Maleic anhydride derivatives as catalysts for N -oxidation of pyridine using hydrogen peroxide

Maleic anhydride derivatives were evaluated as catalysts in -oxidation of various pyridine substrates using hydrogen peroxide (H O ). Depending on the electronic properties of the pyridine substrates, pyridines with electron-donating groups reacted well with 2,3-dimethylmaleic anhydride (DMMA). In c...

Full description

Saved in:
Bibliographic Details
Published inRSC advances Vol. 14; no. 43; pp. 31657 - 31662
Main Authors Gajeles, Ghellyn, Lee, Kyung-Koo, Lee, Sang Hee
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 01.10.2024
The Royal Society of Chemistry
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Maleic anhydride derivatives were evaluated as catalysts in -oxidation of various pyridine substrates using hydrogen peroxide (H O ). Depending on the electronic properties of the pyridine substrates, pyridines with electron-donating groups reacted well with 2,3-dimethylmaleic anhydride (DMMA). In contrast, 1-cyclohexene-1, 2-dicarboxylic anhydride (CHMA) was most effective for electron-deficient pyridines. The different performance of these two anhydrides is attributed to the diacid-anhydride equilibrium, which is crucial for regenerating the peracid oxidant through an anhydride intermediate in the catalytic cycle. This approach using a catalytic amount of anhydride with H O has the potential to replace stoichiometric amounts of percarboxylic acid as an oxidant for a broader range of organic substrates.
AbstractList Maleic anhydride derivatives were evaluated as catalysts in N-oxidation of various pyridine substrates using hydrogen peroxide (H2O2). Depending on the electronic properties of the pyridine substrates, pyridines with electron-donating groups reacted well with 2,3-dimethylmaleic anhydride (DMMA). In contrast, 1-cyclohexene-1, 2-dicarboxylic anhydride (CHMA) was most effective for electron-deficient pyridines. The different performance of these two anhydrides is attributed to the diacid–anhydride equilibrium, which is crucial for regenerating the peracid oxidant through an anhydride intermediate in the catalytic cycle. This approach using a catalytic amount of anhydride with H2O2 has the potential to replace stoichiometric amounts of percarboxylic acid as an oxidant for a broader range of organic substrates.
Maleic anhydride derivatives were evaluated as catalysts in N -oxidation of various pyridine substrates using hydrogen peroxide (H 2 O 2 ). Depending on the electronic properties of the pyridine substrates, pyridines with electron-donating groups reacted well with 2,3-dimethylmaleic anhydride (DMMA). In contrast, 1-cyclohexene-1, 2-dicarboxylic anhydride (CHMA) was most effective for electron-deficient pyridines. The different performance of these two anhydrides is attributed to the diacid–anhydride equilibrium, which is crucial for regenerating the peracid oxidant through an anhydride intermediate in the catalytic cycle. This approach using a catalytic amount of anhydride with H 2 O 2 has the potential to replace stoichiometric amounts of percarboxylic acid as an oxidant for a broader range of organic substrates.
Maleic anhydride derivatives were evaluated as catalysts in N -oxidation of various pyridine substrates using hydrogen peroxide (H 2 O 2 ). Depending on the electronic properties of the pyridine substrates, pyridines with electron-donating groups reacted well with 2,3-dimethylmaleic anhydride (DMMA). In contrast, 1-cyclohexene-1, 2-dicarboxylic anhydride (CHMA) was most effective for electron-deficient pyridines. The different performance of these two anhydrides is attributed to the diacid–anhydride equilibrium, which is crucial for regenerating the peracid oxidant through an anhydride intermediate in the catalytic cycle. This approach using a catalytic amount of anhydride with H 2 O 2 has the potential to replace stoichiometric amounts of percarboxylic acid as an oxidant for a broader range of organic substrates. The anhydride–diacid equilibrium is crucial for the catalytic cycle of maleic anhydride derivatives in N -oxidation of pyridine derivatives with H 2 O 2 . This catalytic system can replace stoichiometric peracids, such as m -CPBA, as oxidants.
