H Fault Detection for Networked Mechanical Spring-Mass Systems With Incomplete Information

This paper focuses on the H ∞ fault detection (FD) problem for spring-mass systems (SMSs) over networks with distributed state delays, random packet losses, sensor saturation as well as multiplicative noises via unreliable communication channels. The output measurements are affected by sensor satura...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on industrial electronics (1982) Vol. 63; no. 9; pp. 5622 - 5631
Main Authors Yan, Huaicheng, Qian, Fengfeng, Zhang, Hao, Yang, Fuwen, Guo, Ge
Format Journal Article
LanguageEnglish
Published IEEE 01.09.2016
Subjects
Online AccessGet full text
ISSN0278-0046
1557-9948
DOI10.1109/TIE.2016.2559454

Cover

Abstract This paper focuses on the H ∞ fault detection (FD) problem for spring-mass systems (SMSs) over networks with distributed state delays, random packet losses, sensor saturation as well as multiplicative noises via unreliable communication channels. The output measurements are affected by sensor saturation which is described by sector-nonlinearities. The multiplicative noises are described as a form of Gaussian white noises multiplied by the states. A series of stochastic variables are introduced to describe the randomly occurring distributed state delays. Random packet losses are also introduced in unreliable communications. The purpose of this paper is to design an FD filter such that: 1) The FD dynamic system is exponentially stable in the mean square. 2) The error between the fault signal and the residual signal is controlled to the minimum. 3) The optimal H ∞ filtering performance index is achieved. A sufficient condition for the FD filter design is derived in terms of the solution to a linear matrix inequality (LMI). When the LMI has a feasible solution, the explicit parameters of the desired FD filter can be obtained. Finally, a simulation experiment is illustrated to show the effectiveness and application of the designed method.
AbstractList This paper focuses on the H ∞ fault detection (FD) problem for spring-mass systems (SMSs) over networks with distributed state delays, random packet losses, sensor saturation as well as multiplicative noises via unreliable communication channels. The output measurements are affected by sensor saturation which is described by sector-nonlinearities. The multiplicative noises are described as a form of Gaussian white noises multiplied by the states. A series of stochastic variables are introduced to describe the randomly occurring distributed state delays. Random packet losses are also introduced in unreliable communications. The purpose of this paper is to design an FD filter such that: 1) The FD dynamic system is exponentially stable in the mean square. 2) The error between the fault signal and the residual signal is controlled to the minimum. 3) The optimal H ∞ filtering performance index is achieved. A sufficient condition for the FD filter design is derived in terms of the solution to a linear matrix inequality (LMI). When the LMI has a feasible solution, the explicit parameters of the desired FD filter can be obtained. Finally, a simulation experiment is illustrated to show the effectiveness and application of the designed method.
This paper focuses on the $H_{\infty }$ fault detection (FD) problem for spring-mass systems (SMSs) over networks with distributed state delays, random packet losses, sensor saturation as well as multiplicative noises via unreliable communication channels. The output measurements are affected by sensor saturation which is described by sector-nonlinearities. The multiplicative noises are described as a form of Gaussian white noises multiplied by the states. A series of stochastic variables are introduced to describe the randomly occurring distributed state delays. Random packet losses are also introduced in unreliable communications. The purpose of this paper is to design an FD filter such that: 1) The FD dynamic system is exponentially stable in the mean square. 2) The error between the fault signal and the residual signal is controlled to the minimum. 3) The optimal $H_{\infty }$ filtering performance index is achieved. A sufficient condition for the FD filter design is derived in terms of the solution to a linear matrix inequality (LMI). When the LMI has a feasible solution, the explicit parameters of the desired FD filter can be obtained. Finally, a simulation experiment is illustrated to show the effectiveness and application of the designed method.
