Effective role of Rb doping in controlling the crystallization, crystal imperfections, and microstructural and morphological features of ZnO-NPs synthesized by the sol-gel approach
This article is dedicated to synthesizing pure ZnO and Rb-doped ZnO nanoparticles, Rb x Zn 1− x O-NPs ( x = 0.0, 0.02, 0.04, 0.06 mol), using sol-gel technology. Synthesized samples have been characterized and studied using X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), and fie...
Saved in:
Published in | CrystEngComm Vol. 24; no. 26; pp. 4661 - 4678 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
04.07.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This article is dedicated to synthesizing pure ZnO and Rb-doped ZnO nanoparticles, Rb
x
Zn
1−
x
O-NPs (
x
= 0.0, 0.02, 0.04, 0.06 mol), using sol-gel technology. Synthesized samples have been characterized and studied using X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), and field-emission scanning electron microscopy (FE-SEM) analysis. The X-ray diffraction study confirmed that Rb
x
Zn
1−
x
O NPs have a hexagonal wurtzite polycrystalline structure with the space group
C
6
v
4
-
P
6
3
mc
. XRD studies showed that increasing the Rb concentration leads to a decrease in the observed intensity of diffraction lines; in addition, these lines are slightly shifted towards lower diffraction angles. The texture coefficient (TC) values, degree of crystallinity values, and crystalline and non-crystalline phase percentages of Rb
x
Zn
1−
x
O-NPs were also investigated and discussed
via
analyzing the area under each diffraction peak. The microstructural parameters (crystallite size,
D
, and average microstrain, 〈
〉) of Rb-ZnO-NPs were also determined using the Scherrer equation, the Williamson-Hall (W-H) method, and size-strain plots (SSPs)
via
applying the Lorentzian distribution (LD) and Gaussian distribution (GD) to compute the net broadening of diffraction lines. Using the GD and W-H methods, which were the best, it was found that the
D
-values decreased from 50.67 nm to 34.23 nm, while the 〈
〉-values increased from 1.43 × 10
−3
to 3.48 × 10
−3
when the Rb content increased from zero to 0.06 mol. The EDX findings demonstrated that the compositional element percentages of the Rb
x
Zn
1−
x
O-NP samples are in good agreement with those selected. The particle sizes of these NPs range on average from 60 nm to 700 nm and decrease upon increasing the Rb concentration. Generally, the results confirm that the Rb
x
Zn
1−
x
O-NPs obtained using the sol-gel technique are regular and uniform in shape and have fine and smooth surfaces.
This article is allocated to synthesizing pure ZnO and Rb-doped ZnO nanoparticles, Rb
x
Zn
1−
x
O-NPs
via
the sol-gel technique and then studying the effect of Rb doping ZnO on the crystal structure, microstructure parameters and morphology of the host lattice. |
---|---|
AbstractList | This article is dedicated to synthesizing pure ZnO and Rb-doped ZnO nanoparticles, Rb
x
Zn
1−
x
O-NPs (
x
= 0.0, 0.02, 0.04, 0.06 mol), using sol-gel technology. Synthesized samples have been characterized and studied using X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), and field-emission scanning electron microscopy (FE-SEM) analysis. The X-ray diffraction study confirmed that Rb
x
Zn
1−
x
O NPs have a hexagonal wurtzite polycrystalline structure with the space group
C
6
v
4
-
P
6
3
mc
. XRD studies showed that increasing the Rb concentration leads to a decrease in the observed intensity of diffraction lines; in addition, these lines are slightly shifted towards lower diffraction angles. The texture coefficient (TC) values, degree of crystallinity values, and crystalline and non-crystalline phase percentages of Rb
x
Zn
1−
x
O-NPs were also investigated and discussed
via
analyzing the area under each diffraction peak. The microstructural parameters (crystallite size,
D
, and average microstrain, 〈
〉) of Rb-ZnO-NPs were also determined using the Scherrer equation, the Williamson-Hall (W-H) method, and size-strain plots (SSPs)
via
applying the Lorentzian distribution (LD) and Gaussian distribution (GD) to compute the net broadening of diffraction lines. Using the GD and W-H methods, which were the best, it was found that the
D
-values decreased from 50.67 nm to 34.23 nm, while the 〈
〉-values increased from 1.43 × 10
−3
to 3.48 × 10
−3
when the Rb content increased from zero to 0.06 mol. The EDX findings demonstrated that the compositional element percentages of the Rb
x
Zn
1−
x
O-NP samples are in good agreement with those selected. The particle sizes of these NPs range on average from 60 nm to 700 nm and decrease upon increasing the Rb concentration. Generally, the results confirm that the Rb
x
Zn
1−
x
O-NPs obtained using the sol-gel technique are regular and uniform in shape and have fine and smooth surfaces.
