On planar flows of viscoelastic fluids of Giesekus type

Viscoelastic rate-type fluid models of higher order are used to describe the behaviour of materials with complex microstructure: geomaterials like asphalt, biomaterials such as vitreous in the eye, synthetic rubbers such as styrene butadiene rubber. A standard model that belongs to the category of v...

Full description

Saved in:
Bibliographic Details
Published inNonlinearity Vol. 35; no. 12; pp. 6557 - 6604
Main Authors Bulíček, Miroslav, Los, Tomáš, Lu, Yong, Málek, Josef
Format Journal Article
LanguageEnglish
Published IOP Publishing 01.12.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Viscoelastic rate-type fluid models of higher order are used to describe the behaviour of materials with complex microstructure: geomaterials like asphalt, biomaterials such as vitreous in the eye, synthetic rubbers such as styrene butadiene rubber. A standard model that belongs to the category of viscoelastic rate-type fluid models of the second order is the model due to Burgers, which can be viewed as a mixture of two Oldroyd-B models of the first order. This viewpoint allows one to develop the whole hierarchy of generalized models of the Burgers type. We study one such generalization that can be viewed as a combination (mixture) of two Giesekus viscoelastic models having in general two different relaxation mechanisms. We prove, in two spatial dimensions, long-time and large-data existence of weak solutions to the considered generalization of the Burgers model subject to no-slip boundary condition. We also provide, as a particular case, a complete proof of global-in-time existence of weak solutions to the Giesekus model in two spatial dimensions.
AbstractList Viscoelastic rate-type fluid models of higher order are used to describe the behaviour of materials with complex microstructure: geomaterials like asphalt, biomaterials such as vitreous in the eye, synthetic rubbers such as styrene butadiene rubber. A standard model that belongs to the category of viscoelastic rate-type fluid models of the second order is the model due to Burgers, which can be viewed as a mixture of two Oldroyd-B models of the first order. This viewpoint allows one to develop the whole hierarchy of generalized models of the Burgers type. We study one such generalization that can be viewed as a combination (mixture) of two Giesekus viscoelastic models having in general two different relaxation mechanisms. We prove, in two spatial dimensions, long-time and large-data existence of weak solutions to the considered generalization of the Burgers model subject to no-slip boundary condition. We also provide, as a particular case, a complete proof of global-in-time existence of weak solutions to the Giesekus model in two spatial dimensions.
Author Málek, Josef
Lu, Yong
Los, Tomáš
Bulíček, Miroslav
Author_xml – sequence: 1
  givenname: Miroslav
  orcidid: 0000-0003-2380-3458
  surname: Bulíček
  fullname: Bulíček, Miroslav
  organization: Charles University Faculty of Mathematics and Physics, Sokolovská 83, 186 75 Praha 8, Czech Republic
– sequence: 2
  givenname: Tomáš
  orcidid: 0000-0001-7803-2203
  surname: Los
  fullname: Los, Tomáš
  organization: Charles University Faculty of Mathematics and Physics, Sokolovská 83, 186 75 Praha 8, Czech Republic
– sequence: 3
  givenname: Yong
  orcidid: 0000-0003-0586-963X
  surname: Lu
  fullname: Lu, Yong
  organization: Nanjing University Department of Mathematics, 22 Hankou Road, Gulou District, 210093, Nanjing, People’s Republic of China
