Quantum computing using photons

Photons as quantum bits have been amongst the first physical systems to be used for experimentally demonstrating some of the basic concepts in quantum computing starting from entanglement, to teleportation, to the realisation of a two-qubit CNOT gate and more recently for demonstrating quantum advan...

Full description

Saved in:
Bibliographic Details
Published inThe European physical journal. A, Hadrons and nuclei Vol. 61; no. 4
Main Author Couteau, Christophe
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 09.04.2025
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Photons as quantum bits have been amongst the first physical systems to be used for experimentally demonstrating some of the basic concepts in quantum computing starting from entanglement, to teleportation, to the realisation of a two-qubit CNOT gate and more recently for demonstrating quantum advantage using light. Photons can thus be used as qubits and are a potential platform for a future quantum computer. It is hard to predict which platform will win the race, perhaps none of them will surpass the others. What is for sure is that light can not be ignored altogether as this is the building block for communications and for propagating information in general, and thus for quantum information, in particular over long distances through optical fibres or via satellites. We will first develop what are the different ways of encoding qubits with photons and why photons are interesting systems with a great potential. We will then review some of the pioneering works up to what has been achieved more recently and we will conclude by what perspectives one can hope for using photonic qubits. Implicitly, in this work, we take the stand-point of a future fault-tolerant quantum computer using photons. In this review, some of the experimental technologies will be mentioned and briefly described but the reader will refer to further readings for more information onto how to produce, control and detect photonic qubits. It is also worth stating that this review has to be seen more as a first introduction to the subject.
AbstractList Photons as quantum bits have been amongst the first physical systems to be used for experimentally demonstrating some of the basic concepts in quantum computing starting from entanglement, to teleportation, to the realisation of a two-qubit CNOT gate and more recently for demonstrating quantum advantage using light. Photons can thus be used as qubits and are a potential platform for a future quantum computer. It is hard to predict which platform will win the race, perhaps none of them will surpass the others. What is for sure is that light can not be ignored altogether as this is the building block for communications and for propagating information in general, and thus for quantum information, in particular over long distances through optical fibres or via satellites. We will first develop what are the different ways of encoding qubits with photons and why photons are interesting systems with a great potential. We will then review some of the pioneering works up to what has been achieved more recently and we will conclude by what perspectives one can hope for using photonic qubits. Implicitly, in this work, we take the stand-point of a future fault-tolerant quantum computer using photons. In this review, some of the experimental technologies will be mentioned and briefly described but the reader will refer to further readings for more information onto how to produce, control and detect photonic qubits. It is also worth stating that this review has to be seen more as a first introduction to the subject.