This article is allocated to synthesizing pure ZnO and Rb-doped ZnO nanoparticles, Rb
x
Zn
1−
x
O-NPs
via
the sol-gel technique and then studying the effect of Rb doping ZnO on the crystal structure, microstructure parameters and morphology of the host lattice. This article is dedicated to synthesizing pure ZnO and Rb-doped ZnO nanoparticles, RbxZn1−xO-NPs (x = 0.0, 0.02, 0.04, 0.06 mol), using sol–gel technology. Synthesized samples have been characterized and studied using X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), and field-emission scanning electron microscopy (FE-SEM) analysis. The X-ray diffraction study confirmed that RbxZn1−xO NPs have a hexagonal wurtzite polycrystalline structure with the space group C6v4-P63mc. XRD studies showed that increasing the Rb concentration leads to a decrease in the observed intensity of diffraction lines; in addition, these lines are slightly shifted towards lower diffraction angles. The texture coefficient (TC) values, degree of crystallinity values, and crystalline and non-crystalline phase percentages of RbxZn1−xO-NPs were also investigated and discussed via analyzing the area under each diffraction peak. The microstructural parameters (crystallite size, D, and average microstrain, ⟨ϵ⟩) of Rb–ZnO-NPs were also determined using the Scherrer equation, the Williamson–Hall (W–H) method, and size–strain plots (SSPs) via applying the Lorentzian distribution (LD) and Gaussian distribution (GD) to compute the net broadening of diffraction lines. Using the GD and W–H methods, which were the best, it was found that the D-values decreased from 50.67 nm to 34.23 nm, while the ⟨ϵ⟩-values increased from 1.43 × 10−3 to 3.48 × 10−3 when the Rb content increased from zero to 0.06 mol. The EDX findings demonstrated that the compositional element percentages of the RbxZn1−xO-NP samples are in good agreement with those selected. The particle sizes of these NPs range on average from 60 nm to 700 nm and decrease upon increasing the Rb concentration. Generally, the results confirm that the RbxZn1−xO-NPs obtained using the sol–gel technique are regular and uniform in shape and have fine and smooth surfaces. This article is dedicated to synthesizing pure ZnO and Rb-doped ZnO nanoparticles, Rb x Zn 1− x O-NPs ( x = 0.0, 0.02, 0.04, 0.06 mol), using sol–gel technology. Synthesized samples have been characterized and studied using X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), and field-emission scanning electron microscopy (FE-SEM) analysis. The X-ray diffraction study confirmed that Rb x Zn 1− x O NPs have a hexagonal wurtzite polycrystalline structure with the space group C 6 v 4 - P 6 3 mc . XRD studies showed that increasing the Rb concentration leads to a decrease in the observed intensity of diffraction lines; in addition, these lines are slightly shifted towards lower diffraction angles. The texture coefficient (TC) values, degree of crystallinity values, and crystalline and non-crystalline phase percentages of Rb x Zn 1− x O-NPs were also investigated and discussed via analyzing the area under each diffraction peak. The microstructural parameters (crystallite size, D , and average microstrain, 〈 ε 〉) of Rb–ZnO-NPs were also determined using the Scherrer equation, the Williamson–Hall (W–H) method, and size–strain plots (SSPs) via applying the Lorentzian distribution (LD) and Gaussian distribution (GD) to compute the net