Maleic anhydride derivatives were evaluated as catalysts in -oxidation of various pyridine substrates using hydrogen peroxide (H O ). Depending on the electronic properties of the pyridine substrates, pyridines with electron-donating groups reacted well with 2,3-dimethylmaleic anhydride (DMMA). In contrast, 1-cyclohexene-1, 2-dicarboxylic anhydride (CHMA) was most effective for electron-deficient pyridines. The different performance of these two anhydrides is attributed to the diacid-anhydride equilibrium, which is crucial for regenerating the peracid oxidant through an anhydride intermediate in the catalytic cycle. This approach using a catalytic amount of anhydride with H O has the potential to replace stoichiometric amounts of percarboxylic acid as an oxidant for a broader range of organic substrates.
Maleic anhydride derivatives were evaluated as catalysts in N-oxidation of various pyridine substrates using hydrogen peroxide (H2O2). Depending on the electronic properties of the pyridine substrates, pyridines with electron-donating groups reacted well with 2,3-dimethylmaleic anhydride (DMMA). In contrast, 1-cyclohexene-1, 2-dicarboxylic anhydride (CHMA) was most effective for electron-deficient pyridines. The different performance of these two anhydrides is attributed to the diacid-anhydride equilibrium, which is crucial for regenerating the peracid oxidant through an anhydride intermediate in the catalytic cycle. This approach using a catalytic amount of anhydride with H2O2 has the potential to replace stoichiometric amounts of percarboxylic acid as an oxidant for a broader range of organic substrates.Maleic anhydride derivatives were evaluated as catalysts in N-oxidation of various pyridine substrates using hydrogen peroxide (H2O2). Depending on the electronic properties of the pyridine substrates, pyridines with electron-donating groups reacted well with 2,3-dimethylmaleic anhydride (DMMA). In contrast, 1-cyclohexene-1, 2-dicarboxylic anhydride (CHMA) was most effective for electron-deficient pyridines. The different performance of these two anhydrides is attributed to the diacid-anhydride equilibrium, which is crucial for regenerating the peracid oxidant through an anhydride intermediate in the catalytic cycle. This approach using a catalytic amount of anhydride with H2O2 has the potential to replace stoichiometric amounts of percarboxylic acid as an oxidant for a broader range of organic substrates.
Author Lee, Kyung-Koo
Lee, Sang Hee
Gajeles, Ghellyn
Author_xml – sequence: 1
  givenname: Ghellyn
  orcidid: 0000-0002-9115-7032
  surname: Gajeles
  fullname: Gajeles, Ghellyn
  email: leesh@kunsan.ac.kr
  organization: Department of Chemistry, Kunsan National University Gunsan 573-701 Republic of Korea leesh@kunsan.ac.kr
– sequence: 2
  givenname: Kyung-Koo
  orcidid: 0000-0001-8176-6232
  surname: Lee
  fullname: Lee, Kyung-Koo
  email: leesh@kunsan.ac.kr
  organization: Department of Chemistry, Kunsan National University Gunsan 573-701 Republic of Korea leesh@kunsan.ac.kr
– sequence: 3
  givenname: Sang Hee
  orcidid: 0000-0001-9879-511X
  surname: Lee
  fullname: Lee, Sang Hee
  email: leesh@kunsan.ac.kr
  organization: Department of Chemistry, Kunsan National University Gunsan 573-701 Republic of Korea leesh@kunsan.ac.kr
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39376527$$D View this record in MEDLINE/PubMed