ArticleNumber 75
Author Couteau, Christophe
Author_xml – sequence: 1
  givenname: Christophe
  orcidid: 0000-0001-7676-3205
  surname: Couteau
  fullname: Couteau, Christophe
  email: christophe.couteau@utt.fr, quantum@utt.fr
  organization: Université de Technologie de Troyes, Laboratory Light, nanomaterials and nanotechnologies - L2n CNRS UMR 7076, EUT+ Institute of Nanomaterials and Nanotechnologies EUTINN, European University of Technology, European Union
BookMark eNqFkE1LxDAQhoOs4O7qb9gFz3Fn2iRNjrL4BQsiKHgLbZqsW9ykJu3Bf29rBb15mZnD-7wDz4LMfPCWkBXCFSKDjW2bcpMQgAOFjFNAjgXlJ2SOLGdUAL7O_txnZJFSAwAsU2JOVk996bv-uDbh2Pbdwe_XfRpn-xa64NM5OXXle7IXP3tJXm5vnrf3dPd497C93lGTIXTUyVLWCqXKFZocjLKcu8wpVwswRpmyyCqBrLI5k46LrJLM1VC4onKcg3P5klxOvW0MH71NnW5CH_3wUucoJQMhCjakiillYkgpWqfbeDiW8VMj6NGGHm3oyYYebOhvG5oPpJzINBB-b-Nv_3_oF-x6ZzM
Cites_doi 10.1126/science.1142892
10.1103/PhysRevA.65.062324
10.1038/s41566-018-0301-6
10.1103/PhysRevLett.59.2044
10.1103/PhysRevLett.62.2205
10.1103/PhysRevLett.86.5188
10.1038/nature02054
10.1103/PhysRevA.71.052332
10.1103/RevModPhys.95.025003
10.1103/PhysRevA.57.R1477
10.1080/00107514.2018.1488463
10.1103/PhysRevA.71.060303
10.1038/30156
10.1103/PhysRevA.66.052305
10.1103/PhysRevLett.75.4337
10.1103/PhysRevLett.104.020501
10.1038/nature03347
10.1103/RevModPhys.77.513
10.1080/09500340008244040
10.1002/lpor.202100219
10.1103/PhysRevLett.120.240501
10.1140/epja/s10050-023-01006-7
10.1038/nnano.2017.218
10.1103/PhysRevLett.91.187903
10.1038/35085529
10.1103/PhysRevLett.99.250505
10.1080/09500340802331849
10.1038/35051009
10.1103/RevModPhys.74.145
10.1103/PhysRevLett.120.260502
10.1038/nature05346
10.1126/science.282.5389.706
10.1038/ncomms13716
10.1103/PhysRevLett.95.010501
10.1063/1.5115814
10.1140/epjqt/s40507-023-00190-1
10.1017/CBO9780511791239
10.1038/35000514
10.1038/s41566-019-0532-1
10.1103/PhysRevLett.67.661
10.1103/PhysRevLett.114.110504
10.1093/oso/9780198566724.001.0001
10.1038/lsa.2016.64
10.1126/science.1232572
10.1038/s41586-022-04725-x
10.1103/PhysRevLett.83.3103
10.1038/s41467-023-36493-1
10.1093/oso/9780198501770.001.0001
10.1080/00107514.2019.1667078
10.1103/PhysRevLett.93.080502
10.1103/PhysRevLett.98.140501
10.1038/s42254-023-00589-w
10.1103/RevModPhys.79.135
10.1103/PhysRevA.61.042304
10.1038/s41566-023-01187-z
10.1103/PhysRevLett.62.2124
10.1103/PhysicsPhysiqueFizika.1.195
10.1038/s41567-021-01333-w
10.1038/s42254-023-00583-2
10.1103/PhysRevLett.70.1895
10.1063/1.3610677
10.1103/PhysRevA.73.012113
10.1038/s41566-019-0363-0
10.1103/PhysRevLett.80.3891
10.1103/PhysRevA.52.3489
10.1103/PhysRevLett.95.210505
10.1038/37539
10.1038/s41566-024-01403-4
10.1038/nature09256
10.1038/nphys1710
10.1103/PhysRevA.65.012314
10.1103/PhysRevLett.99.250504
10.1126/science.1214707
10.1038/nphoton.2010.156
10.1103/PhysRevA.68.032316
10.1063/1.5088164
10.1080/09500340.2016.1148212
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright Springer Nature B.V. 2025
Copyright_xml – notice: The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Copyright Springer Nature B.V. 2025
DBID AAYXX
CITATION
DOI 10.1140/epja/s10050-025-01517-5
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1434-601X
ExternalDocumentID 10_1140_epja_s10050_025_01517_5
GroupedDBID -~X
.VR
06D
0R~
199
203
29G
29~
2J2
2JN
2JY
2KG
2KM
2LR
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAJBT
AAJKR
AANZL
AAPKM
AARTL
AASML
AATNV
AATVU
AAUYE
AAYIU
AAYQN
ABAKF
ABBRH
ABDBE
ABDBF
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACPIV
ACSTC
ACUHS
ACZOJ
ADHHG
ADHIR
ADKNI
ADKPE
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFFNX
AFHIU
AFOHR
AFQWF