broadening of diffraction lines. Using the GD and W–H methods, which were the best, it was found that the D -values decreased from 50.67 nm to 34.23 nm, while the 〈 ε 〉-values increased from 1.43 × 10 −3 to 3.48 × 10 −3 when the Rb content increased from zero to 0.06 mol. The EDX findings demonstrated that the compositional element percentages of the Rb x Zn 1− x O-NP samples are in good agreement with those selected. The particle sizes of these NPs range on average from 60 nm to 700 nm and decrease upon increasing the Rb concentration. Generally, the results confirm that the Rb x Zn 1− x O-NPs obtained using the sol–gel technique are regular and uniform in shape and have fine and smooth surfaces. |
Author | Sa'aedi, Abdolhossein Hassanien, Ahmed Saeed Akl, Alaa Ahmed |
AuthorAffiliation | Shaqra University Islamic Azad University (I.A.U) Faculty of Science and Humanities in Ad-Dawadmi Department of Electrical Engineering Physics Department Faculty of Engineering at Shoubra Mahshahr Branch Faculty of Science Minia University Faculty of Science and Humanities in Afif Benha University Engineering Basic Sciences Dept |
AuthorAffiliation_xml | – name: Mahshahr Branch – name: Faculty of Science and Humanities in Afif – name: Faculty of Science and Humanities in Ad-Dawadmi – name: Shaqra University – name: Physics Department – name: Minia University – name: Department of Electrical Engineering – name: Faculty of Engineering at Shoubra – name: Islamic Azad University (I.A.U) – name: Engineering Basic Sciences Dept – name: Faculty of Science – name: Benha University |
Author_xml | – sequence: 1 givenname: Abdolhossein surname: Sa'aedi fullname: Sa'aedi, Abdolhossein – sequence: 2 givenname: Alaa Ahmed surname: Akl fullname: Akl, Alaa Ahmed – sequence: 3 givenname: Ahmed Saeed surname: Hassanien fullname: Hassanien, Ahmed Saeed |
BookMark | eNptUU1LAzEUDKKgVi_ehYA36Wqy2W6zR6n1A4qK6MXLks2-tJFtsiapUH-XP9B06xciBJI3M2-Gl7eLNo01gNABJSeUsOK0TiUQknGmNtAOzfI84YSxzV_vbbTr_TMhNKOU7KD3sVIgg34F7GwD2Cp8X-HattpMsTZYWhMi0azKMAMs3dIHEes3EbQ1_S8A63kLrrOyxvexMDWea-msD24hw8JFSYdZ185sY6daRkSBiBT4VeyTuU1u7jz2SxODvH6DGlfLLtTbJplCNGhbZ4Wc7aEtJRoP-593Dz1ejB9GV8nk9vJ6dDZJZEppSFg1ZKpeH1HlclANhlTKjJO8KAa8rukwk0OuUl4wwQFkXlTAIkVVVhHKWQ8drX1j7MsCfCif7cKZGFmmOc9SyvKCRhVZq1bTegeqlDp0vxOc0E1JSbnaTXmejsbdbi5iy_GfltbpuXDL_8WHa7Hz8lv3s2j2AQBVn44 |
CitedBy_id | crossref_primary_10_1007_s00339_023_06924_3 crossref_primary_10_1016_j_inoche_2025_114158 crossref_primary_10_1007_s10854_024_13632_y crossref_primary_10_1016_j_ijnonlinmec_2024_104670 crossref_primary_10_1016_j_mssp_2024_108477 crossref_primary_10_1007_s10854_023_10086_6 crossref_primary_10_1016_j_chemosphere_2024_141261 crossref_primary_10_1088_1402_4896_ace99d crossref_primary_10_1002_pc_29152 crossref_primary_10_3390_polym15092232 crossref_primary_10_1016_j_chemosphere_2022_137600 crossref_primary_10_1007_s10854_025_14427_5 crossref_primary_10_1016_j_heliyon_2023_e20270 crossref_primary_10_1016_j_matchemphys_2024_129782 crossref_primary_10_1016_j_ceramint_2022_07_186 crossref_primary_10_1016_j_optmat_2022_112726 crossref_primary_10_3390_ma16052099 crossref_primary_10_1016_j_inoche_2024_112537 crossref_primary_10_1002_app_55275 crossref_primary_10_1049_mna2_12188 crossref_primary_10_3390_nano12193452 crossref_primary_10_1016_j_physb_2024_416351 crossref_primary_10_1016_j_optmat_2023_114179 crossref_primary_10_3390_foods13172749 