Author Ge Guo
Huaicheng Yan
Fengfeng Qian
Fuwen Yang
Hao Zhang
Author_xml – sequence: 1
  givenname: Huaicheng
  orcidid: 0000-0001-5496-1809
  surname: Yan
  fullname: Yan, Huaicheng
– sequence: 2
  givenname: Fengfeng
  surname: Qian
  fullname: Qian, Fengfeng
– sequence: 3
  givenname: Hao
  surname: Zhang
  fullname: Zhang, Hao
– sequence: 4
  givenname: Fuwen
  surname: Yang
  fullname: Yang, Fuwen
– sequence: 5
  givenname: Ge
  surname: Guo
  fullname: Guo, Ge
BookMark eNp9kL1PwzAQxS0EEm1hR2LxyJLiS2zHHlFpaaUWhhYhsUROcqGBfJTYFep_j0srBgaWu5Pufu_0Xp-cNm2DhFwBGwIwfbuajYchAzkMhdBc8BPSAyHiQGuuTkmPhbEKGOPynPStfWcMuADRI69TOjHbytF7dJi5sm1o0Xb0Ed1X231gTheYrU1TZqaiy01XNm_BwlhLlzvrsLb0pXRrOmuytt5UXsGPHq_NXuiCnBWmsnh57APyPBmvRtNg_vQwG93NgywEcAGkLFd5bBDSkEuQOaDmheFM5WnkDfE4LjBSYagjk2qlATRPY5RRiqESQkUDcnPQ3XTt5xatS-rSZlhVpsF2axNQkZC-xNKfssNp1rXWdlgk3lJtul0CLNnHmPgYk32MyTFGj8g_SFa6H3-uM2X1H3h9AEtE_P0Tc8m0334DnfyA6g
CODEN ITIED6
CitedBy_id crossref_primary_10_1109_TII_2016_2569566
crossref_primary_10_1002_rnc_7837
crossref_primary_10_1016_j_jfranklin_2018_12_019
crossref_primary_10_1002_rnc_7559
crossref_primary_10_1016_j_jfranklin_2016_06_022
crossref_primary_10_1109_TCYB_2021_3079437
crossref_primary_10_1002_acs_3242
crossref_primary_10_1177_0142331217701539
crossref_primary_10_1002_asjc_3293
crossref_primary_10_1109_TSMC_2018_2794414
crossref_primary_10_1016_j_jfranklin_2023_02_022
crossref_primary_10_1016_j_neucom_2017_08_066
crossref_primary_10_1049_iet_cta_2016_1096
crossref_primary_10_1016_j_jfranklin_2018_11_049
crossref_primary_10_1016_j_sysconle_2018_04_003
crossref_primary_10_1109_TIE_2017_2722424
crossref_primary_10_1080_00207721_2016_1249036
crossref_primary_10_1109_TSMC_2017_2735541
crossref_primary_10_1109_TSMC_2018_2874804
crossref_primary_10_1016_j_ins_2020_02_032
crossref_primary_10_1016_j_sigpro_2017_02_010
crossref_primary_10_1109_TNNLS_2018_2877195
crossref_primary_10_1016_j_jfranklin_2016_08_021
crossref_primary_10_1109_TII_2020_2999376
crossref_primary_10_1016_j_isatra_2018_09_018
crossref_primary_10_1049_iet_cta_2018_5572
crossref_primary_10_1109_TSG_2017_2771493
crossref_primary_10_1002_oca_2352
crossref_primary_10_1007_s00034_017_0729_9
crossref_primary_10_1049_iet_cta_2017_0694
crossref_primary_10_1109_TNNLS_2017_2732240
crossref_primary_10_1109_TSMC_2017_2789335
crossref_primary_10_1109_TNNLS_2018_2816924
crossref_primary_10_1007_s00034_017_0608_4
crossref_primary_10_1002_oca_2996
crossref_primary_10_1002_asjc_2072
crossref_primary_10_1007_s40815_018_0566_4
crossref_primary_10_1016_j_jfranklin_2017_02_020
crossref_primary_10_1109_TSMC_2017_2770161
crossref_primary_10_1016_j_jfranklin_2018_01_049
crossref_primary_10_1109_TIE_2018_2813982
crossref_primary_10_1080_00207721_2021_1883765
crossref_primary_10_1080_00207721_2017_1365972
crossref_primary_10_1109_TMECH_2016_2646722
crossref_primary_10_1109_TSMC_2017_2721111
crossref_primary_10_1049_iet_cta_2017_0462
crossref_primary_10_1109_ACCESS_2017_2741970
crossref_primary_10_1109_TIE_2017_2677312