AFWTZ
AFZKB
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHPBZ
AHWEU
AHYZX
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BGNMA
BSONS
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAP
EIOEI
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
HF~
HG5
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAS
LLZTM
M4Y
MA-
N9A
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P9T
PF-
PT5
QOS
R89
R9I
RED
RID
RNS
ROL
RSV
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
AAYXX
CITATION
ID FETCH-LOGICAL-c210t-f8a8d9189391c30c9e55f2f9fd60cc9ca72b614be348f562b84fd07f7bf550ff3
IEDL.DBID U2A
ISSN 1434-601X
1434-6001
IngestDate Fri Jul 25 20:59:07 EDT 2025
Tue Jul 01 05:11:16 EDT 2025
Mon Jul 21 06:07:53 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c210t-f8a8d9189391c30c9e55f2f9fd60cc9ca72b614be348f562b84fd07f7bf550ff3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7676-3205
PQID 3188406674
PQPubID 2043701
ParticipantIDs proquest_journals_3188406674
crossref_primary_10_1140_epja_s10050_025_01517_5
springer_journals_10_1140_epja_s10050_025_01517_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-04-09
PublicationDateYYYYMMDD 2025-04-09
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-09
  day: 09
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle Hadrons and Nuclei
PublicationTitle The European physical journal. A, Hadrons and nuclei
PublicationTitleAbbrev Eur. Phys. J. A
PublicationYear 2025
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References C Vigliar (1517_CR76) 2021; 17
C Couteau (1517_CR9) 2023; 5
K Wintersperger (1517_CR18) 2023; 10
N Gisin (1517_CR38) 2002; 74
D Bouwmeester (1517_CR54) 1997; 390
C Gerry (1517_CR2) 2004
TB Pittman (1517_CR31) 2005; 71
A Mair (1517_CR39) 2001; 412
M Kues (1517_CR40) 2019; 13
JL O’Brien (1517_CR36) 2007; 318
CD Bruzewicz (1517_CR16) 2019; 6
S Slussarenko (1517_CR3) 2019; 6
TB Pittman (1517_CR57) 2002; 66
G de Gliniasty (1517_CR81) 2024; 8
NJ Cerf (1517_CR45) 1998; 57
AG White (1517_CR61) 1999; 83
K Heshami (1517_CR23) 2016; 63
TC Ralph (1517_CR47) 2001; 65
LS Madsen (1517_CR78) 2022; 606
1517_CR74
E Togan (1517_CR82) 2010; 466
AK Ekert (1517_CR14) 1991; 67
1517_CR32
DJ Brod (1517_CR73) 2019; 1
M Fox (1517_CR4) 2006
S Barz (1517_CR29) 2010; 4
R Raussendorf (1517_CR49) 2001; 86
E Knill (1517_CR12) 2001; 409
TB Pittman (1517_CR62) 2003; 68
1517_CR6
BR Johnson (1517_CR25) 2010; 6
JL O’Brien (1517_CR65) 2005; 71
S Scheel (1517_CR10) 2009; 56
JL O’Brien (1517_CR33) 2003; 426
M Mohseni (1517_CR66) 2003; 91
X-L Wang (1517_CR64) 2018; 120
E Bocquillon (1517_CR42) 2013; 339
O Ezraty (1517_CR17) 2023; 59
IL Chuang (1517_CR11) 1995; 52
CH Bennett (1517_CR46) 1993; 70
S-H Wei (1517_CR15) 2022; 16
R Prevedel (1517_CR58) 2007; 445
C Couteau (1517_CR7) 2023; 5
JS Bell (1517_CR21) 1964; 1
P Senellart (1517_CR43) 2017; 12
J Roffe (1517_CR50) 2019; 60
P Kok (1517_CR30) 2000; 61
N Kiesel (1517_CR28) 2005; 95
PG Kwiat (1517_CR68) 2009; 47
MD Eisaman (1517_CR20) 2011; 82
J-W Pan (1517_CR63) 2000; 403
S Pirandola (1517_CR8) 2018; 12
V Leong (1517_CR59) 2016; 7
A Furusawa (1517_CR55) 1998; 282
R Loudon (1517_CR1) 2000
JL O’Brien (1517_CR34) 2004; 93
J Bao (1517_CR77) 2023; 17
BE Kane (1517_CR26) 1998; 393
S Bartolucci (1517_CR51) 2023; 14
TC Ralph (1517_CR48) 2002; 65
DE Browne (1517_CR56) 2005; 95
P Walther (1517_CR71) 2005; 434
G Burkard (1517_CR27) 2023; 95
J Wang (1517_CR79) 2020; 14
1517_CR13
1517_CR52
JD Franson (1517_CR37) 1989; 62
PG Kwiat (1517_CR60) 1995; 75
J Gao (1517_CR75) 2018; 120
BP Lanyon (1517_CR69) 2007; 99
C-Y Lu (1517_CR70) 2007; 99
J-W Pan (1517_CR53) 1998; 80
P Kok (1517_CR19) 2007; 79
