Effective role of Rb doping in controlling the crystallization, crystal imperfections, and microstructural and morphological features of ZnO-NPs synthesized by the sol-gel approach

This article is dedicated to synthesizing pure ZnO and Rb-doped ZnO nanoparticles, Rb x Zn 1− x O-NPs ( x = 0.0, 0.02, 0.04, 0.06 mol), using sol-gel technology. Synthesized samples have been characterized and studied using X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), and fie...

Full description

Saved in:
Bibliographic Details
Published inCrystEngComm Vol. 24; no. 26; pp. 4661 - 4678
Main Authors Sa'aedi, Abdolhossein, Akl, Alaa Ahmed, Hassanien, Ahmed Saeed
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 04.07.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This article is dedicated to synthesizing pure ZnO and Rb-doped ZnO nanoparticles, Rb x Zn 1− x O-NPs ( x = 0.0, 0.02, 0.04, 0.06 mol), using sol-gel technology. Synthesized samples have been characterized and studied using X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), and field-emission scanning electron microscopy (FE-SEM) analysis. The X-ray diffraction study confirmed that Rb x Zn 1− x O NPs have a hexagonal wurtzite polycrystalline structure with the space group C 6 v 4 - P 6 3 mc . XRD studies showed that increasing the Rb concentration leads to a decrease in the observed intensity of diffraction lines; in addition, these lines are slightly shifted towards lower diffraction angles. The texture coefficient (TC) values, degree of crystallinity values, and crystalline and non-crystalline phase percentages of Rb x Zn 1− x O-NPs were also investigated and discussed via analyzing the area under each diffraction peak. The microstructural parameters (crystallite size, D , and average microstrain, 〈 〉) of Rb-ZnO-NPs were also determined using the Scherrer equation, the Williamson-Hall (W-H) method, and size-strain plots (SSPs) via applying the Lorentzian distribution (LD) and Gaussian distribution (GD) to compute the net broadening of diffraction lines. Using the GD and W-H methods, which were the best, it was found that the D -values decreased from 50.67 nm to 34.23 nm, while the 〈 〉-values increased from 1.43 × 10 −3 to 3.48 × 10 −3 when the Rb content increased from zero to 0.06 mol. The EDX findings demonstrated that the compositional element percentages of the Rb x Zn 1− x O-NP samples are in good agreement with those selected. The particle sizes of these NPs range on average from 60 nm to 700 nm and decrease upon increasing the Rb concentration. Generally, the results confirm that the Rb x Zn 1− x O-NPs obtained using the sol-gel technique are regular and uniform in shape and have fine and smooth surfaces. This article is allocated to synthesizing pure ZnO and Rb-doped ZnO nanoparticles, Rb x Zn 1− x O-NPs via the sol-gel technique and then studying the effect of Rb doping ZnO on the crystal structure, microstructure parameters and morphology of the host lattice.
AbstractList This article is dedicated to synthesizing pure ZnO and Rb-doped ZnO nanoparticles, Rb x Zn 1− x O-NPs ( x = 0.0, 0.02, 0.04, 0.06 mol), using sol-gel technology. Synthesized samples have been characterized and studied using X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), and field-emission scanning electron microscopy (FE-SEM) analysis. The X-ray diffraction study confirmed that Rb x Zn 1− x O NPs have a hexagonal wurtzite polycrystalline structure with the space group C 6 v 4 - P 6 3 mc . XRD studies showed that increasing the Rb concentration leads to a decrease in the observed intensity of diffraction lines; in addition, these lines are slightly shifted towards lower diffraction angles. The texture coefficient (TC) values, degree of crystallinity values, and crystalline and non-crystalline phase percentages of Rb x Zn 1− x O-NPs were also investigated and discussed via analyzing the area under each diffraction peak. The microstructural parameters (crystallite size, D , and average microstrain, 〈 〉) of Rb-ZnO-NPs were also determined using the Scherrer equation, the Williamson-Hall (W-H) method, and size-strain plots (SSPs) via applying the Lorentzian distribution (LD) and Gaussian distribution (GD) to compute the net broadening of diffraction lines. Using the GD and W-H methods, which were the best, it was found that the D -values decreased from 50.67 nm to 34.23 nm, while the 〈 〉-values increased from 1.43 × 10 −3 to 3.48 × 10 −3 when the Rb content increased from zero to 0.06 mol. The EDX findings demonstrated that the compositional element percentages of the Rb x Zn 1− x O-NP samples are in good agreement with those selected. The particle sizes of these NPs range on average from 60 nm to 700 nm and decrease upon increasing the Rb concentration. Generally, the results confirm that the Rb x Zn 1− x O-NPs obtained using the sol-gel technique are regular and uniform in shape and have fine and smooth surfaces. This article is allocated to synthesizing pure ZnO and Rb-doped ZnO nanoparticles, Rb x Zn 1− x O-NPs via the sol-gel technique and then studying the effect of Rb doping ZnO on the crystal structure, microstructure parameters and morphology of the host lattice.