crossref_primary_10_1007_s12596_024_01777_2 crossref_primary_10_1002_pssa_202400876 crossref_primary_10_1007_s11665_024_09866_w crossref_primary_10_1016_j_enmm_2023_100815 crossref_primary_10_1016_j_foodres_2023_113135 crossref_primary_10_1177_02670844241281587 crossref_primary_10_1016_j_jlumin_2024_120740 crossref_primary_10_1016_j_chphi_2024_100657 crossref_primary_10_1007_s00339_024_07366_1 crossref_primary_10_1016_j_physb_2022_414539 crossref_primary_10_1007_s00339_022_06028_4 crossref_primary_10_1016_j_mssp_2023_107405 crossref_primary_10_1007_s10854_023_10967_w crossref_primary_10_1016_j_optmat_2023_114522 crossref_primary_10_1016_j_physb_2023_415350 crossref_primary_10_1088_1402_4896_ad3502 crossref_primary_10_1021_acsaom_2c00002 crossref_primary_10_1016_j_jics_2024_101459 crossref_primary_10_1016_j_physb_2023_415550 crossref_primary_10_1016_j_physb_2024_416443 crossref_primary_10_1016_j_physb_2023_414786 crossref_primary_10_1016_j_chphi_2024_100547 crossref_primary_10_1016_j_physb_2023_414867 crossref_primary_10_1007_s10854_023_11771_2 crossref_primary_10_1016_j_optmat_2025_116669 crossref_primary_10_1007_s42341_024_00572_x crossref_primary_10_1016_j_ceramint_2023_11_303 crossref_primary_10_1007_s00339_022_06019_5 crossref_primary_10_1016_j_rinma_2023_100496 crossref_primary_10_1016_j_surfin_2023_102887 crossref_primary_10_1016_j_heliyon_2025_e41781 crossref_primary_10_1016_j_ceramint_2025_03_207 crossref_primary_10_1039_D3CE00363A crossref_primary_10_1016_j_ceramint_2023_08_342 crossref_primary_10_1016_j_foodchem_2024_139296 crossref_primary_10_1007_s10971_024_06493_8 crossref_primary_10_1016_j_jallcom_2024_174540 crossref_primary_10_1007_s12648_023_02708_w crossref_primary_10_1007_s10876_023_02481_0 crossref_primary_10_1016_j_ijleo_2022_170358 crossref_primary_10_1007_s11082_023_05867_6 crossref_primary_10_1016_j_physb_2024_415803 |
Cites_doi | 10.1016/0001-6160(53)90006-6 10.1016/j.polymer.2019.02.041 10.1016/j.solidstatesciences.2010.11.024 10.6028/jres.098.026 10.1107/S0021889892008987 10.1016/j.matchemphys.2016.10.016 10.1016/j.matchemphys.2019.122021 10.1016/j.molstruc.2022.132420 10.1186/2251-7235-6-6 10.3390/ma15020570 10.1016/j.physb.2020.412110 10.1039/C8CE01614C 10.1186/s11671-018-2643-x 10.1016/j.materresbull.2013.05.121 10.1016/j.colsurfb.2020.110821 10.1016/j.seppur.2021.118853 10.1016/j.spmi.2015.05.011 10.1016/j.spmi.2020.106544 10.1166/jnn.2021.19230 10.1166/jnn.2021.19489 10.1016/j.apsusc.2018.03.190 10.1007/s11082-020-02448-9 10.1016/j.apsusc.2018.04.124 10.1039/C7CE02173A 10.1016/j.cej.2008.04.034 10.1002/pssa.201700229 10.4236/wjnse.2014.41004 10.1016/j.jallcom.2013.01.080 10.1016/j.ceramint.2013.12.115 10.1080/14786435608238074 10.1016/j.physb.2021.413267 10.1016/j.apsusc.2017.11.127 10.1016/j.physb.2015.05.023 10.1007/s10853-007-2384-1 10.1016/j.physe.2015.06.012 10.1016/j.snb.2013.10.060 10.1016/j.apsusc.2020.145930 10.1002/macp.1961.020500107 10.1016/j.cplett.2022.139519 10.1088/0370-1298/62/11/110 10.1039/c3nr01280h 10.1016/j.ijleo.2020.165837 10.1016/j.mssp.2017.10.007 10.1016/j.physb.2018.11.004 10.1021/acsphotonics.7b00777 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2022 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2022 |
DBID | AAYXX CITATION 7U5 8FD L7M |
DOI | 10.1039/d2ce00483f |
DatabaseName | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Solid State and Superconductivity Abstracts |