TC Ralph (1517_CR24) 2006; 73
S Barz (1517_CR72) 2012; 335
CK Hong (1517_CR41) 1987; 59
GJ Milburn (1517_CR44) 1989; 62
N Maring (1517_CR80) 2024; 18
C Couteau (1517_CR22) 2018; 59
W-B Gao (1517_CR35) 2010; 104
SL Braunstein (1517_CR5) 2005; 77
MS Tame (1517_CR67) 2007; 98
References_xml – volume: 318
  start-page: 1567
  year: 2007
  ident: 1517_CR36
  publication-title: Science
  doi: 10.1126/science.1142892
– volume: 65
  year: 2002
  ident: 1517_CR48
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.65.062324
– volume: 12
  start-page: 724
  year: 2018
  ident: 1517_CR8
  publication-title: Nat. Photonics
  doi: 10.1038/s41566-018-0301-6
– volume: 59
  start-page: 2044
  year: 1987
  ident: 1517_CR41
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.59.2044
– volume: 62
  start-page: 2205
  year: 1989
  ident: 1517_CR37
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.62.2205
– volume: 86
  start-page: 5188
  year: 2001
  ident: 1517_CR49
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.86.5188
– volume: 426
  start-page: 264
  year: 2003
  ident: 1517_CR33
  publication-title: Nature
  doi: 10.1038/nature02054
– volume: 71
  year: 2005
  ident: 1517_CR31
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.71.052332
– volume: 95
  year: 2023
  ident: 1517_CR27
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.95.025003
– volume: 57
  start-page: R1477
  year: 1998
  ident: 1517_CR45
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.57.R1477
– volume: 59
  start-page: 291
  year: 2018
  ident: 1517_CR22
  publication-title: Cont. Phys.
  doi: 10.1080/00107514.2018.1488463
– volume: 1
  year: 2019
  ident: 1517_CR73
  publication-title: Adv. Photonics
– ident: 1517_CR6
– volume: 71
  start-page: 060303(R)
  year: 2005
  ident: 1517_CR65
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.71.060303
– volume: 393
  start-page: 133
  year: 1998
  ident: 1517_CR26
  publication-title: Nature
  doi: 10.1038/30156
– volume: 66
  year: 2002
  ident: 1517_CR57
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.66.052305
– volume: 75
  start-page: 4337
  year: 1995
  ident: 1517_CR60
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.75.4337
– volume: 104
  year: 2010
  ident: 1517_CR35
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.104.020501
– ident: 1517_CR13
– volume: 434
  start-page: 169
  year: 2005
  ident: 1517_CR71
  publication-title: Nature
  doi: 10.1038/nature03347
– volume: 77
  start-page: 513
  year: 2005
  ident: 1517_CR5
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.77.513
– volume: 47
  start-page: 257
  year: 2009
  ident: 1517_CR68
  publication-title: J. Mod. Opt.
  doi: 10.1080/09500340008244040
– volume: 16
  start-page: 2100219
  year: 2022
  ident: 1517_CR15
  publication-title: Laser Photonics Rev.
  doi: 10.1002/lpor.202100219
– volume: 120
  year: 2018
  ident: 1517_CR75
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.120.240501
– volume: 59
  start-page: 94
  year: 2023
  ident: 1517_CR17
  publication-title: Eur. Phys. J. A
  doi: 10.1140/epja/s10050-023-01006-7
– volume: 12
  start-page: 1026
  year: 2017
  ident: 1517_CR43
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2017.218
– volume: 91
  year: 2003
  ident: 1517_CR66
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.91.187903
– volume: 412
  start-page: 313
  year: 2001
  ident: 1517_CR39
  publication-title: Nature
  doi: 10.1038/35085529
– volume: 99
  year: 2007
  ident: 1517_CR69
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.99.250505
– volume: 56
  start-page: 141
  year: 2009
  ident: 1517_CR10
  publication-title: J. Mod. Opt.