This article is dedicated to synthesizing pure ZnO and Rb-doped ZnO nanoparticles, RbxZn1−xO-NPs (x = 0.0, 0.02, 0.04, 0.06 mol), using sol–gel technology. Synthesized samples have been characterized and studied using X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), and field-emission scanning electron microscopy (FE-SEM) analysis. The X-ray diffraction study confirmed that RbxZn1−xO NPs have a hexagonal wurtzite polycrystalline structure with the space group C6v4-P63mc. XRD studies showed that increasing the Rb concentration leads to a decrease in the observed intensity of diffraction lines; in addition, these lines are slightly shifted towards lower diffraction angles. The texture coefficient (TC) values, degree of crystallinity values, and crystalline and non-crystalline phase percentages of RbxZn1−xO-NPs were also investigated and discussed via analyzing the area under each diffraction peak. The microstructural parameters (crystallite size, D, and average microstrain, ⟨ϵ⟩) of Rb–ZnO-NPs were also determined using the Scherrer equation, the Williamson–Hall (W–H) method, and size–strain plots (SSPs) via applying the Lorentzian distribution (LD) and Gaussian distribution (GD) to compute the net broadening of diffraction lines. Using the GD and W–H methods, which were the best, it was found that the D-values decreased from 50.67 nm to 34.23 nm, while the ⟨ϵ⟩-values increased from 1.43 × 10−3 to 3.48 × 10−3 when the Rb content increased from zero to 0.06 mol. The EDX findings demonstrated that the compositional element percentages of the RbxZn1−xO-NP samples are in good agreement with those selected. The particle sizes of these NPs range on average from 60 nm to 700 nm and decrease upon increasing the Rb concentration. Generally, the results confirm that the RbxZn1−xO-NPs obtained using the sol–gel technique are regular and uniform in shape and have fine and smooth surfaces.
This article is dedicated to synthesizing pure ZnO and Rb-doped ZnO nanoparticles, Rb x Zn 1− x O-NPs ( x = 0.0, 0.02, 0.04, 0.06 mol), using sol–gel technology. Synthesized samples have been characterized and studied using X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), and field-emission scanning electron microscopy (FE-SEM) analysis. The X-ray diffraction study confirmed that Rb x Zn 1− x O NPs have a hexagonal wurtzite polycrystalline structure with the space group C 6 v 4 - P 6 3 mc . XRD studies showed that increasing the Rb concentration leads to a decrease in the observed intensity of diffraction lines; in addition, these lines are slightly shifted towards lower diffraction angles. The texture coefficient (TC) values, degree of crystallinity values, and crystalline and non-crystalline phase percentages of Rb x Zn 1− x O-NPs were also investigated and discussed via analyzing the area under each diffraction peak. The microstructural parameters (crystallite size, D , and average microstrain, 〈 ε 〉) of Rb–ZnO-NPs were also determined using the Scherrer equation, the Williamson–Hall (W–H) method, and size–strain plots (SSPs) via applying the Lorentzian distribution (LD) and Gaussian distribution (GD) to compute the net broadening of diffraction lines. Using the GD and W–H methods, which were the best, it was found that the D -values decreased from 50.67 nm to 34.23 nm, while the 〈 ε 〉-values increased from 1.43 × 10 −3 to 3.48 × 10 −3 when the Rb content increased from zero to 0.06 mol. The EDX findings demonstrated that the compositional element percentages of the Rb x Zn 1− x O-NP samples are in good agreement with those selected. The particle sizes of these NPs range on average from 60 nm to 700 nm and decrease upon increasing the Rb concentration. Generally, the results confirm that the Rb x Zn 1− x O-NPs obtained using the sol–gel technique are regular and uniform in shape and have fine and smooth surfaces.