– sequence: 4
  givenname: Josef
  orcidid: 0000-0001-6920-0842
  surname: Málek
  fullname: Málek, Josef
  organization: Charles University Faculty of Mathematics and Physics, Sokolovská 83, 186 75 Praha 8, Czech Republic
BookMark eNp9j8FLwzAUh4NMsJvePfYPsC6vTdLmKEOnMNhFzyF9SSCzNiXplP33rk48CHp68PG-H3xzMutDbwm5BnoLtGmWUAkoBGdsqVHqEs9I9oNmJKOSQ1HXwC_IPKUdpQBNWWWk3vb50Olex9x14SPlweXvPmGwnU6jxyPde_OF194m-7pP-XgY7CU5d7pL9ur7LsjLw_3z6rHYbNdPq7tNgSXQsUAjDTjHhLEtli2TpuQVE84iCtlyyirkGqhEhk60HMpGSGmNqA2rOQKtFoSedjGGlKJ1aoj-TceDAqqmcDVVqqlSncKPiviloB_16EM_Ru27_8Sbk-jDoHZhH_tj2d_vn6XHbcM
CODEN NONLE5
CitedBy_id crossref_primary_10_1007_s00021_023_00803_w
crossref_primary_10_1088_1361_6544_ad7cb5
crossref_primary_10_1142_S0218202524500064
Cites_doi 10.1016/j.jbiomech.2010.10.002
10.1016/0377-0257(82)85016-7
10.4064/cm139-2-1
10.1137/20M1384452
10.4310/cms.2007.v5.n4.a9
10.1016/j.mechrescom.2012.02.012
10.1098/rspa.2002.1111
10.1142/s0252959900000170
10.3390/fluids3040069
10.1016/j.matpur.2011.04.008
10.1016/ade/1489802453
10.1016/s0377-0257(99)00023-3
10.1007/bf01393835
10.1007/s00033-020-01424-3
10.1098/rspa.1950.0035
10.1080/10298436.2014.942860
10.1016/j.jnnfm.2020.104398
10.1007/s10492-009-0010-z
10.1007/978-3-319-63781-5
10.1088/1361-6544/ab3614
10.1016/j.ijnonlinmec.2015.03.009
ContentType Journal Article
Copyright 2022 IOP Publishing Ltd & London Mathematical Society
Copyright_xml – notice: 2022 IOP Publishing Ltd & London Mathematical Society
DBID AAYXX
CITATION
DOI 10.1088/1361-6544/ac9a2c
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
Physics
EISSN 1361-6544
EndPage 6604
ExternalDocumentID 10_1088_1361_6544_ac9a2c
nonac9a2c
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 12171235
  funderid: https://doi.org/10.13039/501100001809
– fundername: Grantová Agentura České Republiky
  grantid: 18-12719S
  funderid: https://doi.org/10.13039/501100001824
– fundername: Grantová Agentura, Univerzita Karlova
  grantid: 550218
  funderid: https://doi.org/10.13039/100007543
GroupedDBID -~X
.DC
123
1JI
4.4
5B3
5PX
5VS
5ZH
7.M
7.Q
AAGCD
AAGID
AAJIO
AAJKP
AATNI
ABCXL
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
F5P
HAK
IHE
IJHAN
IOP
IZVLO
KOT
LAP
M45
N5L
N9A
P2P
PJBAE
R4D
RIN
RNS
RO9
ROL
RPA
SY9
TN5
W28
XPP
YQT
ZMT
AAYXX
ADEQX
CITATION
ID FETCH-LOGICAL-c210t-cd9d1ff46debc2b49d25346fecc69b5043c5a109c4cf6b5128699ed67d475c103
IEDL.DBID IOP
ISSN 0951-7715
IngestDate Tue Jul 01 02:47:34 EDT 2025
Thu Apr 24 23:09:28 EDT 2025
Wed Aug 21 03:34:58 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License This article is available under the terms of the IOP-Standard License.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c210t-cd9d1ff46debc2b49d25346fecc69b5043c5a109c4cf6b5128699ed67d475c103
Notes NON-105936.R1
London Mathematical Society
ORCID 0000-0001-7803-2203
0000-0003-0586-963X
0000-0001-6920-0842
0000-0003-2380-3458
PageCount 48
ParticipantIDs crossref_primary_10_1088_1361_6544_ac9a2c
iop_journals_10_1088_1361_6544_ac9a2c
crossref_citationtrail_10_1088_1361_6544_ac9a2c
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationTitle Nonlinearity
PublicationTitleAbbrev Non
PublicationTitleAlternate Nonlinearity
PublicationYear 2022
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Málek (nonac9a2cbib16) 2015; 76
Monismith (nonac9a2cbib19) 1962; vol 203
Bulíček (nonac9a2cbib3) 2021; 53
Bulíček (nonac9a2cbib2) 2019; 32
Bathory (nonac9a2cbib1) 2021; 10
Málek (nonac9a2cbib14) 2018
Narayan (nonac9a2cbib20) 2012; 43
Málek (nonac9a2cbib18) 2018; 3