DatabaseTitleList | Technology Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1466-8033 |
EndPage | 4678 |
ExternalDocumentID | 10_1039_D2CE00483F d2ce00483f |
GroupedDBID | 0-7 0R 1TJ 29F 5GY 6J9 70 705 70J 7~J AAEMU AAGNR AAIWI AANOJ AAPBV AAXPP ABASK ABDVN ABGFH ABPTK ABRYZ ACGFO ACGFS ACLDK ADACO ADMRA ADSRN AENEX AFOGI AFVBQ AGKEF AGRSR AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ANUXI ASKNT AUDPV AZFZN BLAPV BSQNT C6K CS3 E3Z EBS ECGLT EE0 EF- GNO H13 HZ H~N IDZ J3I JG KC5 N9A O9- OK1 P2P R7B RCNCU RIG RNS RPMJG RRA RRC RSCEA SKA SLH VH6 0R~ 70~ AAJAE AAMEH AAWGC AAXHV AAYXX ABEMK ABJNI ABPDG ABXOH AEFDR AENGV AESAV AETIL AFLYV AFRZK AGEGJ AHGCF AKMSF APEMP CITATION GGIMP HZ~ R56 RAOCF 7U5 8FD L7M |
ID | FETCH-LOGICAL-c211t-3b73fd3fd3fdab6c5b571cc48069958dd174c78f2893a8eec69be39951f4b0183 |
ISSN | 1466-8033 |
IngestDate | Mon Jun 30 05:41:44 EDT 2025 Thu Apr 24 23:01:52 EDT 2025 Tue Jul 01 02:07:30 EDT 2025 Tue Jul 05 07:12:43 EDT 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 26 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c211t-3b73fd3fd3fdab6c5b571cc48069958dd174c78f2893a8eec69be39951f4b0183 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4605-9329 |
PQID | 2684213691 |
PQPubID | 2047491 |
PageCount | 18 |
ParticipantIDs | rsc_primary_d2ce00483f proquest_journals_2684213691 crossref_citationtrail_10_1039_D2CE00483F crossref_primary_10_1039_D2CE00483F |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-07-04 |
PublicationDateYYYYMMDD | 2022-07-04 |
PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-04 day: 04 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | CrystEngComm |
PublicationYear | 2022 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Williamson (D2CE00483F/cit39/1) 1956; 1 Kumar (D2CE00483F/cit10/1) 2017; 4 Seetawan (D2CE00483F/cit30/1) 2011; 2 Akl (D2CE00483F/cit21/1) 2021; 227 Akl (D2CE00483F/cit43/1) 2014; 2 Velsankar (D2CE00483F/cit3/1) 2022; 1255 Hall (D2CE00483F/cit41/1) 1949; 62 Theyvaraju (D2CE00483F/cit2/1) 2015; 74 Balzar (D2CE00483F/cit45/1) 1993; 98 Kumar (D2CE00483F/cit7/1) 2020; 514 Prabhu (D2CE00483F/cit44/1) 2014; 4 Tolossa (D2CE00483F/cit1/1) 2022; 795 Akl (D2CE00483F/cit27/1) 2018; 74 Balzar (D2CE00483F/cit46/1) 1993; 26 Pradeev raj (D2CE00483F/cit9/1) 2018; 13 Nath (D2CE00483F/cit40/1) 2020; 239 Chandraboss (D2CE00483F/cit49/1) 2013; 48 Chouikh (D2CE00483F/cit32/1) 2011; 22 Kalathil (D2CE00483F/cit14/1) 2013; 5 Kaenphakdee (D2CE00483F/cit29/1) 2022; 15 Akl (D2CE00483F/cit23/1) 2015; 89 Kurtaran (D2CE00483F/cit52/1) 2017; 185 Williamson (D2CE00483F/cit42/1) 1953; 1 Akl (D2CE00483F/cit20/1) 2020; 143 Hassanien (D2CE00483F/cit35/1) 2015; 473 Pascariu (D2CE00483F/cit4/1) 2018; 448 Hassanien (D2CE00483F/cit15/1) 2018; 20 Jain (D2CE00483F/cit34/1) 2018; 447 Khorsand Zak (D2CE00483F/cit17/1) 2011; 13 Kim (D2CE00483F/cit24/1) 2018; 39 Nye (D2CE00483F/cit48/1) 1985 Mote (D2CE00483F/cit47/1) 2012; 6 Hassanien (D2CE00483F/cit33/1) 2018; 20 Sanchez Rayes (D2CE00483F/cit16/1) 2017 Akl (D2CE00483F/cit22/1) 2021; 620 Hassanien (D2CE00483F/cit19/1) 2019; 554 Weidinger (D2CE00483F/cit31/1) 1961; 50 Inwati (D2CE00483F/cit6/1) 2020; 188 Caglar (D2CE00483F/cit26/1) 2013; 560 Fuentes (D2CE00483F/cit13/1) 2021; 21 El Radaf (D2CE00483F/cit37/1) 2020; 31 Sathya (D2CE00483F/cit8/1) 2018; 449 Hassanien (D2CE00483F/cit38/1) 2020; 585 Iribarren (D2CE00483F/cit51/1) 2008; 43 Kim (D2CE00483F/cit11/1) 2021; 21 Singh (D2CE00483F/cit25/1) 2015; 33 Hassanien (D2CE00483F/cit36/1) 2020; 52 Li (D2CE00483F/cit28/1) 2014; 191 Girish Kumar (D2CE00483F/cit5/1) 2021; 274 Chiu (D2CE00483F/cit18/1) 2008; 142 Chen (D2CE00483F/cit12/1) 2019; 169 Jamali-Sheini (D2CE00483F/cit50/1) 2014; 40 |