Author Sa'aedi, Abdolhossein
Hassanien, Ahmed Saeed
Akl, Alaa Ahmed
AuthorAffiliation Shaqra University
Islamic Azad University (I.A.U)
Faculty of Science and Humanities in Ad-Dawadmi
Department of Electrical Engineering
Physics Department
Faculty of Engineering at Shoubra
Mahshahr Branch
Faculty of Science
Minia University
Faculty of Science and Humanities in Afif
Benha University
Engineering Basic Sciences Dept
AuthorAffiliation_xml – name: Mahshahr Branch
– name: Faculty of Science and Humanities in Afif
– name: Faculty of Science and Humanities in Ad-Dawadmi
– name: Shaqra University
– name: Physics Department
– name: Minia University
– name: Department of Electrical Engineering
– name: Faculty of Engineering at Shoubra
– name: Islamic Azad University (I.A.U)
– name: Engineering Basic Sciences Dept
– name: Faculty of Science
– name: Benha University
Author_xml – sequence: 1
  givenname: Abdolhossein
  surname: Sa'aedi
  fullname: Sa'aedi, Abdolhossein
– sequence: 2
  givenname: Alaa Ahmed
  surname: Akl
  fullname: Akl, Alaa Ahmed
– sequence: 3
  givenname: Ahmed Saeed
  surname: Hassanien
  fullname: Hassanien, Ahmed Saeed
BookMark eNptUU1LAzEUDKKgVi_ehYA36Wqy2W6zR6n1A4qK6MXLks2-tJFtsiapUH-XP9B06xciBJI3M2-Gl7eLNo01gNABJSeUsOK0TiUQknGmNtAOzfI84YSxzV_vbbTr_TMhNKOU7KD3sVIgg34F7GwD2Cp8X-HattpMsTZYWhMi0azKMAMs3dIHEes3EbQ1_S8A63kLrrOyxvexMDWea-msD24hw8JFSYdZ185sY6daRkSBiBT4VeyTuU1u7jz2SxODvH6DGlfLLtTbJplCNGhbZ4Wc7aEtJRoP-593Dz1ejB9GV8nk9vJ6dDZJZEppSFg1ZKpeH1HlclANhlTKjJO8KAa8rukwk0OuUl4wwQFkXlTAIkVVVhHKWQ8drX1j7MsCfCif7cKZGFmmOc9SyvKCRhVZq1bTegeqlDp0vxOc0E1JSbnaTXmejsbdbi5iy_GfltbpuXDL_8WHa7Hz8lv3s2j2AQBVn44
CitedBy_id crossref_primary_10_1007_s00339_023_06924_3
crossref_primary_10_1016_j_inoche_2025_114158
crossref_primary_10_1007_s10854_024_13632_y
crossref_primary_10_1016_j_ijnonlinmec_2024_104670
crossref_primary_10_1016_j_mssp_2024_108477
crossref_primary_10_1007_s10854_023_10086_6
crossref_primary_10_1016_j_chemosphere_2024_141261
crossref_primary_10_1088_1402_4896_ace99d
crossref_primary_10_1002_pc_29152
crossref_primary_10_3390_polym15092232
crossref_primary_10_1016_j_chemosphere_2022_137600
crossref_primary_10_1007_s10854_025_14427_5
crossref_primary_10_1016_j_heliyon_2023_e20270
crossref_primary_10_1016_j_matchemphys_2024_129782
crossref_primary_10_1016_j_ceramint_2022_07_186
crossref_primary_10_1016_j_optmat_2022_112726
crossref_primary_10_3390_ma16052099
crossref_primary_10_1016_j_inoche_2024_112537
crossref_primary_10_1002_app_55275
crossref_primary_10_1049_mna2_12188
crossref_primary_10_3390_nano12193452
crossref_primary_10_1016_j_physb_2024_416351
crossref_primary_10_1016_j_optmat_2023_114179
crossref_primary_10_3390_foods13172749
crossref_primary_10_1007_s12596_024_01777_2
crossref_primary_10_1002_pssa_202400876
crossref_primary_10_1007_s11665_024_09866_w
crossref_primary_10_1016_j_enmm_2023_100815
crossref_primary_10_1016_j_foodres_2023_113135
crossref_primary_10_1177_02670844241281587
crossref_primary_10_1016_j_jlumin_2024_120740
crossref_primary_10_1016_j_chphi_2024_100657
crossref_primary_10_1007_s00339_024_07366_1
crossref_primary_10_1016_j_physb_2022_414539
crossref_primary_10_1007_s00339_022_06028_4
crossref_primary_10_1016_j_mssp_2023_107405
crossref_primary_10_1007_s10854_023_10967_w
crossref_primary_10_1016_j_optmat_2023_114522
crossref_primary_10_1016_j_physb_2023_415350
crossref_primary_10_1088_1402_4896_ad3502