crossref_primary_10_1109_TIE_2017_2786235
crossref_primary_10_1109_TCSI_2018_2832229
crossref_primary_10_1049_iet_cta_2017_0348
crossref_primary_10_1109_TCSI_2019_2953958
crossref_primary_10_1049_iet_cta_2016_1220
crossref_primary_10_1109_TSMC_2017_2753944
crossref_primary_10_1016_j_physa_2019_03_105
crossref_primary_10_1109_TCYB_2018_2877410
crossref_primary_10_1007_s12652_020_01946_8
crossref_primary_10_1002_rnc_5322
crossref_primary_10_1177_0142331217729202
crossref_primary_10_1016_j_isatra_2016_07_006
crossref_primary_10_32628_IJSRST523103192
crossref_primary_10_1016_j_neucom_2017_02_032
crossref_primary_10_1002_rnc_6999
crossref_primary_10_1002_asjc_1641
crossref_primary_10_1177_0142331216678314
crossref_primary_10_1080_00207721_2017_1316878
crossref_primary_10_1109_TCSI_2018_2890527
crossref_primary_10_1109_TII_2018_2805707
crossref_primary_10_1109_TNNLS_2017_2705109
crossref_primary_10_1016_j_automatica_2018_01_026
crossref_primary_10_1016_j_neucom_2017_09_043
crossref_primary_10_1016_j_neucom_2016_05_042
crossref_primary_10_1063_5_0187502
crossref_primary_10_1016_j_neucom_2017_02_087
crossref_primary_10_1016_j_ins_2024_120839
crossref_primary_10_1002_asjc_1872
crossref_primary_10_1002_rnc_4800
crossref_primary_10_1016_j_neucom_2016_11_042
crossref_primary_10_1109_TCYB_2017_2688407
crossref_primary_10_1007_s12555_017_0035_0
crossref_primary_10_1007_s12555_017_0280_2
crossref_primary_10_1016_j_dsp_2018_02_006
crossref_primary_10_1016_j_jfranklin_2017_07_028
crossref_primary_10_1109_TSMC_2017_2746624
crossref_primary_10_1016_j_jfranklin_2016_05_019
crossref_primary_10_1109_TCYB_2018_2869418
crossref_primary_10_1109_TCYB_2020_3009118
crossref_primary_10_1002_rnc_4634
crossref_primary_10_1109_TIE_2019_2924611
crossref_primary_10_1016_j_neucom_2017_01_029
crossref_primary_10_1109_TSMC_2017_2656386
crossref_primary_10_1016_j_automatica_2016_09_009
crossref_primary_10_1109_TFUZZ_2022_3148869
crossref_primary_10_1080_03772063_2016_1229139
crossref_primary_10_1109_TFUZZ_2016_2578346
crossref_primary_10_1109_TSMC_2017_2754495
crossref_primary_10_1177_01423312211066177
crossref_primary_10_1002_asjc_1467
crossref_primary_10_1109_TNNLS_2017_2728622
crossref_primary_10_1080_00207721_2020_1752417
crossref_primary_10_1016_j_physa_2021_126450
crossref_primary_10_1177_0142331220946509
crossref_primary_10_1109_TFUZZ_2020_3002393
crossref_primary_10_1002_rnc_3857
crossref_primary_10_1109_TSMC_2017_2721430
crossref_primary_10_1109_TSMC_2018_2852688
crossref_primary_10_1016_j_neucom_2020_08_063
crossref_primary_10_1002_asjc_3074
crossref_primary_10_1016_j_jfranklin_2017_02_029
crossref_primary_10_1109_TIE_2018_2829673
crossref_primary_10_1016_j_neucom_2017_01_056
crossref_primary_10_1109_TCYB_2017_2671346
crossref_primary_10_1109_TSMC_2017_2708507
crossref_primary_10_1109_TII_2019_2958381
crossref_primary_10_1016_j_jfranklin_2016_09_027
crossref_primary_10_1109_TFUZZ_2020_3006987
crossref_primary_10_1002_asjc_2136
crossref_primary_10_1049_iet_cta_2016_0985
crossref_primary_10_1177_0142331217733326
