    fullname: Ma
– volume: 236
  start-page: 649
  year: 2019
  ident: D1EN01138C/cit51/1
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2019.01.054
  contributor:
    fullname: Lotti
– volume: 40
  start-page: 1233
  year: 2006
  ident: D1EN01138C/cit35/1
  publication-title: Water Res.
  doi: 10.1016/j.watres.2006.01.023
  contributor:
    fullname: Sheng
– volume: 15
  start-page: 1
  year: 2021
  ident: D1EN01138C/cit7/1
  publication-title: Front. Environ. Sci. Eng.
  doi: 10.1007/s11783-020-1309-y
  contributor:
    fullname: Fu
– volume: 82
  start-page: 66
  year: 2014
  ident: D1EN01138C/cit19/1
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2014.05.006
  contributor:
    fullname: Oliveira
– volume: 182
  start-page: 115978
  year: 2020
  ident: D1EN01138C/cit26/1
  publication-title: Water Res.
  doi: 10.1016/j.watres.2020.115978
  contributor:
    fullname: Dong
– volume: 220
  start-page: 641
  year: 2016
  ident: D1EN01138C/cit54/1
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2016.08.084
  contributor:
    fullname: Guo
– volume: 803
  start-page: 150009
  year: 2021
  ident: D1EN01138C/cit24/1
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2021.150009
  contributor:
    fullname: Huang
– volume: 748
  start-page: 141469
  year: 2020
  ident: D1EN01138C/cit55/1
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.141469
  contributor:
    fullname: Shiu
– volume: 45
  start-page: 662
  year: 2010
  ident: D1EN01138C/cit3/1
  publication-title: Environ. Manage.
  doi: 10.1007/s00267-010-9440-3
  contributor:
    fullname: Le
– volume: 210
  start-page: 299
  year: 2019
  ident: D1EN01138C/cit39/1
  publication-title: Spectrochim. Acta, Part A
  doi: 10.1016/j.saa.2018.11.024
  contributor:
    fullname: Arumugam
– volume: 2
  start-page: 1656
  year: 2014
  ident: D1EN01138C/cit10/1
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/sc500121w
  contributor:
    fullname: Lazareva
– volume: 44
  start-page: 5499
  year: 2010
  ident: D1EN01138C/cit36/1
  publication-title: Water Res.
  doi: 10.1016/j.watres.2010.06.067
  contributor:
    fullname: Wang
– volume: 164
  start-page: 114952
  year: 2019
  ident: D1EN01138C/cit61/1
  publication-title: Water Res.
  doi: 10.1016/j.watres.2019.114952
  contributor:
    fullname: Boleij
– volume: 92
  start-page: 1899
  year: 2020
  ident: D1EN01138C/cit4/1
  publication-title: Water Environ. Res.
  doi: 10.1002/wer.1342
  contributor:
    fullname: Ma
– volume: 389
  start-page: 122130
  year: 2020
  ident: D1EN01138C/cit46/1
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2020.122130
  contributor:
    fullname: Wang
– volume: 222
  start-page: 475
  year: 2018
  ident: D1EN01138C/cit21/1
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2018.05.089
  contributor:
    fullname: Ma
– volume: 86
  start-page: 113
  year: 2020
  ident: D1EN01138C/cit53/1
  publication-title: J. Ind. Eng. Chem.
  doi: 10.1016/j.jiec.2020.02.018
  contributor:
    fullname: Afridi
– volume: 14
  start-page: 563
  year: 2016
  ident: D1EN01138C/cit25/1
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro.2016.94
  contributor:
    fullname: Flemming
– volume: 145
  start-page: 103346
  year: 2020
  ident: D1EN01138C/cit45/1
  publication-title: Appl. Soil Ecol.
  doi: 10.1016/j.apsoil.2019.08.008
  contributor:
    fullname: Mise
– volume: 130
  start-page: 797
  year: 2007
  ident: D1EN01138C/cit49/1
  publication-title: Cell
  doi: 10.1016/j.cell.2007.06.049
  contributor:
    fullname: Kohanski
– volume: 201
  start-page: 117319
  year: 2021
  ident: D1EN01138C/cit57/1
  publication-title: Water Res.
  doi: 10.1016/j.watres.2021.117319
  contributor:
    fullname: Junaid
– volume: 137
  start-page: 45
  year: 2016
  ident: D1EN01138C/cit58/1
  publication-title: J. Proteomics
  doi: 10.1016/j.jprot.2015.09.005
  contributor:
    fullname: Nasser
– volume: 266
  start-page: 507
  year: 2018
  ident: D1EN01138C/cit41/1
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2018.06.094
  contributor:
    fullname: Zhang
– volume: 624
  start-page: 126765
  year: 2021
  ident: D1EN01138C/cit34/1
  publication-title: Colloids Surf., A
  doi: 10.1016/j.colsurfa.2021.126765
  contributor:
    fullname: Chang
– volume: 9
  start-page: 606
  year: 2022
  ident: D1EN01138C/cit12/1
  publication-title: Environ. Sci.: Nano
  contributor:
    fullname: Munoz
– volume: 9
  start-page: 454
  year: 2022
  ident: D1EN01138C/cit11/1
  publication-title: Environ. Sci.: Nano
  contributor:
    fullname: Seo
– volume: 189
  start-page: 116603
  year: 2021
  ident: D1EN01138C/cit20/1
  publication-title: Water Res.