crossref_primary_10_1021_acsaom_2c00002
crossref_primary_10_1016_j_jics_2024_101459
crossref_primary_10_1016_j_physb_2023_415550
crossref_primary_10_1016_j_physb_2024_416443
crossref_primary_10_1016_j_physb_2023_414786
crossref_primary_10_1016_j_chphi_2024_100547
crossref_primary_10_1016_j_physb_2023_414867
crossref_primary_10_1007_s10854_023_11771_2
crossref_primary_10_1016_j_optmat_2025_116669
crossref_primary_10_1007_s42341_024_00572_x
crossref_primary_10_1016_j_ceramint_2023_11_303
crossref_primary_10_1007_s00339_022_06019_5
crossref_primary_10_1016_j_rinma_2023_100496
crossref_primary_10_1016_j_surfin_2023_102887
crossref_primary_10_1016_j_heliyon_2025_e41781
crossref_primary_10_1016_j_ceramint_2025_03_207
crossref_primary_10_1039_D3CE00363A
crossref_primary_10_1016_j_ceramint_2023_08_342
crossref_primary_10_1016_j_foodchem_2024_139296
crossref_primary_10_1007_s10971_024_06493_8
crossref_primary_10_1016_j_jallcom_2024_174540
crossref_primary_10_1007_s12648_023_02708_w
crossref_primary_10_1007_s10876_023_02481_0
crossref_primary_10_1016_j_ijleo_2022_170358
crossref_primary_10_1007_s11082_023_05867_6
crossref_primary_10_1016_j_physb_2024_415803
Cites_doi 10.1016/0001-6160(53)90006-6
10.1016/j.polymer.2019.02.041
10.1016/j.solidstatesciences.2010.11.024
10.6028/jres.098.026
10.1107/S0021889892008987
10.1016/j.matchemphys.2016.10.016
10.1016/j.matchemphys.2019.122021
10.1016/j.molstruc.2022.132420
10.1186/2251-7235-6-6
10.3390/ma15020570
10.1016/j.physb.2020.412110
10.1039/C8CE01614C
10.1186/s11671-018-2643-x
10.1016/j.materresbull.2013.05.121
10.1016/j.colsurfb.2020.110821
10.1016/j.seppur.2021.118853
10.1016/j.spmi.2015.05.011
10.1016/j.spmi.2020.106544
10.1166/jnn.2021.19230
10.1166/jnn.2021.19489
10.1016/j.apsusc.2018.03.190
10.1007/s11082-020-02448-9
10.1016/j.apsusc.2018.04.124
10.1039/C7CE02173A
10.1016/j.cej.2008.04.034
10.1002/pssa.201700229
10.4236/wjnse.2014.41004
10.1016/j.jallcom.2013.01.080
10.1016/j.ceramint.2013.12.115
10.1080/14786435608238074
10.1016/j.physb.2021.413267
10.1016/j.apsusc.2017.11.127
10.1016/j.physb.2015.05.023
10.1007/s10853-007-2384-1
10.1016/j.physe.2015.06.012
10.1016/j.snb.2013.10.060
10.1016/j.apsusc.2020.145930
10.1002/macp.1961.020500107
10.1016/j.cplett.2022.139519
10.1088/0370-1298/62/11/110
10.1039/c3nr01280h
10.1016/j.ijleo.2020.165837
10.1016/j.mssp.2017.10.007
10.1016/j.physb.2018.11.004
10.1021/acsphotonics.7b00777
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2022
Copyright_xml – notice: Copyright Royal Society of Chemistry 2022
DBID AAYXX
CITATION
7U5
8FD
L7M
DOI 10.1039/d2ce00483f
DatabaseName CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Solid State and Superconductivity Abstracts
DatabaseTitleList
Technology Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1466-8033
EndPage 4678
ExternalDocumentID 10_1039_D2CE00483F
d2ce00483f
GroupedDBID 0-7
0R
1TJ
29F
5GY
6J9
70
705
70J
7~J
AAEMU
AAGNR
AAIWI
AANOJ
AAPBV
AAXPP
ABASK
ABDVN
ABGFH
ABPTK
ABRYZ
ACGFO
ACGFS
ACLDK
ADACO
ADMRA
ADSRN
AENEX
AFOGI
AFVBQ
AGKEF
AGRSR
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ANUXI
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CS3
E3Z
EBS
ECGLT
EE0
EF-
GNO
H13
HZ
H~N
IDZ
J3I
JG
KC5
N9A
O9-
OK1
P2P
R7B
RCNCU
RIG
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SLH
VH6
0R~
70~
AAJAE
AAMEH
AAWGC
AAXHV
AAYXX
ABEMK
ABJNI
ABPDG
ABXOH
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFRZK
AGEGJ
AHGCF
AKMSF
APEMP
CITATION
GGIMP
HZ~
R56
RAOCF
7U5
8FD
L7M
ID FETCH-LOGICAL-c211t-3b73fd3fd3fdab6c5b571cc48069958dd174c78f2893a8eec69be39951f4b0183
ISSN 1466-8033
IngestDate Mon Jun 30 05:41:44 EDT 2025
Thu Apr 24 23:01:52 EDT 2025
Tue Jul 01 02:07:30 EDT 2025
Tue Jul 05 07:12:43 EDT 2022
IsPeerReviewed true
IsScholarly true
Issue 26
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c211t-3b73fd3fd3fdab6c5b571cc48069958dd174c78f2893a8eec69be39951f4b0183
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4605-9329
PQID 2684213691
PQPubID 2047491
PageCount 18
ParticipantIDs rsc_primary_d2ce00483f
proquest_journals_2684213691
crossref_citationtrail_10_1039_D2CE00483F
crossref_primary_10_1039_D2CE00483F
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-07-04
PublicationDateYYYYMMDD 2022-07-04
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-04
  day: 04
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle CrystEngComm
PublicationYear 2022
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Williamson (D2CE00483F/cit39/1) 1956; 1
Kumar (D2CE00483F/cit10/1) 2017; 4
Seetawan (D2CE00483F/cit30/1) 2011; 2
Akl (D2CE00483F/cit21/1) 2021; 227
Akl (D2CE00483F/cit43/1) 2014; 2
Velsankar (D2CE00483F/cit3/1) 2022; 1255
Hall (D2CE00483F/cit41/1) 1949; 62
Theyvaraju (D2CE00483F/cit2/1) 2015; 74
Balzar (D2CE00483F/cit45/1) 1993; 98
Kumar (D2CE00483F/cit7/1) 2020; 514
Prabhu (D2CE00483F/cit44/1) 2014; 4
Tolossa (D2CE00483F/cit1/1) 2022; 795
Akl (D2CE00483F/cit27/1) 2018; 74
Balzar (D2CE00483F/cit46/1) 1993; 26
Pradeev raj (D2CE00483F/cit9/1) 2018; 13
Nath (D2CE00483F/cit40/1) 2020; 239
Chandraboss (D2CE00483F/cit49/1) 2013; 48
Chouikh (D2CE00483F/cit32/1) 2011; 22
Kalathil (D2CE00483F/cit14/1) 2013; 5
Kaenphakdee (D2CE00483F/cit29/1) 2022; 15
Akl (D2CE00483F/cit23/1) 2015; 89
Kurtaran (D2CE00483F/cit52/1) 2017; 185
Williamson (D2CE00483F/cit42/1) 1953; 1
Akl (D2CE00483F/cit20/1) 2020; 143
Hassanien (D2CE00483F/cit35/1) 2015; 473
Pascariu (D2CE00483F/cit4/1) 2018; 448
Hassanien (D2CE00483F/cit15/1) 2018; 20
Jain (D2CE00483F/cit34/1) 2018; 447
Khorsand Zak (D2CE00483F/cit17/1) 2011; 13
Kim (D2CE00483F/cit24/1) 2018; 39
Nye (D2CE00483F/cit48/1) 1985
Mote (D2CE00483F/cit47/1) 2012; 6
Hassanien (D2CE00483F/cit33/1) 2018; 20
Sanchez Rayes (D2CE00483F/cit16/1) 2017
Akl (D2CE00483F/cit22/1) 2021; 620
Hassanien (D2CE00483F/cit19/1) 2019; 554
Weidinger (D2CE00483F/cit31/1) 1961; 50
Inwati (D2CE00483F/cit6/1) 2020; 188
Caglar (D2CE00483F/cit26/1) 2013; 560
Fuentes (D2CE00483F/cit13/1) 2021; 21
El Radaf (D2CE00483F/cit37/1) 2020; 31
Sathya (D2CE00483F/cit8/1) 2018; 449
Hassanien (D2CE00483F/cit38/1) 2020; 585
Iribarren (D2CE00483F/cit51/1) 2008; 43
Kim (D2CE00483F/cit11/1) 2021; 21
Singh (D2CE00483F/cit25/1) 2015; 33
Hassanien (D2CE00483F/cit36/1) 2020; 52
Li (D2CE00483F/cit28/1) 2014; 191
Girish Kumar (D2CE00483F/cit5/1) 2021; 274
Chiu (D2CE00483F/cit18/1) 2008; 142
Chen (D2CE00483F/cit12/1) 2019; 169
Jamali-Sheini (D2CE00483F/cit50/1) 2014; 40
References_xml – start-page: 9
  issn: 2018
  issue: vol. 39
  end-page: p 1330-1333
  publication-title: IEEE Electron Device Letters
  doi: Kim Nguyen Nguyen Choi Ji Cheon Yu Kim Cho Choi
– issn: 1985
  publication-title: Physical properties of crystals: their representation by tensors and matrices
  doi: Nye
– volume: 1
  start-page: 22
  year: 1953
  ident: D2CE00483F/cit42/1
  publication-title: Acta Metall.