  doi: 10.1080/09500340802331849
– volume: 409
  start-page: 46
  year: 2001
  ident: 1517_CR12
  publication-title: Nature
  doi: 10.1038/35051009
– volume: 74
  start-page: 145
  year: 2002
  ident: 1517_CR38
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.74.145
– volume: 120
  year: 2018
  ident: 1517_CR64
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.120.260502
– volume: 445
  start-page: 65
  year: 2007
  ident: 1517_CR58
  publication-title: Nature
  doi: 10.1038/nature05346
– volume: 282
  start-page: 706
  year: 1998
  ident: 1517_CR55
  publication-title: Science
  doi: 10.1126/science.282.5389.706
– volume: 7
  start-page: 13716
  year: 2016
  ident: 1517_CR59
  publication-title: Nature Comm.
  doi: 10.1038/ncomms13716
– volume: 95
  year: 2005
  ident: 1517_CR56
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.95.010501
– volume: 6
  year: 2019
  ident: 1517_CR3
  publication-title: Appl. Phys. Rev.
  doi: 10.1063/1.5115814
– volume: 10
  start-page: 32
  year: 2023
  ident: 1517_CR18
  publication-title: EPJ Quantum Technology
  doi: 10.1140/epjqt/s40507-023-00190-1
– volume-title: Introductory Quantum Optics
  year: 2004
  ident: 1517_CR2
  doi: 10.1017/CBO9780511791239
– volume: 403
  start-page: 515
  year: 2000
  ident: 1517_CR63
  publication-title: Nature
  doi: 10.1038/35000514
– volume: 14
  start-page: 273
  year: 2020
  ident: 1517_CR79
  publication-title: Nat. Phot.
  doi: 10.1038/s41566-019-0532-1
– volume: 67
  start-page: 661
  year: 1991
  ident: 1517_CR14
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.67.661
– volume: 8
  start-page: 1423
  year: 2024
  ident: 1517_CR81
  publication-title: A Spin-Optical Quantum Computing Architecture. Quantum
– ident: 1517_CR74
  doi: 10.1103/PhysRevLett.114.110504
– volume-title: Quantum Optics: an Introduction
  year: 2006
  ident: 1517_CR4
  doi: 10.1093/oso/9780198566724.001.0001
– ident: 1517_CR32
  doi: 10.1038/lsa.2016.64
– volume: 339
  start-page: 1054
  year: 2013
  ident: 1517_CR42
  publication-title: Science
  doi: 10.1126/science.1232572
– volume: 606
  start-page: 75
  year: 2022
  ident: 1517_CR78
  publication-title: Nature
  doi: 10.1038/s41586-022-04725-x
– volume: 83
  start-page: 3103
  year: 1999
  ident: 1517_CR61
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.83.3103
– volume: 14
  start-page: 912
  year: 2023
  ident: 1517_CR51
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-36493-1
– volume-title: The Quantum Theory of Light
  year: 2000
  ident: 1517_CR1
  doi: 10.1093/oso/9780198501770.001.0001
– volume: 60
  start-page: 226
  year: 2019
  ident: 1517_CR50
  publication-title: Contemp. Phys.
  doi: 10.1080/00107514.2019.1667078
– ident: 1517_CR52
– volume: 93
  year: 2004
  ident: 1517_CR34
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.93.080502
– volume: 98
  year: 2007
  ident: 1517_CR67
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.98.140501
– volume: 5
  start-page: 354
  year: 2023
  ident: 1517_CR9
  publication-title: Nat. Rev. Phys.
  doi: 10.1038/s42254-023-00589-w
– volume: 79
  start-page: 135
  year: 2007
  ident: 1517_CR19
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.79.135
– volume: 61
  year: 2000
  ident: 1517_CR30
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.61.042304
– volume: 17
  start-page: 573
  year: 2023
  ident: 1517_CR77
  publication-title: Nat. Phot.