crossref_primary_10_1080_00207179_2017_1359421
crossref_primary_10_1109_TCYB_2017_2684136
crossref_primary_10_1007_s12555_017_0123_1
crossref_primary_10_1109_TSMC_2018_2810835
crossref_primary_10_1177_0142331217701807
crossref_primary_10_1049_iet_cta_2016_1162
crossref_primary_10_1016_j_isatra_2017_01_028
crossref_primary_10_1007_s00034_017_0694_3
crossref_primary_10_1002_asjc_1962
crossref_primary_10_1002_asjc_2016
crossref_primary_10_1016_j_jfranklin_2019_03_037
crossref_primary_10_1016_j_jfranklin_2018_10_043
Cites_doi 10.1109/TAC.2015.2503566
10.1109/TFUZZ.2011.2147793
10.1109/TCST.2009.2015653
10.1016/j.automatica.2015.11.010
10.1109/TFUZZ.2015.2457934
10.1109/TFUZZ.2010.2060203
10.1016/j.automatica.2007.04.020
10.1002/oca.928
10.1109/TCST.2010.2042296
10.1109/TII.2012.2219540
10.1109/87.987076
10.1109/TFUZZ.2011.2162525
10.1109/TFUZZ.2014.2367101
10.1049/iet-cta.2012.0749
10.1016/S0378-4754(02)00029-0
10.1109/AIM.2014.6878093
10.1109/TAC.2007.908316
10.1109/TMECH.2014.2358674
10.1049/iet-cta.2012.0600
10.1109/IECON.2006.347575
10.1109/TIE.2013.2290757
10.1016/j.ins.2012.09.026
10.1016/j.actaastro.2012.02.009
10.1109/TIE.2013.2273477
10.1109/TCYB.2016.2536750
10.1016/j.automatica.2014.07.001
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
F28
FR3
L7M
DOI 10.1109/TIE.2016.2559454
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Electronics & Communications Abstracts
DatabaseTitleList
Engineering Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1557-9948
EndPage 5631
ExternalDocumentID 10_1109_TIE_2016_2559454
7460954
Genre orig-research
GrantInformation_xml – fundername: Open Foundation of First Level Zhejiang Key in Key Discipline of Control Science and Engineering
– fundername: National Natural Science Foundation of China
  grantid: 61273026; 61272064; 61573077
  funderid: 10.13039/501100001809
– fundername: Fundamental Research Funds for the Central Universities
– fundername: Shanghai International Science and Technology Cooperation
  grantid: 15220710700
– fundername: State Key Laboratory of Robotics and Systems (HIT)
  grantid: SKLRS-2016-KF-03
– fundername: Shanghai Pujiang Program
  grantid: 14PJ1409000
– fundername: Australian Research Council Discovery Project
  grantid: DP160103567
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
TWZ
VH1
VJK
AAYXX
CITATION
RIG
7SP
8FD
F28
FR3
L7M
ID FETCH-LOGICAL-c211t-1b0d8d7ae1b24616d1e94fa408db3016477fe382293ab9891194b7e63be285583
IEDL.DBID RIE
ISSN 0278-0046
IngestDate Thu Sep 04 21:27:38 EDT 2025
Thu Apr 24 23:05:37 EDT 2025
Tue Jul 01 00:16:16 EDT 2025
Tue Aug 26 16:42:46 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c211t-1b0d8d7ae1b24616d1e94fa408db3016477fe382293ab9891194b7e63be285583
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5496-1809
PQID 1835618376
PQPubID 23500
PageCount 10
ParticipantIDs ieee_primary_7460954
crossref_primary_10_1109_TIE_2016_2559454
crossref_citationtrail_10_1109_TIE_2016_2559454
proquest_miscellaneous_1835618376
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-Sept.