  doi: 10.1016/0001-6160(53)90006-6
– volume: 169
  start-page: 131
  issue: 15
  year: 2019
  ident: D2CE00483F/cit12/1
  publication-title: Polymer
  doi: 10.1016/j.polymer.2019.02.041
– volume: 13
  start-page: 251
  year: 2011
  ident: D2CE00483F/cit17/1
  publication-title: Solid State Sci.
  doi: 10.1016/j.solidstatesciences.2010.11.024
– volume: 31
  start-page: 8336
  issue: 11
  year: 2020
  ident: D2CE00483F/cit37/1
  publication-title: J. Mater. Sci.: Mater. Electron.
– volume: 98
  start-page: 321
  issue: 3
  year: 1993
  ident: D2CE00483F/cit45/1
  publication-title: J. Res. Natl. Inst. Stand. Technol.
  doi: 10.6028/jres.098.026
– volume: 26
  start-page: 97
  issue: 1
  year: 1993
  ident: D2CE00483F/cit46/1
  publication-title: J. Appl. Crystallogr.
  doi: 10.1107/S0021889892008987
– volume: 185
  start-page: 137
  year: 2017
  ident: D2CE00483F/cit52/1
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2016.10.016
– volume: 2
  start-page: 1302
  issue: 9
  year: 2011
  ident: D2CE00483F/cit30/1
  publication-title: Mater. Sci. Appl.
– volume: 239
  start-page: 122021
  year: 2020
  ident: D2CE00483F/cit40/1
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2019.122021
– volume: 1255
  start-page: 132420
  year: 2022
  ident: D2CE00483F/cit3/1
  publication-title: J. Mol. Struct.
  doi: 10.1016/j.molstruc.2022.132420
– volume: 6
  start-page: 6
  year: 2012
  ident: D2CE00483F/cit47/1
  publication-title: J. Theor. Appl. Phys.
  doi: 10.1186/2251-7235-6-6
– volume: 15
  start-page: 570
  year: 2022
  ident: D2CE00483F/cit29/1
  publication-title: Materials
  doi: 10.3390/ma15020570
– volume: 585
  start-page: 412110
  year: 2020
  ident: D2CE00483F/cit38/1
  publication-title: Phys. B
  doi: 10.1016/j.physb.2020.412110
– volume: 20
  start-page: 7120
  issue: 44
  year: 2018
  ident: D2CE00483F/cit33/1
  publication-title: CrystEngComm
  doi: 10.1039/C8CE01614C
– volume: 13
  start-page: 229
  year: 2018
  ident: D2CE00483F/cit9/1
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/s11671-018-2643-x
– volume: 48
  start-page: 3707
  year: 2013
  ident: D2CE00483F/cit49/1
  publication-title: Mater. Res. Bull.
  doi: 10.1016/j.materresbull.2013.05.121
– volume: 39
  start-page: 1330
  issue: 9
  volume-title: IEEE Electron Device Letters
  year: 2018
  ident: D2CE00483F/cit24/1
– volume: 188
  start-page: 110821
  year: 2020
  ident: D2CE00483F/cit6/1
  publication-title: Colloids Surf., B
  doi: 10.1016/j.colsurfb.2020.110821
– volume: 274
  start-page: 118853
  year: 2021
  ident: D2CE00483F/cit5/1
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2021.118853
– volume: 89
  start-page: 67
  year: 2015
  ident: D2CE00483F/cit23/1
  publication-title: Superlattices Microstruct.
  doi: 10.1016/j.spmi.2015.05.011
– volume: 143
  start-page: 106544
  year: 2020
  ident: D2CE00483F/cit20/1
  publication-title: Superlattices Microstruct.
  doi: 10.1016/j.spmi.2020.106544
– volume: 21
  start-page: 3747
  issue: 7
  year: 2021
  ident: D2CE00483F/cit11/1
  publication-title: J. Nanosci. Nanotechnol.