  doi: 10.1038/s41566-023-01187-z
– volume: 62
  start-page: 2124
  year: 1989
  ident: 1517_CR44
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.62.2124
– volume: 1
  start-page: 195
  year: 1964
  ident: 1517_CR21
  publication-title: Physics
  doi: 10.1103/PhysicsPhysiqueFizika.1.195
– volume: 17
  start-page: 1137
  year: 2021
  ident: 1517_CR76
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-021-01333-w
– volume: 5
  start-page: 326
  year: 2023
  ident: 1517_CR7
  publication-title: Nat. Rev. Phys.
  doi: 10.1038/s42254-023-00583-2
– volume: 70
  start-page: 1895
  year: 1993
  ident: 1517_CR46
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.70.1895
– volume: 82
  year: 2011
  ident: 1517_CR20
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.3610677
– volume: 73
  year: 2006
  ident: 1517_CR24
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.73.012113
– volume: 13
  start-page: 170
  year: 2019
  ident: 1517_CR40
  publication-title: Nat. Photonics
  doi: 10.1038/s41566-019-0363-0
– volume: 80
  start-page: 3891
  year: 1998
  ident: 1517_CR53
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.80.3891
– volume: 52
  start-page: 3489
  year: 1995
  ident: 1517_CR11
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.52.3489
– volume: 95
  year: 2005
  ident: 1517_CR28
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.95.210505
– volume: 390
  start-page: 575
  year: 1997
  ident: 1517_CR54
  publication-title: Nature
  doi: 10.1038/37539
– volume: 18
  start-page: 603
  year: 2024
  ident: 1517_CR80
  publication-title: Nature Phot.
  doi: 10.1038/s41566-024-01403-4
– volume: 466
  start-page: 730
  year: 2010
  ident: 1517_CR82
  publication-title: Nature
  doi: 10.1038/nature09256
– volume: 6
  start-page: 663
  year: 2010
  ident: 1517_CR25
  publication-title: Nature Phys.
  doi: 10.1038/nphys1710
– volume: 65
  year: 2001
  ident: 1517_CR47
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.65.012314
– volume: 99
  year: 2007
  ident: 1517_CR70
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.99.250504
– volume: 335
  start-page: 303
  year: 2012
  ident: 1517_CR72
  publication-title: Science
  doi: 10.1126/science.1214707
– volume: 4
  start-page: 553
  year: 2010
  ident: 1517_CR29
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2010.156
– volume: 68
  year: 2003
  ident: 1517_CR62
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.68.032316
– volume: 6
  year: 2019
  ident: 1517_CR16
  publication-title: Appl. Phys. Rev.
  doi: 10.1063/1.5088164
– volume: 63
  start-page: 2005
  year: 2016
  ident: 1517_CR23
  publication-title: Nunn J. & Sussman B. J., J. Mod. Opt.