References_xml | – start-page: 9 issn: 2018 issue: vol. 39 end-page: p 1330-1333 publication-title: IEEE Electron Device Letters doi: Kim Nguyen Nguyen Choi Ji Cheon Yu Kim Cho Choi – issn: 1985 publication-title: Physical properties of crystals: their representation by tensors and matrices doi: Nye – volume: 1 start-page: 22 year: 1953 ident: D2CE00483F/cit42/1 publication-title: Acta Metall. doi: 10.1016/0001-6160(53)90006-6 – volume: 169 start-page: 131 issue: 15 year: 2019 ident: D2CE00483F/cit12/1 publication-title: Polymer doi: 10.1016/j.polymer.2019.02.041 – volume: 13 start-page: 251 year: 2011 ident: D2CE00483F/cit17/1 publication-title: Solid State Sci. doi: 10.1016/j.solidstatesciences.2010.11.024 – volume: 31 start-page: 8336 issue: 11 year: 2020 ident: D2CE00483F/cit37/1 publication-title: J. Mater. Sci.: Mater. Electron. – volume: 98 start-page: 321 issue: 3 year: 1993 ident: D2CE00483F/cit45/1 publication-title: J. Res. Natl. Inst. Stand. Technol. doi: 10.6028/jres.098.026 – volume: 26 start-page: 97 issue: 1 year: 1993 ident: D2CE00483F/cit46/1 publication-title: J. Appl. Crystallogr. doi: 10.1107/S0021889892008987 – volume: 185 start-page: 137 year: 2017 ident: D2CE00483F/cit52/1 publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2016.10.016 – volume: 2 start-page: 1302 issue: 9 year: 2011 ident: D2CE00483F/cit30/1 publication-title: Mater. Sci. Appl. – volume: 239 start-page: 122021 year: 2020 ident: D2CE00483F/cit40/1 publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2019.122021 – volume: 1255 start-page: 132420 year: 2022 ident: D2CE00483F/cit3/1 publication-title: J. Mol. Struct. doi: 10.1016/j.molstruc.2022.132420 – volume: 6 start-page: 6 year: 2012 ident: D2CE00483F/cit47/1 publication-title: J. Theor. Appl. Phys. doi: 10.1186/2251-7235-6-6 – volume: 15 start-page: 570 year: 2022 ident: D2CE00483F/cit29/1 publication-title: Materials doi: 10.3390/ma15020570 – volume: 585 start-page: 412110 year: 2020 ident: D2CE00483F/cit38/1 publication-title: Phys. B doi: 10.1016/j.physb.2020.412110 – volume: 20 start-page: 7120 issue: 44 year: 2018 ident: D2CE00483F/cit33/1 publication-title: CrystEngComm doi: 10.1039/C8CE01614C – volume: 13 start-page: 229 year: 2018 ident: D2CE00483F/cit9/1 publication-title: Nanoscale Res. Lett. doi: 10.1186/s11671-018-2643-x – volume: 48 start-page: 3707 year: 2013 ident: D2CE00483F/cit49/1 publication-title: Mater. Res. Bull. doi: 10.1016/j.materresbull.2013.05.121 – volume: 39 start-page: 1330 issue: 9 volume-title: IEEE Electron Device Letters year: 2018 ident: D2CE00483F/cit24/1 – volume: 188 start-page: 110821 year: 2020 ident: D2CE00483F/cit6/1 publication-title: Colloids Surf., B doi: 10.1016/j.colsurfb.2020.110821 – volume: 274 start-page: 118853 year: 2021 ident: D2CE00483F/cit5/1 publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2021.118853 – volume: 89 start-page: 67 year: 2015 ident: D2CE00483F/cit23/1 publication-title: Superlattices Microstruct. doi: 10.1016/j.spmi.2015.05.011 – volume: 143 start-page: 106544 year: 2020 ident: D2CE00483F/cit20/1 publication-title: Superlattices Microstruct. doi: 10.1016/j.spmi.2020.106544 – volume: 21 start-page: 