  doi: 10.1166/jnn.2021.19230
– volume: 21
  start-page: 5714
  issue: 11
  year: 2021
  ident: D2CE00483F/cit13/1
  publication-title: J. Nanosci. Nanotechnol.
  doi: 10.1166/jnn.2021.19489
– volume: 447
  start-page: 548
  year: 2018
  ident: D2CE00483F/cit34/1
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2018.03.190
– volume: 52
  start-page: 1
  issue: 7
  year: 2020
  ident: D2CE00483F/cit36/1
  publication-title: Opt. Quantum Electron.
  doi: 10.1007/s11082-020-02448-9
– volume: 448
  start-page: 481
  year: 2018
  ident: D2CE00483F/cit4/1
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2018.04.124
– volume: 20
  start-page: 1716
  issue: 12
  year: 2018
  ident: D2CE00483F/cit15/1
  publication-title: CrystEngComm
  doi: 10.1039/C7CE02173A
– volume: 142
  start-page: 337
  year: 2008
  ident: D2CE00483F/cit18/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2008.04.034
– volume: 33
  start-page: 751
  issue: 4
  year: 2015
  ident: D2CE00483F/cit25/1
  publication-title: Mater. Sci.
– start-page: 1700229
  year: 2017
  ident: D2CE00483F/cit16/1
  publication-title: Phys. Status Solidi A
  doi: 10.1002/pssa.201700229
– volume: 4
  start-page: 21
  year: 2014
  ident: D2CE00483F/cit44/1
  publication-title: World J. Nano Sci. Eng.
  doi: 10.4236/wjnse.2014.41004
– volume: 2
  start-page: 1
  year: 2014
  ident: D2CE00483F/cit43/1
  publication-title: Int. J. Adv. Res.
– volume: 560
  start-page: 181
  year: 2013
  ident: D2CE00483F/cit26/1
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2013.01.080
– volume: 40
  start-page: 7737
  year: 2014
  ident: D2CE00483F/cit50/1
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2013.12.115
– volume: 1
  start-page: 34
  year: 1956
  ident: D2CE00483F/cit39/1
  publication-title: Philos. Mag.
  doi: 10.1080/14786435608238074
– volume: 620
  start-page: 413267
  year: 2021
  ident: D2CE00483F/cit22/1
  publication-title: Phys. B
  doi: 10.1016/j.physb.2021.413267
– volume: 449
  start-page: 346
  year: 2018
  ident: D2CE00483F/cit8/1
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2017.11.127
– volume: 473
  start-page: 11
  year: 2015
  ident: D2CE00483F/cit35/1
  publication-title: Phys. B
  doi: 10.1016/j.physb.2015.05.023
– volume: 43
  start-page: 2844
  year: 2008
  ident: D2CE00483F/cit51/1
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-007-2384-1
– volume: 74
  start-page: 93
  year: 2015
  ident: D2CE00483F/cit2/1
  publication-title: Phys. E
  doi: 10.1016/j.physe.2015.06.012
– volume: 191
  start-page: 619
  year: 2014
  ident: D2CE00483F/cit28/1
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2013.10.060
– volume-title: Physical properties of crystals: their representation by tensors and matrices
  year: 1985
  ident: D2CE00483F/cit48/1
– volume: 514
  start-page: 145930
  year: 2020
  ident: D2CE00483F/cit7/1
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2020.145930
– volume: 50
  start-page: 98
  year: 1961
  ident: D2CE00483F/cit31/1
  publication-title: Macromol. Chem. Phys.
  doi: 10.1002/macp.1961.020500107
– volume: 795
  start-page: 139519
  year: 2022
  ident: D2CE00483F/cit1/1
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2022.139519
– volume: 22
  start-page: 499
  year: 2011
  ident: D2CE00483F/cit32/1
  publication-title: J. Mater. Sci.: Mater. Electron.
– volume: 62
  start-page: 741
  issue: 11
  year: 1949
  ident: D2CE00483F/cit41/1
  publication-title: Proc. Phys. Soc., London, Sect. A
  doi: 10.1088/0370-1298/62/11/110
– volume: 5
  start-page: 6323
  year: 2013
  ident: D2CE00483F/cit14/1
  publication-title: Nanoscale
  doi: 10.1039/c3nr01280h
– volume: 227
  start-page: 165837
  year: 2021
  ident: D2CE00483F/cit21/1
  publication-title: Optik
  doi: 10.1016/j.ijleo.2020.165837
– volume: 74
  start-page: 183
  year: 2018
  ident: D2CE00483F/cit27/1
  publication-title: Mater. Sci. Semicond. Process.
  doi: 10.1016/j.mssp.2017.10.007
– volume: 554
  start-page: 21
  year: 2019
  ident: D2CE00483F/cit19/1
  publication-title: Phys. B
  doi: 10.1016/j.physb.2018.11.004
– volume: 4
  start-page: 2613
  issue: 11
  year: 2017
  ident: D2CE00483F/cit10/1
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.7b00777
SSID ssj0014110
Score 2.5822752
Snippet This article is dedicated to synthesizing pure ZnO and Rb-doped ZnO nanoparticles, Rb x Zn 1− x O-NPs ( x = 0.0, 0.02, 0.04, 0.06 mol), using sol-gel...