BookMark eNpdkVtr3DAQRkVIadI0L_0BQZCXUnCiiyVZTyGkd5IUSvtaIUvjjRavtJXspfvvY5M0N72MYM4cZvjeoN2YIiD0jpITSrg-_Vj_PCdCS_Z9B-0zUsuKEal3n_z30GEpSzI9KSiT9DXa45orKZjaR3-ubA_BYRtvtj4HD9hDDhs7hA0UbAt2drD9tgwFdynja1ylf8FP7RRx6vB6O82ECHgsIS7w7EgLiHgNeebgLXrV2b7A4X09QL8_f_p18bW6_PHl28X5ZeUYpcuKM83buvONo7QhtXDCAlFKK9FSrpxnqnFKy6Z1pPPai0bbljDrtbU1Y0rwA3R2512P7Qq8gzhk25t1DiubtybZYJ53Yrgxi7QxlNZCaqonw_t7Q05_RyiDWYXioO9thDQWwyeSCqYln9DjF-gyjTlO982UIjWv-Sz8cEe5nErJ0D1sQ4mZozOP0U3w0dP9H9D_QfFb28aV3A
Cites_doi 10.1002/cctc.201800013
10.1039/D1SC02360H
10.1055/s-2008-1067190
10.1021/ja055549i
10.1016/j.tetlet.2013.11.045
10.1016/j.bmc.2014.07.002
10.1002/chem.201303360
10.1627/jpi.60.159
10.1021/acs.joc.3c01385
10.1021/jacs.0c11787
10.1002/anie.200901353
10.1021/acs.orglett.6b01832
10.1021/jacs.9b10414
10.1016/S0040-4039(00)00165-9
10.1039/b303160h
10.1021/ja02260a013
10.1016/j.carbon.2018.03.009
10.1002/ejoc.202400082
10.1021/ja00751a040
10.1002/adsc.201000906
10.1021/ol503410e
10.1016/j.cattod.2010.02.045
10.1021/jo980926d
10.1016/j.ccr.2011.01.041
10.1016/j.tetasy.2010.05.020
10.1021/jo502865f
10.1016/S1381-1169(00)00433-7
10.1002/anie.200503779
10.1055/s-0037-1609446
10.1351/pac200072071289
10.1021/jo5003938
10.1002/ejoc.201700749
10.1021/ol403776k
10.1021/ja051808s
10.3891/acta.chem.scand.18-1276
10.1016/j.catcom.2013.08.025
10.1016/j.psep.2015.12.009
10.1021/ja00988a036
10.1039/D3SC05618J
10.3390/10101385
10.1016/j.fuel.2014.11.027
10.1021/acscatal.9b04508
10.1039/C6GC02899C
10.1039/c1gc15213k
10.1016/j.jiec.2021.08.024
10.1002/cctc.201200139
10.1039/D0RA00265H
10.1039/C6GC01394E
10.1080/17518253.2014.939721
ContentType Journal Article
Copyright This journal is © The Royal Society of Chemistry.
Copyright Royal Society of Chemistry 2024
This journal is © The Royal Society of Chemistry 2024 The Royal Society of Chemistry
Copyright_xml – notice: This journal is © The Royal Society of Chemistry.
– notice: Copyright Royal Society of Chemistry 2024
– notice: This journal is © The Royal Society of Chemistry 2024 The Royal Society of Chemistry
DBID NPM
AAYXX
CITATION
7SR
8BQ
8FD
JG9
7X8
5PM
DOI 10.1039/D4RA05962J
DatabaseName PubMed
CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle PubMed
CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
CrossRef

PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2046-2069
EndPage 31662
ExternalDocumentID 10_1039_D4RA05962J
39376527
Genre Journal Article
GrantInformation_xml – fundername: ;
  grantid: 2023RIS-008; RS-2024-00348663
GroupedDBID -JG
0-7
0R~
53G
AAFWJ
AAHBH
AAIWI
AAJAE
AARTK
AAWGC
AAXHV
ABEMK
ABGFH
ABPDG
ABXOH
ACGFS
ADBBV
ADMRA
AEFDR
AENEX
AESAV
AFLYV
AFVBQ
AGEGJ
AGRSR
AGSTE
AHGCF
AKBGW
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
BCNDV
BLAPV
BSQNT
C6K
EBS
EE0
EF-
GROUPED_DOAJ
H13
HZ~
H~N
J3I
M~E
NPM
O9-
OK1
PGMZT
R7C
R7G
RCNCU
RPM
RPMJG
RRC
RSCEA
RVUXY
SLH
SMJ
ZCN
AAYXX
CITATION
7SR
8BQ
8FD
JG9
7X8
5PM
ID FETCH-LOGICAL-c211j-3293b4fd8c118045c5ae077975b137cd278c7968bc0fd9d589ab02ad9aa422753
IEDL.DBID RPM
ISSN 2046-2069
IngestDate Tue Oct 08 05:36:50 EDT 2024
Thu Oct 10 02:36:03 EDT 2024
Wed Oct 16 14:21:40 EDT 2024
Wed Oct 09 16:52:59 EDT 2024
Tue Oct 15 08:30:40 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 43
Language English
License This journal is © The Royal Society of Chemistry.