  doi: 10.1016/j.watres.2020.116603
  contributor:
    fullname: Cervantes-Aviles
– volume: 321
  start-page: 81
  year: 2017
  ident: D1EN01138C/cit59/1
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2016.08.044
  contributor:
    fullname: Chen
– volume: 751
  start-page: 141618
  year: 2021
  ident: D1EN01138C/cit1/1
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.141618
  contributor:
    fullname: Lin
– volume: 233
  start-page: 625
  year: 2019
  ident: D1EN01138C/cit17/1
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2019.06.006
  contributor:
    fullname: Xu
– volume: 84
  start-page: 569
  year: 2012
  ident: D1EN01138C/cit22/1
  publication-title: Water Environ. Res.
  doi: 10.2175/106143012X13373575830593
  contributor:
    fullname: Liu
– volume: 278
  start-page: 130414
  year: 2021
  ident: D1EN01138C/cit6/1
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2021.130414
  contributor:
    fullname: Ma
– volume-title: Standard methods for the examination of water and wastewater
  year: 2005
  ident: D1EN01138C/cit29/1
  contributor:
    fullname: APHA
– volume: 42
  start-page: 2796
  year: 2008
  ident: D1EN01138C/cit30/1
  publication-title: Water Res.
  doi: 10.1016/j.watres.2008.02.014
  contributor:
    fullname: Anupama
– volume: 659
  start-page: 568
  year: 2019
  ident: D1EN01138C/cit44/1
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.12.377
  contributor:
    fullname: Ma
– volume: 6
  start-page: 3501
  year: 2019
  ident: D1EN01138C/cit9/1
  publication-title: Environ. Sci.: Nano
  contributor:
    fullname: Li
– volume: 9
  start-page: 105028
  year: 2021
  ident: D1EN01138C/cit13/1
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2021.105028
  contributor:
    fullname: Mazari
– volume: 177
  start-page: 6
  year: 2006
  ident: D1EN01138C/cit40/1
  publication-title: J. Photochem. Photobiol., A
  doi: 10.1016/j.jphotochem.2005.04.040
  contributor:
    fullname: Wang
– volume: 13
  start-page: 14500
  year: 2019
  ident: D1EN01138C/cit37/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b08263
  contributor:
    fullname: Peng
– volume: 52
  start-page: 13127
  year: 2018
  ident: D1EN01138C/cit60/1
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b03180
  contributor:
    fullname: Boleij
– volume: 55
  start-page: 413
  year: 1997
  ident: D1EN01138C/cit43/1
  publication-title: Nutr. Rev.
  doi: 10.1111/j.1753-4887.1997.tb01588.x
  contributor:
    fullname: Clydesdale
– volume: 42
  start-page: 4583
  year: 2008
  ident: D1EN01138C/cit48/1
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es703238h
  contributor:
    fullname: Choi
– volume: 54
  start-page: 12959
  year: 2020
  ident: D1EN01138C/cit33/1
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.0c01469
  contributor:
    fullname: Cheng
– volume: 307
  start-page: 123264
  year: 2020
  ident: D1EN01138C/cit28/1
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2020.123264
  contributor:
    fullname: Cheng
– volume: 188
  start-page: 109842
  year: 2020
  ident: D1EN01138C/cit56/1
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2020.109842
  contributor:
    fullname: Natarajan
– volume: 622
  start-page: 402
  year: 2018
  ident: D1EN01138C/cit15/1
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.12.016
  contributor:
    fullname: Zhang
– volume: 332
  start-page: 42
  year: 2018
  ident: D1EN01138C/cit16/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.09.072
  contributor:
    fullname: Zhang
– volume: 9
  start-page: 14
  year: 2018
  ident: D1EN01138C/cit14/1
  publication-title: NANO
  contributor:
    fullname: Gao
– volume: 398
  start-page: 122965
  year: 2020
  ident: D1EN01138C/cit18/1
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2020.122965
  contributor:
    fullname: Xu
– volume: 55
  start-page: 13561
  year: 2021
  ident: D1EN01138C/cit42/1
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.1c00804
  contributor:
    fullname: Liao
– volume: 279
  start-page: 912
  year: 2015
  ident: D1EN01138C/cit23/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2015.05.081
  contributor:
    fullname: Zhang
– volume: 147
  start-page: 248
  year: 2016
  ident: D1EN01138C/cit38/1
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2015.12.060
  contributor:
    fullname: Meng
– volume: 208
  start-page: 161
  year: 2016
  ident: D1EN01138C/cit31/1
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2016.02.097
  contributor:
    fullname: Zhang
– volume: 197
  start-page: 67
  year: 2012
  ident: D1EN01138C/cit8/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2012.05.014
  contributor:
    fullname: Jin
– volume: 330
  start-page: 124945
  year: 2021
  ident: D1EN01138C/cit32/1
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2021.124945
  contributor:
    fullname: Zhang
– volume: 55
  start-page: 16627
  issue: 24
  year: 2021
  ident: D1EN01138C/cit52/1
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.1c05203
  contributor:
    fullname: Li
– volume: 194
  start-page: 110669
  year: 2021
  ident: D1EN01138C/cit27/1
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2020.110669
  contributor:
    fullname: Natarajan
– volume: 5
  start-page: 2899
  year: 2018
  ident: D1EN01138C/cit47/1
  publication-title: Environ. Sci.: Nano
  contributor:
    fullname: Liu
– volume: 424
  start-page: 126661
  year: 2021
  ident: D1EN01138C/cit50/1
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2021.126661
  contributor:
    fullname: Pagliaccia
– volume: 156
  start-page: 297
  year: 2019
  ident: D1EN01138C/cit2/1
  publication-title: Water Res.