Řehoř (nonac9a2cbib25) 2020; 286
Kreml (nonac9a2cbib11) 2015; 139
Wolf (nonac9a2cbib26) 2017; 22
Sharif-Kashani (nonac9a2cbib24) 2011; 44
Málek (nonac9a2cbib15) 1996; vol 13
Galdi (nonac9a2cbib7) 1994; vol 38
Málek (nonac9a2cbib17) 2015; 16
Oldroyd (nonac9a2cbib21) 1950; 200
Rajagopal (nonac9a2cbib22) 2000; 88
Lions (nonac9a2cbib12) 2000; 21
DiPerna (nonac9a2cbib5) 1989; 98
Burgers (nonac9a2cbib4) 1939
Masmoudi (nonac9a2cbib13) 2011; 96
Hu (nonac9a2cbib9) 2007; 5
Feireisl (nonac9a2cbib6) 2017
Giesekus (nonac9a2cbib8) 1982; 11
Karra (nonac9a2cbib10) 2009; 54
Rajagopal (nonac9a2cbib23) 2004; 460
References_xml – volume: 44
  start-page: 419
  year: 2011
  ident: nonac9a2cbib24
  article-title: Rheology of the vitreous gel: effects of macromolecule organization on the viscoelastic properties
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2010.10.002
– volume: 11
  start-page: 69
  year: 1982
  ident: nonac9a2cbib8
  article-title: A simple constitutive equation for polymer fluids based on the concept of deformation-dependent tensorial mobility
  publication-title: J. Non-Newton. Fluid Mech.
  doi: 10.1016/0377-0257(82)85016-7
– volume: 139
  start-page: 149
  year: 2015
  ident: nonac9a2cbib11
  article-title: On the global existence for a regularized model of viscoelastic non-Newtonian fluid
  publication-title: Colloq. Math.
  doi: 10.4064/cm139-2-1
– volume: 53
  start-page: 3985
  year: 2021
  ident: nonac9a2cbib3
  article-title: On incompressible heat-conducting viscoelastic rate-type fluids with stress-diffusion and purely spherical elastic response
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/20M1384452
– volume: 5
  start-page: 909
  year: 2007
  ident: nonac9a2cbib9
  article-title: New entropy estimates for the Oldroyd-B model and related models
  publication-title: Commun. Math. Sci.
  doi: 10.4310/cms.2007.v5.n4.a9
– volume: 43
  start-page: 66
  year: 2012
  ident: nonac9a2cbib20
  article-title: Nonlinear viscoelastic response of asphalt binders: an experimental study of the relaxation of torque and normal force in torsion
  publication-title: Mech. Res. Commun.
  doi: 10.1016/j.mechrescom.2012.02.012
– volume: 460
  start-page: 631
  year: 2004
  ident: nonac9a2cbib23
  article-title: On thermomechanical restrictions of continua
  publication-title: Proc. R. Soc. A
  doi: 10.1098/rspa.2002.1111
– volume: vol 13
  year: 1996
  ident: nonac9a2cbib15
– volume: vol 38
  year: 1994
  ident: nonac9a2cbib7
– volume: 21
  start-page: 131
  year: 2000
  ident: nonac9a2cbib12
  article-title: Global solutions for some Oldroyd models of non-Newtonian flows
  publication-title: Chin. Ann. Math. B
  doi: 10.1142/s0252959900000170
– start-page: 3
  year: 2018
  ident: nonac9a2cbib14
  article-title: Derivation of equations for continuum mechanics and thermodynamics of fluids
– volume: 3
  year: 2018
  ident: nonac9a2cbib18
  article-title: Derivation of the variants of the Burgers model using a thermodynamic approach and appealing to the concept of evolving natural configurations
  publication-title: Fluids
  doi: 10.3390/fluids3040069
– volume: 96
  start-page: 502
  year: 2011
  ident: nonac9a2cbib13
  article-title: Global existence of weak solutions to macroscopic models of polymeric flows
  publication-title: J. Math. Pure Appl.
  doi: 10.1016/j.matpur.2011.04.008
– volume: 22
  start-page: 305
  year: 2017
  ident: nonac9a2cbib26
  article-title: On the local pressure of the Navier–Stokes equations and related systems
  publication-title: Adv. Differ. Equ.