3747 issue: 7 year: 2021 ident: D2CE00483F/cit11/1 publication-title: J. Nanosci. Nanotechnol. doi: 10.1166/jnn.2021.19230 – volume: 21 start-page: 5714 issue: 11 year: 2021 ident: D2CE00483F/cit13/1 publication-title: J. Nanosci. Nanotechnol. doi: 10.1166/jnn.2021.19489 – volume: 447 start-page: 548 year: 2018 ident: D2CE00483F/cit34/1 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.03.190 – volume: 52 start-page: 1 issue: 7 year: 2020 ident: D2CE00483F/cit36/1 publication-title: Opt. Quantum Electron. doi: 10.1007/s11082-020-02448-9 – volume: 448 start-page: 481 year: 2018 ident: D2CE00483F/cit4/1 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.04.124 – volume: 20 start-page: 1716 issue: 12 year: 2018 ident: D2CE00483F/cit15/1 publication-title: CrystEngComm doi: 10.1039/C7CE02173A – volume: 142 start-page: 337 year: 2008 ident: D2CE00483F/cit18/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2008.04.034 – volume: 33 start-page: 751 issue: 4 year: 2015 ident: D2CE00483F/cit25/1 publication-title: Mater. Sci. – start-page: 1700229 year: 2017 ident: D2CE00483F/cit16/1 publication-title: Phys. Status Solidi A doi: 10.1002/pssa.201700229 – volume: 4 start-page: 21 year: 2014 ident: D2CE00483F/cit44/1 publication-title: World J. Nano Sci. Eng. doi: 10.4236/wjnse.2014.41004 – volume: 2 start-page: 1 year: 2014 ident: D2CE00483F/cit43/1 publication-title: Int. J. Adv. Res. – volume: 560 start-page: 181 year: 2013 ident: D2CE00483F/cit26/1 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2013.01.080 – volume: 40 start-page: 7737 year: 2014 ident: D2CE00483F/cit50/1 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2013.12.115 – volume: 1 start-page: 34 year: 1956 ident: D2CE00483F/cit39/1 publication-title: Philos. Mag. doi: 10.1080/14786435608238074 – volume: 620 start-page: 413267 year: 2021 ident: D2CE00483F/cit22/1 publication-title: Phys. B doi: 10.1016/j.physb.2021.413267 – volume: 449 start-page: 346 year: 2018 ident: D2CE00483F/cit8/1 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2017.11.127 – volume: 473 start-page: 11 year: 2015 ident: D2CE00483F/cit35/1 publication-title: Phys. B doi: 10.1016/j.physb.2015.05.023 – volume: 43 start-page: 2844 year: 2008 ident: D2CE00483F/cit51/1 publication-title: J. Mater. Sci. doi: 10.1007/s10853-007-2384-1 – volume: 74 start-page: 93 year: 2015 ident: D2CE00483F/cit2/1 publication-title: Phys. E doi: 10.1016/j.physe.2015.06.012 – volume: 191 start-page: 619 year: 2014 ident: D2CE00483F/cit28/1 publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2013.10.060 – volume-title: Physical properties of crystals: their representation by tensors and matrices year: 1985 ident: D2CE00483F/cit48/1 – volume: 514 start-page: 145930 year: 2020 ident: D2CE00483F/cit7/1 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2020.145930 – volume: 50 start-page: 98 year: 1961 ident: D2CE00483F/cit31/1 publication-title: Macromol. Chem. Phys. doi: 10.1002/macp.1961.020500107 – volume: 795 start-page: 139519 year: 2022 ident: D2CE00483F/cit1/1 publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2022.139519 – volume: 22 start-page: 499 year: 2011 ident: D2CE00483F/cit32/1 publication-title: J. Mater. Sci.: Mater. Electron. – volume: 62 start-page: 741 issue: 11 year: 1949 ident: D2CE00483F/cit41/1 publication-title: Proc. Phys. Soc., London, Sect. A doi: 10.1088/0370-1298/62/11/110 – volume: 5 start-page: 6323 