This article is licensed under a Creative Commons Attribution-Non Commercial 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c211j-3293b4fd8c118045c5ae077975b137cd278c7968bc0fd9d589ab02ad9aa422753
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Physical Science Department, West Visayas State University, Luna St., La Paz, Iloilo City, 5000 Iloilo, Philippines is the authors present address.
ORCID 0000-0001-8176-6232
0000-0001-9879-511X
0000-0002-9115-7032
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11456919/
PMID 39376527
PQID 3117043439
PQPubID 2047525
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11456919
proquest_miscellaneous_3114152963
proquest_journals_3117043439
crossref_primary_10_1039_D4RA05962J
pubmed_primary_39376527
PublicationCentury 2000
PublicationDate 2024-Oct-01
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-Oct-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle RSC advances
PublicationTitleAlternate RSC Adv
PublicationYear 2024
Publisher Royal Society of Chemistry
The Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
– name: The Royal Society of Chemistry
References Poursaitidis (D4RA05962J/cit22/1) 2024; 27
Wang (D4RA05962J/cit27/1) 2016; 18
Stingl (D4RA05962J/cit20/1) 2010; 21
Marigo (D4RA05962J/cit36/1) 2005; 127
Ding (D4RA05962J/cit9/1) 2011; 13
Campos-Martin (D4RA05962J/cit2/1) 2006; 45
Bahrami (D4RA05962J/cit38/1) 2008; 2008
Higuchi (D4RA05962J/cit49/1) 1967; 89
Wei (D4RA05962J/cit17/1) 2018; 133
Triandafillidi (D4RA05962J/cit33/1) 2018; 10
Caron (D4RA05962J/cit39/1) 2000; 41
Targhan (D4RA05962J/cit1/1) 2021; 104
Eberson (D4RA05962J/cit50/1) 1964; 18
Bergstad (D4RA05962J/cit23/1) 1998; 63
Limnios (D4RA05962J/cit31/1) 2014; 20
Triandafillidi (D4RA05962J/cit21/1) 2021; 12
Huth (D4RA05962J/cit35/1) 2023; 88
Mizuno (D4RA05962J/cit11/1) 2011; 255
Secci (D4RA05962J/cit16/1) 2014; 55
Likhotvorik (D4RA05962J/cit41/1) 2018; 50
Ménová (D4RA05962J/cit25/1) 2011; 353
Poursaitidis (D4RA05962J/cit18/1) 2024; 15
Cai (D4RA05962J/cit37/1) 2021; 143
Brodsky (D4RA05962J/cit28/1) 2005; 127
Walton (D4RA05962J/cit46/1) 2002; 38
Pierce (D4RA05962J/cit32/1) 2014; 16
Liu (D4RA05962J/cit42/1) 2015; 142
Lõkov (D4RA05962J/cit48/1) 2017; 2017
Kraïem (D4RA05962J/cit3/1) 2016; 18
Williams (D4RA05962J/cit47/1) 2024
Sanderson (D4RA05962J/cit5/1) 2000; 72
Pietikäinen (D4RA05962J/cit43/1) 2001; 165
Rostamnia (D4RA05962J/cit15/1) 2016; 100
Alem (D4RA05962J/cit8/1) 2019; 3
Sturala (D4RA05962J/cit26/1) 2015; 80
Martin (D4RA05962J/cit7/1) 2017; 19
Eberson (D4RA05962J/cit45/1) 1971; 93
Russo (D4RA05962J/cit19/1) 2012; 4
Xie (D4RA05962J/cit13/1) 2010; 157
Gajeles (D4RA05962J/cit44/1) 2020; 10
Kon (D4RA05962J/cit10/1) 2017; 60
Doble (D4RA05962J/cit6/1) 2014; 22
Karami (D4RA05962J/cit40/1) 2005; 10
Sadri (D4RA05962J/cit12/1) 2014; 7
Noyori (D4RA05962J/cit4/1) 2003
Hsieh (D4RA05962J/cit34/1) 2019; 141
Rostami (D4RA05962J/cit14/1) 2014; 43
Zhang (D4RA05962J/cit24/1) 2019; 10
Limnios (D4RA05962J/cit30/1) 2014; 79
Otte (D4RA05962J/cit51/1) 2014; 16
Litvinas (D4RA05962J/cit29/1) 2009; 48
References_xml – volume: 10
  start-page: 2521
  year: 2018
  ident: D4RA05962J/cit33/1
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201800013
  contributor:
    fullname: Triandafillidi
– volume: 12
  start-page: 10191
  year: 2021
  ident: D4RA05962J/cit21/1
  publication-title: Chem. Sci.