  doi: 10.1016/j.watres.2019.03.046
  contributor:
    fullname: Zhao
SSID ssj0001125367
Score 2.3102133
Snippet MgO nanoparticles (NPs) are widely used in bactericides, fuel cells and electronic materials and are frequently detected in aquatic environments. Anaerobic...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Publisher
StartPage 1794
SubjectTerms Adsorption
Ammonium
Ammonium compounds
Aquatic environment
Coronas
Electron microscopy
Electronic materials
Enzymatic activity
Enzyme activity
Fuel cells
Fuel technology
Heme
Long-term effects
Magnesium oxide
Nanoparticles
Nitrogen removal
Oxidation
Removal
Serum
Serum albumin
Sludge
Stress
Toxicity
Transmission electron microscopy
Wastewater
Wastewater treatment
Title Adding exogenous protein relieves the toxicity of nanoparticles to anammox granular sludge by adsorption and the formation of eco-coronas
URI https://www.proquest.com/docview/2666494397
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwELW63QsXBIIVhQVZghtySeKksY_VUlgq2FNXKqfIsZ1VJZSs2kQq_AP41YwTf2QFSMAliux2FHlexm8mM2OEXiUiqTSPNOFRJElaJTFh8BrBXSpoojJBY1M7_OlqcXmdrrfZdjL5Mcpa6tpyLr_9tq7kf7QKY6BXUyX7D5r1QmEA7kG_cAUNw_WvdLxUfUmKPja21WrfdWGoUNlp00_W0Mq2Oe6kzbyoRQ1esk2GM7xT1AKe9_j6BvasPiP18KUzFVzASoU6NPvBorg0S1_qaGSB40qkaYBgE4xcfD-UzrmCS6nnxow3Ifzdp_bpmqx34duQjVxvdx6vPpq9BhDfkI3wEt53wxejnSafu3ocugCv13Q95cHCJWARCIuHbsFzPR4bOrQ7E81HSMxG5tZYk9HWHQ-nzf2yK0TUNFVVsa7BmlEmw97nMxLD5Ak6TUzTwCk6Xa42Hz6GiB1wQdofSeyf2_W7pfxNEHCX4QS35WTvzpTpucvmAbpvnQ68HPT-EE10_Qh9H9CDPXqwRQ926MGgcuzQg5sK30EPzGCLHuzQgwf04PIrDuiBX6lelEePkTVCz2N0_W61ubgk9mAOIpM4bgkrZW6yN1QkgSBWKYeNQpZpyagGAq8qGFU8okxl4B2UIlV5laeRzBSlmos8p2doWje1foKwrBYsZ5kSOgI5SjDBIs24qGA8i0s5Qy_dYha3Q_-Vos-boLx4G6-u-iW_mKFzt86FfT8PBVDPRcoN4Z6hM1h7__-gqqd_mniG7gXAnqNpu-_0c2CfbfnCwuIns2GNRg
link.rule.ids 315,783,787,27937,27938
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adding+exogenous+protein+relieves+the+toxicity+of+nanoparticles+to+anammox+granular+sludge+by+adsorption+and+the+formation+of+eco-coronas&rft.jtitle=Environmental+science.+Nano&rft.au=Ma%2C+Wen-Jie&rft.au=Wang%2C+Xin&rft.au=Zhang%2C+Jiang-Tao&rft.au=Guo%2C+Jie-Yun&rft.date=2022-05-19&rft.issn=2051-8153&rft.eissn=2051-8161&rft.volume=9&rft.issue=5&rft.spage=1794&rft.epage=184&rft_id=info:doi/10.1039%2Fd1en01138c&rft.externalDocID=d1en01138c
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2051-8153&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2051-8153&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2051-8153&client=summon