year: 2013 ident: D2CE00483F/cit14/1 publication-title: Nanoscale doi: 10.1039/c3nr01280h – volume: 227 start-page: 165837 year: 2021 ident: D2CE00483F/cit21/1 publication-title: Optik doi: 10.1016/j.ijleo.2020.165837 – volume: 74 start-page: 183 year: 2018 ident: D2CE00483F/cit27/1 publication-title: Mater. Sci. Semicond. Process. doi: 10.1016/j.mssp.2017.10.007 – volume: 554 start-page: 21 year: 2019 ident: D2CE00483F/cit19/1 publication-title: Phys. B doi: 10.1016/j.physb.2018.11.004 – volume: 4 start-page: 2613 issue: 11 year: 2017 ident: D2CE00483F/cit10/1 publication-title: ACS Photonics doi: 10.1021/acsphotonics.7b00777 |
SSID | ssj0014110 |
Score | 2.5822752 |
Snippet | This article is dedicated to synthesizing pure ZnO and Rb-doped ZnO nanoparticles, Rb
x
Zn
1−
x
O-NPs (
x
= 0.0, 0.02, 0.04, 0.06 mol), using sol-gel... This article is dedicated to synthesizing pure ZnO and Rb-doped ZnO nanoparticles, Rb x Zn 1− x O-NPs ( x = 0.0, 0.02, 0.04, 0.06 mol), using sol–gel... This article is dedicated to synthesizing pure ZnO and Rb-doped ZnO nanoparticles, RbxZn1−xO-NPs (x = 0.0, 0.02, 0.04, 0.06 mol), using sol–gel technology.... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 4661 |
SubjectTerms | Crystal defects Crystal structure Crystallinity Crystallites Crystallization Degree of crystallinity Emission analysis Energy dispersive X ray spectroscopy Microstrain Nanoparticles Normal distribution Sol-gel processes Synthesis Wurtzite X-ray diffraction Zinc oxide |
Title | Effective role of Rb doping in controlling the crystallization, crystal imperfections, and microstructural and morphological features of ZnO-NPs synthesized by the sol-gel approach |
URI | https://www.proquest.com/docview/2684213691 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEF6l6QUOiL-K0IJWggtKDfH6J_YxCo4CCikqiRRxsXbX6zaqcVCSHtoT78C78AA8Ck_C7J_tVhECpMiKRrY38nyZmV1_8y1CL6WqGiTm3Ollmef4IfOcGAxOL4yzPqEMQqLsRv4wDcdz__0iWLRaPxuspcste82vd_aV_I9XwQZ-lV2y_-DZ6qZggO_gXziCh-H4Vz7W0sOS-2NJgqesm-kWKMUvVzT0wnZE8fUV1IJFYVov5dM1JtksKdaalqULa7me_kWS9bTArBLnULYVOKYKmLlQuqCKDvK5PHGmHzdSAwEG2yyvTW0LA8NTsKQK70wUlZB5szIeyl-SlGeyY6Va9oHKtk8hvaoIxrJVcQ45XSwrQA8KSruDc8jo3cFFxRXRhk8UEnN3DJMD2UVfNpc3iKbC1subehHFMlgVQ8Xsg6cTmI7afihVlbWihg3rujXbwJc0gzSc7TYSPqSKaGcy6XlSizUjXCjh_bxOmZYmMD1JR_PJJJ0li9ke2icwVSFttD9IZu8m1bssHyosK4zrxW_q-90sher5zd7abj6jipzZfXTPzE7wQEPtAWqJ8iG629CsfIR-VKDDEnR4leNThjXo8LLEDdBh8D2-Bbpja8A3IHeMAVz4FuC0rQk4bAEnhzWAww3AYXalBgXA_fr2HaCGLdQeo_komQ3Hjtn8w-HEdbeOx_penukPZSEPWNB3OfcjiCJxEGUZTKV5P8oJFNw0EoKHMROyT9vNfdaDRHWA2uWqFE8Q9ighsUt7GcuZH9AohhqXcQhLNAih7gg76JX1Q8qNMr7coKVIFUPDi9O3ZJgon4066EV17letB7PzrCPrztTEi00qdZWI64Wx20EH4OLq-hoRT_983SG6U_9FjlAb_CGeQU28Zc8N6H4D4SPGHw |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effective+role+of+Rb+doping+in+controlling+the+crystallization%2C+crystal+imperfections%2C+and+microstructural+and+morphological+features+of+ZnO-NPs+synthesized+by+the+sol%E2%80%93gel+approach&rft.jtitle=CrystEngComm&rft.au=Sa%27aedi%2C+Abdolhossein&rft.au=Alaa+Ahmed+Akl&rft.au=Ahmed+Saeed+Hassanien&rft.date=2022-07-04&rft.pub=Royal+Society+of+Chemistry&rft.eissn=1466-8033&rft.volume=24&rft.issue=26&rft.spage=4661&rft.epage=4678&rft_id=info:doi/10.1039%2Fd2ce00483f&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1466-8033&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1466-8033&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1466-8033&client=summon |