  doi: 10.1039/D1SC02360H
  contributor:
    fullname: Triandafillidi
– volume: 2008
  start-page: 1682
  year: 2008
  ident: D4RA05962J/cit38/1
  publication-title: Synthesis
  doi: 10.1055/s-2008-1067190
  contributor:
    fullname: Bahrami
– volume: 127
  start-page: 15391
  year: 2005
  ident: D4RA05962J/cit28/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja055549i
  contributor:
    fullname: Brodsky
– volume: 55
  start-page: 603
  year: 2014
  ident: D4RA05962J/cit16/1
  publication-title: Tetrahedron Lett.
  doi: 10.1016/j.tetlet.2013.11.045
  contributor:
    fullname: Secci
– volume: 22
  start-page: 5657
  year: 2014
  ident: D4RA05962J/cit6/1
  publication-title: Bioorg. Med. Chem.
  doi: 10.1016/j.bmc.2014.07.002
  contributor:
    fullname: Doble
– volume: 20
  start-page: 559
  year: 2014
  ident: D4RA05962J/cit31/1
  publication-title: Chemistry
  doi: 10.1002/chem.201303360
  contributor:
    fullname: Limnios
– volume: 60
  start-page: 159
  year: 2017
  ident: D4RA05962J/cit10/1
  publication-title: J. Jpn. Pet. Inst.
  doi: 10.1627/jpi.60.159
  contributor:
    fullname: Kon
– volume: 88
  start-page: 12857
  year: 2023
  ident: D4RA05962J/cit35/1
  publication-title: J. Org. Chem.
  doi: 10.1021/acs.joc.3c01385
  contributor:
    fullname: Huth
– volume-title: Bordwell pKa Table
  year: 2024
  ident: D4RA05962J/cit47/1
  contributor:
    fullname: Williams
– volume: 143
  start-page: 1078
  year: 2021
  ident: D4RA05962J/cit37/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c11787
  contributor:
    fullname: Cai
– volume: 48
  start-page: 4513
  year: 2009
  ident: D4RA05962J/cit29/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200901353
  contributor:
    fullname: Litvinas
– volume: 18
  start-page: 3826
  year: 2016
  ident: D4RA05962J/cit27/1
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.6b01832
  contributor:
    fullname: Wang
– volume: 141
  start-page: 18624
  year: 2019
  ident: D4RA05962J/cit34/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b10414
  contributor:
    fullname: Hsieh
– volume: 41
  start-page: 2299
  year: 2000
  ident: D4RA05962J/cit39/1
  publication-title: Tetrahedron Lett.
  doi: 10.1016/S0040-4039(00)00165-9
  contributor:
    fullname: Caron
– start-page: 1977
  year: 2003
  ident: D4RA05962J/cit4/1
  publication-title: Chem. Commun.
  doi: 10.1039/b303160h
  contributor:
    fullname: Noyori
– volume: 38
  start-page: 633
  year: 2002
  ident: D4RA05962J/cit46/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja02260a013
  contributor:
    fullname: Walton
– volume: 133
  start-page: 6
  year: 2018
  ident: D4RA05962J/cit17/1
  publication-title: Carbon
  doi: 10.1016/j.carbon.2018.03.009
  contributor:
    fullname: Wei
– volume: 27
  start-page: e202400082
  year: 2024
  ident: D4RA05962J/cit22/1
  publication-title: Eur. J. Org Chem.
  doi: 10.1002/ejoc.202400082
  contributor:
    fullname: Poursaitidis
– volume: 93
  start-page: 5821
  year: 1971
  ident: D4RA05962J/cit45/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00751a040
  contributor:
    fullname: Eberson
– volume: 353
  start-page: 865
  year: 2011
  ident: D4RA05962J/cit25/1
  publication-title: Adv. Synth. Catal.
  doi: 10.1002/adsc.201000906
  contributor:
    fullname: Ménová
– volume: 16
  start-page: 6504
  year: 2014
  ident: D4RA05962J/cit32/1
  publication-title: Org. Lett.