2016-9-00
20160901
PublicationDateYYYYMMDD 2016-09-01
PublicationDate_xml – month: 09
  year: 2016
  text: 2016-Sept.
PublicationDecade 2010
PublicationTitle IEEE transactions on industrial electronics (1982)
PublicationTitleAbbrev TIE
PublicationYear 2016
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
ref15
ref14
xiong (ref29) 2011; 32
ref11
ref10
yan (ref5) 0
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
fu (ref25) 0; 1
ref22
ref21
ref28
ref27
li (ref8) 2014; 50
ref7
fekih (ref20) 2007; 3
ref9
ref4
ref3
ref6
References_xml – ident: ref21
  doi: 10.1109/TAC.2015.2503566
– year: 0
  ident: ref5
  article-title: $H_{\infty }$ filtering for nonlinear networked systems with randomly occurring distributed delays, missing measurements and sensor saturation
  publication-title: Inf Sci
– ident: ref11
  doi: 10.1109/TFUZZ.2011.2147793
– ident: ref17
  doi: 10.1109/TCST.2009.2015653
– ident: ref22
  doi: 10.1016/j.automatica.2015.11.010
– ident: ref27
  doi: 10.1109/TFUZZ.2015.2457934
– volume: 1
  start-page: 199
  year: 0
  ident: ref25
  article-title: Robust stabilization of linear uncertain systems via quantized feedback
  publication-title: Proc 42nd IEEE Conf Decision Control
– ident: ref26
  doi: 10.1109/TFUZZ.2010.2060203
– ident: ref16
  doi: 10.1016/j.automatica.2007.04.020
– volume: 32
  start-page: 47
  year: 2011
  ident: ref29
  article-title: Robust extended Kalman filtering for nonlinear systems with multiplicative noises
  publication-title: Optim Control Appl Methods
  doi: 10.1002/oca.928
– volume: 3
  start-page: 1073
  year: 2007
  ident: ref20
  article-title: Neural networks based system identification techniques for model based fault detection of nonlinear systems
  publication-title: Int J Innovative Comput Inf Control
– ident: ref18
  doi: 10.1109/TCST.2010.2042296
– ident: ref2
  doi: 10.1109/TII.2012.2219540
– ident: ref3
  doi: 10.1109/87.987076
– ident: ref9
  doi: 10.1109/TFUZZ.2011.2162525
– ident: ref10
  doi: 10.1109/TFUZZ.2014.2367101
– ident: ref12
  doi: 10.1049/iet-cta.2012.0749
– ident: ref14
  doi: 10.1016/S0378-4754(02)00029-0
– ident: ref15
  doi: 10.1109/AIM.2014.6878093
– ident: ref23
  doi: 10.1109/TAC.2007.908316
– ident: ref19
  doi: 10.1109/TMECH.2014.2358674
– ident: ref13
  doi: 10.1049/iet-cta.2012.0600
– ident: ref4
  doi: 10.1109/IECON.2006.347575
– ident: ref7
  doi: 10.1109/TIE.2013.2290757
– ident: ref24
  doi: 10.1016/j.ins.2012.09.026
– ident: ref28
  doi: 10.1016/j.actaastro.2012.02.009
– ident: ref1
  doi: 10.1109/TIE.2013.2273477
– ident: ref6
  doi: 10.1109/TCYB.2016.2536750
– volume: 50
  start-page: 2294
  year: 2014
  ident: ref8
  article-title: Passivity-preserving model reduction with finite frequency image approximation performance
  publication-title: Automatica
  doi: 10.1016/j.automatica.2014.07.001
SSID ssj0014515
Score 2.5652266
Snippet This paper focuses on the H ∞ fault detection (FD) problem for spring-mass systems (SMSs) over networks with distributed state delays, random packet losses,...