This article is dedicated to synthesizing pure ZnO and Rb-doped ZnO nanoparticles, Rb x Zn 1− x O-NPs ( x = 0.0, 0.02, 0.04, 0.06 mol), using sol–gel...
This article is dedicated to synthesizing pure ZnO and Rb-doped ZnO nanoparticles, RbxZn1−xO-NPs (x = 0.0, 0.02, 0.04, 0.06 mol), using sol–gel technology....
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4661
SubjectTerms Crystal defects
Crystal structure
Crystallinity
Crystallites
Crystallization
Degree of crystallinity
Emission analysis
Energy dispersive X ray spectroscopy
Microstrain
Nanoparticles
Normal distribution
Sol-gel processes
Synthesis
Wurtzite
X-ray diffraction
Zinc oxide
Title Effective role of Rb doping in controlling the crystallization, crystal imperfections, and microstructural and morphological features of ZnO-NPs synthesized by the sol-gel approach
URI https://www.proquest.com/docview/2684213691
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEF6l6QUOiL-K0IJWggtKDfH6J_YxCo4CCikqiRRxsXbX6zaqcVCSHtoT78C78AA8Ck_C7J_tVhECpMiKRrY38nyZmV1_8y1CL6WqGiTm3Ollmef4IfOcGAxOL4yzPqEMQqLsRv4wDcdz__0iWLRaPxuspcste82vd_aV_I9XwQZ-lV2y_-DZ6qZggO_gXziCh-H4Vz7W0sOS-2NJgqesm-kWKMUvVzT0wnZE8fUV1IJFYVov5dM1JtksKdaalqULa7me_kWS9bTArBLnULYVOKYKmLlQuqCKDvK5PHGmHzdSAwEG2yyvTW0LA8NTsKQK70wUlZB5szIeyl-SlGeyY6Va9oHKtk8hvaoIxrJVcQ45XSwrQA8KSruDc8jo3cFFxRXRhk8UEnN3DJMD2UVfNpc3iKbC1subehHFMlgVQ8Xsg6cTmI7afihVlbWihg3rujXbwJc0gzSc7TYSPqSKaGcy6XlSizUjXCjh_bxOmZYmMD1JR_PJJJ0li9ke2icwVSFttD9IZu8m1bssHyosK4zrxW_q-90sher5zd7abj6jipzZfXTPzE7wQEPtAWqJ8iG629CsfIR-VKDDEnR4leNThjXo8LLEDdBh8D2-Bbpja8A3IHeMAVz4FuC0rQk4bAEnhzWAww3AYXalBgXA_fr2HaCGLdQeo_komQ3Hjtn8w-HEdbeOx_penukPZSEPWNB3OfcjiCJxEGUZTKV5P8oJFNw0EoKHMROyT9vNfdaDRHWA2uWqFE8Q9ighsUt7GcuZH9AohhqXcQhLNAih7gg76JX1Q8qNMr7coKVIFUPDi9O3ZJgon4066EV17letB7PzrCPrztTEi00qdZWI64Wx20EH4OLq-hoRT_983SG6U_9FjlAb_CGeQU28Zc8N6H4D4SPGHw
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effective+role+of+Rb+doping+in+controlling+the+crystallization%2C+crystal+imperfections%2C+and+microstructural+and+morphological+features+of+ZnO-NPs+synthesized+by+the+sol%E2%80%93gel+approach&rft.jtitle=CrystEngComm&rft.au=Sa%27aedi%2C+Abdolhossein&rft.au=Alaa+Ahmed+Akl&rft.au=Ahmed+Saeed+Hassanien&rft.date=2022-07-04&rft.pub=Royal+Society+of+Chemistry&rft.eissn=1466-8033&rft.volume=24&rft.issue=26&rft.spage=4661&rft.epage=4678&rft_id=info:doi/10.1039%2Fd2ce00483f&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1466-8033&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1466-8033&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1466-8033&client=summon