  doi: 10.1021/ol503410e
  contributor:
    fullname: Pierce
– volume: 157
  start-page: 114
  year: 2010
  ident: D4RA05962J/cit13/1
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2010.02.045
  contributor:
    fullname: Xie
– volume: 63
  start-page: 6650
  year: 1998
  ident: D4RA05962J/cit23/1
  publication-title: J. Org. Chem.
  doi: 10.1021/jo980926d
  contributor:
    fullname: Bergstad
– volume: 255
  start-page: 2358
  year: 2011
  ident: D4RA05962J/cit11/1
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2011.01.041
  contributor:
    fullname: Mizuno
– volume: 21
  start-page: 1055
  year: 2010
  ident: D4RA05962J/cit20/1
  publication-title: Tetrahedron: Asymmetry
  doi: 10.1016/j.tetasy.2010.05.020
  contributor:
    fullname: Stingl
– volume: 80
  start-page: 2676
  year: 2015
  ident: D4RA05962J/cit26/1
  publication-title: J. Org. Chem.
  doi: 10.1021/jo502865f
  contributor:
    fullname: Sturala
– volume: 165
  start-page: 73
  year: 2001
  ident: D4RA05962J/cit43/1
  publication-title: J. Mol. Catal. A: Chem.
  doi: 10.1016/S1381-1169(00)00433-7
  contributor:
    fullname: Pietikäinen
– volume: 45
  start-page: 6962
  year: 2006
  ident: D4RA05962J/cit2/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200503779
  contributor:
    fullname: Campos-Martin
– volume: 50
  start-page: 2231
  year: 2018
  ident: D4RA05962J/cit41/1
  publication-title: Synthesis
  doi: 10.1055/s-0037-1609446
  contributor:
    fullname: Likhotvorik
– volume: 72
  start-page: 1289
  year: 2000
  ident: D4RA05962J/cit5/1
  publication-title: Pure Appl. Chem.
  doi: 10.1351/pac200072071289
  contributor:
    fullname: Sanderson
– volume: 79
  start-page: 4270
  year: 2014
  ident: D4RA05962J/cit30/1
  publication-title: J. Org. Chem.
  doi: 10.1021/jo5003938
  contributor:
    fullname: Limnios
– volume: 2017
  start-page: 4475
  year: 2017
  ident: D4RA05962J/cit48/1
  publication-title: Eur. J. Org Chem.
  doi: 10.1002/ejoc.201700749
  contributor:
    fullname: Lõkov
– volume: 16
  start-page: 1566
  year: 2014
  ident: D4RA05962J/cit51/1
  publication-title: Org. Lett.
  doi: 10.1021/ol403776k
  contributor:
    fullname: Otte
– volume: 127
  start-page: 6964
  year: 2005
  ident: D4RA05962J/cit36/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja051808s
  contributor:
    fullname: Marigo
– volume: 18
  start-page: 1276
  year: 1964
  ident: D4RA05962J/cit50/1
  publication-title: Acta Chem. Scand.
  doi: 10.3891/acta.chem.scand.18-1276
  contributor:
    fullname: Eberson
– volume: 43
  start-page: 16
  year: 2014
  ident: D4RA05962J/cit14/1
  publication-title: Catal. Commun.
  doi: 10.1016/j.catcom.2013.08.025
  contributor:
    fullname: Rostami
– volume: 100
  start-page: 74
  year: 2016
  ident: D4RA05962J/cit15/1
  publication-title: Process Saf. Environ. Prot.
  doi: 10.1016/j.psep.2015.12.009
  contributor:
    fullname: Rostamnia
– volume: 89
  start-page: 3001
  year: 1967
  ident: D4RA05962J/cit49/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00988a036
  contributor:
    fullname: Higuchi
– volume: 15
  start-page: 1177
  year: 2024
  ident: D4RA05962J/cit18/1
  publication-title: Chem. Sci.
  doi: 10.1039/D3SC05618J
  contributor:
    fullname: Poursaitidis
– volume: 10
  start-page: 1358
  year: 2005
  ident: D4RA05962J/cit40/1
  publication-title: Molecules
  doi: 10.3390/10101385
  contributor:
    fullname: Karami
– volume: 142
  start-page: 268
  year: 2015
  ident: D4RA05962J/cit42/1
  publication-title: Fuel
  doi: 10.1016/j.fuel.2014.11.027
  contributor:
    fullname: Liu
– volume: 10
  start-page: 245
  year: 2019
  ident: D4RA05962J/cit24/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b04508
  contributor:
    fullname: Zhang
– volume: 19
  start-page: 1439
  year: 2017
  ident: D4RA05962J/cit7/1
  publication-title: Green Chem.