  doi: 10.1080/09500340.2016.1148212
SSID ssj0004296
Score 2.4311683
SecondaryResourceType review_article
Snippet Photons as quantum bits have been amongst the first physical systems to be used for experimentally demonstrating some of the basic concepts in quantum...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Fault tolerance
Hadrons
Heavy Ions
Nuclear Fusion
Nuclear Physics
Optical fibers
Particle and Nuclear Physics
Photonics
Photons
Physics
Physics and Astronomy
Quantum computers
Quantum computing
Quantum Computing in Low-Energy Nuclear Theory
Quantum entanglement
Quantum phenomena
Quantum teleportation
Qubits (quantum computing)
Review
Title Quantum computing using photons
URI https://link.springer.com/article/10.1140/epja/s10050-025-01517-5
https://www.proquest.com/docview/3188406674
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NSwMxEA3aIngRP7Fa6x68BrPZJLs5ttJaFAuChXoKmzSjCLbFtv_fyX5Q9aDgaQ9LAnkJM2_ImzxCrqzVoYUxpjwBT4UQkmZIc6ngDhTPs0TY0Jz8MFLDsbibyMlXq6-gdq-vJItIXb5ny6794i0PHW9MMho8WDGPYYCV26QpsYAPaq4x725aIrlWlZzrl8Hfk9GGYf64FC1yzWCf7FUkMeqWu3pAtvzskOwUYk23PCKXj2vEY_0eucKSAaeIgnz9JVq8zpHKLY_JeNB_uhnSyuiAOqy4VhSyPJvqGKmDjl3CnPZSAgcNU8Wc0y5PucU0an0iMkDCYjMBU5ZCagELDIDkhDRm85k_JVHKwTLNPEAwIIrTXFnmlQu2X6DSHFqE1Ss2i_I9C1P2JjMTQDIlSAZBMgVIRrZIu0bGVAd8aTAUYGmoVCpaJK7R2vz-Y8qzf4w5J7u82DpBmW6Txupj7S-QEKxshzS7g15vFL63z_f9TnEUPgH5q7C2
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8QwEB58IHoRn7i6ag96DKZpmjYHD4sP1icILniLTTajCK6Lu4v4k_yXTtotix4UBM-lQ_tlMvMNmS8DsGetDhLGmIkEPZNSpiwnmsukcKhEkSfSBnHy1bVqd-T5XXo3BR-1Fqbsdq-PJMtIXd1nyw98_6kIijeechZmsFIeowBb91Ne-Pc3qtYGh2fHtLT7Qpye3B612XigAHNU2QwZ5kXe1TGlaB27hDvt0xQFauwq7px2RSYspSvrE5kjEQObS-zyDDOLROQRE7I7DbPEQPKwgTqiNZFgCq3G7WM_fOzX5DdhtN8OYcvcdroEi2NSGrUqL1qGKd9bgbmyOdQNVmH3ZkT4j54jV46AIBNRaJd_iPqPL0QdB2vQ-Rcc1mGm99LzGxBlAi3X3COGgUdxVijLvXJhzBiqrMAG8PqPTb-6P8NUWmhuAkimAskQSKYEyaQNaNbImPGGGhgKPVSKKpXJBsQ1WpPHv5jc_MM7uzDfvr26NJdn1xdbsCDKZZSM6ybMDF9HfpvIyNDulG4Qwf1_-90nNunrYw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NTxsxEB0FKlAvqIVWpKRkD3C08Hq93vWBAyJEhABqpUbiZtaOh6oSSdQkqvhh_D_G-6GIHkBC4rxaa_fN2PNGnjcDcGCtDhLGmIkEPZNSpiwnmsukcKhEkSfSBnHy1bU6H8mLm_SmBY-NFqasdm-uJCtNQ-jSNFkczcZY97blR372pwjqN55yFuaxUkyjw7aprRz6h3-Uuc2PBz0y86EQ_bNfp-esHi7AHGU5C4Z5kY91TOFaxy7hTvs0RYEax4o7p12RCUuhy_pE5kgkweYSxzzDzCKResSE1l2DDzJIkGkbjcTJSo4ptKpLyV742OeBcMVu_7uQLeNc_xNs1QQ1Oqk86jO0_GQbNspCUTffge7PJdlieR-5chwELRGF0vm7aPZ7SjRy_gVG74LDV1ifTCd-F6JMoOWae8Qw_CjOCmW5Vy6MHEOVFdgG3vyxmVW9NEyli-YmgGQqkAyBZEqQTNqGToOMqTfX3NAxRGmpUplsQ9ygtXr8ypLf3vBOFzZ_9PrmcnA93IOPorSiZFx3YH3xd-m_Ey9Z2P3SCyK4fW-3ewI7Ye-W
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum+computing+using+photons&rft.jtitle=The+European+physical+journal.+A%2C+Hadrons+and+nuclei&rft.date=2025-04-09&rft.pub=Springer+Nature+B.V&rft.issn=1434-6001&rft.eissn=1434-601X&rft.volume=61&rft.issue=4&rft_id=info:doi/10.1140%2Fepja%2Fs10050-025-01517-5&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1434-601X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1434-601X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1434-601X&client=summon