This paper focuses on the $H_{\infty }$ fault detection (FD) problem for spring-mass systems (SMSs) over networks with distributed state delays, random packet...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5622
SubjectTerms Delay
Delays
Design engineering
Distributed state delays
Dynamical systems
Dynamics
Fault detection
fault detection (FD)
multiplicative noises
networked spring-mass system (NSMSs)
Packet loss
Packets (communication)
random packet losses
Robustness
Saturation
sensor saturation
Spring-mass systems
Suspensions
Vehicles
Title H Fault Detection for Networked Mechanical Spring-Mass Systems With Incomplete Information
URI https://ieeexplore.ieee.org/document/7460954
https://www.proquest.com/docview/1835618376
Volume 63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLa2neDAayDGS0HigkS3tklfRwRMA2k7bWLiUiVtKhBTh6C98Oux03biJcSthySN4sSx48-fAc5SO5PSTyOLvAFLSBePFN58VsZ95blZyDNlALITfzQTd3Nv3oKLVS6M1tqAz3SfPk0sP10mJT2VDQJB9GiiDW3cZlWu1ipiILyqWoFLjLHo9DUhSTsaTG9vCMPl98l8Fp74cgWZmio_FLG5XYabMG7mVYFKnvtlofrJ-zfKxv9OfAs2ajOTXVb7YhtaOt-B9U_kg114GLGhLBcFu9aFwWPlDA1YNqlw4TplY01ZwSREVj3_WWO0tFnNcc7un4pHhuqFMOk4AqsTm2igXZgNb6ZXI6uutGAl6AAWlqPsNEwDqR1F_HJ-6uhIZFLYYaq4oRwLMs2JG55LFYWoICOhAu1zpd3Q80K-B518met9YC6XDnq9TpBwJUIni4hPnnvSJepDN-E9GDSLHyc1DTlVw1jExh2xoxjFFZO44lpcPThf9XipKDj-aNul1V-1qxe-B6eNfGM8PhQTkblelm8xajS0INFL9w9-73oIa_SDClZ2BJ3itdTHaIcU6sRswA8gY9di
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLYGHIADb8R4BokLEt3aJn0dETBtsO20CcSlStpUIFCHoL3w67HTbuIlxK2HJI3ixLHjz58BTlI7k9JPI4u8AUtIF48U3nxWxn3luVnIM2UAskO_OxbXd95dA85muTBaawM-0y36NLH8dJKU9FTWDgTRo4k5WMB7X3hVttYsZiC8ql6BS5yx6PZNg5J21B71rgjF5bfIgBae-HIJmaoqP1SxuV86qzCYzqyClTy1ykK1kvdvpI3_nfoarNSGJjuvdsY6NHS-Acuf6Ac34b7LOrJ8LtilLgwiK2dowrJhhQzXKRtoygsmMbLqAdAaoK3NapZzdvtYPDBUMIRKxxFYndpEA23BuHM1uuhada0FK0EXsLAcZadhGkjtKGKY81NHRyKTwg5TxQ3pWJBpTuzwXKooRBUZCRVonyvthp4X8m2Yzye53gHmcumg3-sECVcidLKIGOW5J10iP3QT3oT2dPHjpCYip3oYz7FxSOwoRnHFJK64FlcTTmc9XioSjj_abtLqz9rVC9-E46l8YzxAFBWRuZ6UbzHqNLQh0U_3d3_vegSL3dGgH_d7w5s9WKKfVSCzfZgvXkt9gFZJoQ7NZvwAkrDarw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=H_%7B%5Cinfty+%7D%24+Fault+Detection+for+Networked+Mechanical+Spring-Mass+Systems+With+Incomplete+Information&rft.jtitle=IEEE+transactions+on+industrial+electronics+%281982%29&rft.au=Yan%2C+Huaicheng&rft.au=Qian%2C+Fengfeng&rft.au=Zhang%2C+Hao&rft.au=Yang%2C+Fuwen&rft.date=2016-09-01&rft.issn=0278-0046&rft.eissn=1557-9948&rft.volume=63&rft.issue=9&rft.spage=5622&rft.epage=5631&rft_id=info:doi/10.1109%2FTIE.2016.2559454&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0046&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0046&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0046&client=summon