  doi: 10.1039/C6GC02899C
  contributor:
    fullname: Martin
– volume: 13
  start-page: 1486
  issue: 6
  year: 2011
  ident: D4RA05962J/cit9/1
  publication-title: Green Chem.
  doi: 10.1039/c1gc15213k
  contributor:
    fullname: Ding
– volume: 3
  start-page: 366
  year: 2019
  ident: D4RA05962J/cit8/1
  publication-title: Asian J. Green Chem.
  contributor:
    fullname: Alem
– volume: 104
  start-page: 295
  year: 2021
  ident: D4RA05962J/cit1/1
  publication-title: J. Ind. Eng. Chem.
  doi: 10.1016/j.jiec.2021.08.024
  contributor:
    fullname: Targhan
– volume: 4
  start-page: 901
  year: 2012
  ident: D4RA05962J/cit19/1
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201200139
  contributor:
    fullname: Russo
– volume: 10
  start-page: 9165
  year: 2020
  ident: D4RA05962J/cit44/1
  publication-title: RSC Adv.
  doi: 10.1039/D0RA00265H
  contributor:
    fullname: Gajeles
– volume: 18
  start-page: 4859
  year: 2016
  ident: D4RA05962J/cit3/1
  publication-title: Green Chem.
  doi: 10.1039/C6GC01394E
  contributor:
    fullname: Kraïem
– volume: 7
  start-page: 257
  year: 2014
  ident: D4RA05962J/cit12/1
  publication-title: Green Chem. Lett. Rev.
  doi: 10.1080/17518253.2014.939721
  contributor:
    fullname: Sadri
SSID ssj0000651261
Score 2.463745
Snippet Maleic anhydride derivatives were evaluated as catalysts in -oxidation of various pyridine substrates using hydrogen peroxide (H O ). Depending on the...
Maleic anhydride derivatives were evaluated as catalysts in N -oxidation of various pyridine substrates using hydrogen peroxide (H 2 O 2 ). Depending on the...
Maleic anhydride derivatives were evaluated as catalysts in N-oxidation of various pyridine substrates using hydrogen peroxide (H2O2). Depending on the...
Maleic anhydride derivatives were evaluated as catalysts in N -oxidation of various pyridine substrates using hydrogen peroxide (H 2 O 2 ). Depending on the...
SourceID pubmedcentral
proquest
crossref
pubmed
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage 31657
SubjectTerms Catalysts
Chemistry
Dicarboxylic anhydride
Hydrogen peroxide
Maleic anhydride
Oxidation
Oxidizing agents
Peracids
Pyridines
Title Maleic anhydride derivatives as catalysts for N -oxidation of pyridine using hydrogen peroxide
URI https://www.ncbi.nlm.nih.gov/pubmed/39376527
https://www.proquest.com/docview/3117043439
https://www.proquest.com/docview/3114152963/abstract/
https://pubmed.ncbi.nlm.nih.gov/PMC11456919
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDCb6OGyXYWv38NYGGtarm8TW81hkLYoCKYZiKdLDYEiy1KZY7aBOh-Xfj5LjoNluO0uyDZIiP1rUR4AjbuxQWG5T4bVMaSltqpijKaXKcoNuk5mQKI4v-fmEXkzZdAt4dxcmFu1bMzuufj4cV7O7WFs5f7D9rk6s_208QgzPuBqq_jZsizx_lqO3_heDGB92XKS56pf0Ucc2M_eb0ecfSPl3ZeSzUHP2Gl6tMCI5ab_lDWy5ag9ejLrWbPvwY4xufWaJru6WoT26IyUa0q_I4d0Q3ZD4U2bZLBqCmJRcpvXvWds7idSezJe4BMElCTXvtyQ8okYzIoEyHOe5tzA5O_0-Ok9XfRJSi-nbfZpjyDbUo5wDnxtllmk3EEIJlHMubJkJaYXi0tiBL1XJpNJmkOlSaU2zDPOVd7BT1ZX7ACQzXg40k547i-oymvsh95kM-1p7lyfwpZNfMW_pMIp4jJ2r4iu9OolSvkjgoBNtsdoSTZGHHjfhHqtK4PN6GAUXTih05eqnOCcACnQKCbxvNbF-TWDu4ywTCcgNHa0nBKLszRG0n0iY3dnLx_9f-gleZghn2jK-A9hZPD65Q4QjC9OLaXwv2mAPdq-uJ9ObPyrw5yU
link.rule.ids 230,315,733,786,790,870,891,27955,27956,53825,53827
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VciiXtrxKoIARXLOPxM9jtaVaSneFUCt6QZHtOHRbmqya3Yrl1zN2NqtuOcHZdl7feOZzPP4G4AM3ti8st7EotIxpLm2smKMxpcpyg26TGb9QHI358Iwen7PzDeDtWZiQtG_NpFP-vO6Uk4uQWzm9tt02T6z7ZTRADs-46qvuA3iIEzZhd1bpjQfGMMb7rRppqro5vdGh0Mzlevz5i1Tez428E2yOduBb-5hNjslVZz4zHfv7noLjv7_HLmwv-Sc5aNofw4Yrn8DWoC379hS-jzBkTCzR5cXCl153JEcjvQ364DXRNQk_fBb1rCbId8k4rn5NmrpMpCrIdIFDkLgSn0__g_hLVGiixMuRYz_3DM6OPp4OhvGyBkNscWl4GadIBwwtEEOvFUeZZdr1hFACMUyFzRMhrVBcGtsrcpUzqbTpJTpXWtMkwbXQc9gsq9K9AJKYQvY0kwV3Fk3BaF70eZFI7zN04dII3rfIZNNGaiMLW-Spyg7p14OA33EE-y1o2XK61Vnq6-f4M7IqgnerZvxwfvdDl66ahz6erKDDiWCvwXh1G68KyFkiIpBr6K86eBHu9RbENIhxtxi-_P-hb2FreDo6yU4-jT-_gkcJ0qYmXXAfNmc3c_caac_MvAk2_gcXVAaZ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD6CIQEv3C-BAUbwmqZ1HF8ep45qDFpNiEmTEIpsx2YdLKmWFlF-Pce5VOt427NPrt_xOZ_jk-8AvOfGjoTlNhZey5gV0sYqcyxmTFluMGxmJiwUpzN-cMwOT7KTrqqy7soqS2vmg_LX-aCcnza1lYtzm_R1YsnRdIwcPuNqpJJF4ZObcAsnLRWXVuptFMZUxke9ImmqkoJd6KbZzNl2DvqPWF6tj7yUcCb34Vt_q22dyc_BamkG9u8VFcfrPcsDuNfxULLX2jyEG658BHfGffu3x_B9iqljbokuT9ehBbsjBTrr70YnvCa6Js2Hn3W9rAnyXjKLqz_ztj8TqTxZrPEQJLAk1NX_IOEUFboqCbLkaOeewPHkw9fxQdz1YogtLhHP4hRpgWEesQyacSyzmXZDIZRALFNhCyqkFYpLY4e-UEUmlTZDqgulNaMU10RPYaesSvccCDVeDnUmPXcWXcJo7kfcUxlih_YujeBdj06-aCU38marPFX5Pvuy12B4GMFuD1zeTbs6T0MfnfCvrIrg7WYYX1zYBdGlq1aNTSAtGHgieNbivLlMUAfkGRURyC0P2BgEMe7tEcS1EeXucXxx_UPfwO2j_Un--ePs00u4S5E9tVWDu7CzvFi5V8h-luZ14-b_AEFICRk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Maleic+anhydride+derivatives+as+catalysts+for+N+-oxidation+of+pyridine+using+hydrogen+peroxide&rft.jtitle=RSC+advances&rft.au=Gajeles%2C+Ghellyn&rft.au=Lee%2C+Kyung-Koo&rft.au=Lee%2C+Sang+Hee&rft.date=2024-10-01&rft.issn=2046-2069&rft.eissn=2046-2069&rft.volume=14&rft.issue=43&rft.spage=31657&rft.epage=31662&rft_id=info:doi/10.1039%2FD4RA05962J&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D4RA05962J
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2046-2069&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2046-2069&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2046-2069&client=summon