  doi: 10.1016/ade/1489802453
– volume: 88
  start-page: 207
  year: 2000
  ident: nonac9a2cbib22
  article-title: A thermodynamic frame work for rate type fluid models
  publication-title: J. Non-Newton. Fluid Mech.
  doi: 10.1016/s0377-0257(99)00023-3
– volume: 98
  start-page: 511
  year: 1989
  ident: nonac9a2cbib5
  article-title: Ordinary differential equations, transport theory and Sobolev spaces
  publication-title: Invent. Math.
  doi: 10.1007/bf01393835
– volume: 10
  start-page: 501
  year: 2021
  ident: nonac9a2cbib1
  article-title: Large data existence theory for three-dimensional unsteady flows of rate-type viscoelastic fluids with stress diffusion
  publication-title: Adv. Nonlinear Anal.
  doi: 10.1007/s00033-020-01424-3
– volume: 200
  start-page: 523
  year: 1950
  ident: nonac9a2cbib21
  article-title: On the formulation of rheological equations of state
  publication-title: Proc. R. Soc. London A
  doi: 10.1098/rspa.1950.0035
– volume: 16
  start-page: 297
  year: 2015
  ident: nonac9a2cbib17
  article-title: A thermodynamically compatible model for describing the response of asphalt binders
  publication-title: Int. J. Pavement Eng.
  doi: 10.1080/10298436.2014.942860
– volume: 286
  start-page: 104398
  year: 2020
  ident: nonac9a2cbib25
  article-title: A comparison of constitutive models for describing the flow of uncured styrene-butadiene rubber
  publication-title: J. Non-Newton. Fluid Mech.
  doi: 10.1016/j.jnnfm.2020.104398
– volume: 54
  start-page: 147
  year: 2009
  ident: nonac9a2cbib10
  article-title: Development of three dimensional constitutive theories based on lower dimensional experimental data
  publication-title: Appl. Math.
  doi: 10.1007/s10492-009-0010-z
– year: 2017
  ident: nonac9a2cbib6
  article-title: Singular limits in thermodynamics of viscous fluids
  doi: 10.1007/978-3-319-63781-5
– volume: 32
  start-page: 4665
  year: 2019
  ident: nonac9a2cbib2
  article-title: On a class of compressible viscoelastic rate-type fluids with stress-diffusion
  publication-title: Nonlinearity
  doi: 10.1088/1361-6544/ab3614
– volume: vol 203
  year: 1962
  ident: nonac9a2cbib19
  article-title: Viscoelastic behavior of asphalt concrete pavements
– volume: 76
  start-page: 42
  year: 2015
  ident: nonac9a2cbib16
  article-title: On a variant of the Maxwell and Oldroyd-B models within the context of a thermodynamic basis
  publication-title: Int. J. Non-Linear Mech.
  doi: 10.1016/j.ijnonlinmec.2015.03.009
– start-page: 5
  year: 1939
  ident: nonac9a2cbib4
  article-title: Mechanical considerations—model systems—phenomenological theories of relaxations and viscosity
SSID ssj0011823
Score 2.3510017
Snippet Viscoelastic rate-type fluid models of higher order are used to describe the behaviour of materials with complex microstructure: geomaterials like asphalt,...
SourceID crossref
iop
SourceType Enrichment Source
Index Database
Publisher
StartPage 6557
SubjectTerms Burgers model
Giesekus model
large-data existence
long-time existence
viscoelasticity
weak solution
Title On planar flows of viscoelastic fluids of Giesekus type
URI https://iopscience.iop.org/article/10.1088/1361-6544/ac9a2c
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFH5sE0EP_piK8xc96MFDt7VN0gRPIs4pzHlwsINQmqSBsdGOdVPwrzdpuzJFRby14bUNX9rme3kv3wM4d_w2c7Eb2YZL24ijyOYSYVuqNhaEUUqypezeI-kO0MMQDytwVe6FSabFr7-pD3Oh4BzCIiGOthyPODbBCLVCwUJXVGHNo4SY8gX3_acyhKCJc1lH3vcdXMQov7vDpzmpqp-7MsV0tuFl2bk8s2TcXMx5U7x_0W38Z-93YKugntZ1broLlSiuw-aKIKE-65Uqrmkd1rP0UJHugd-PrekkjMOZpSbJW2olynodpSKJNPnWxrp1MZJZ852RnRgvUsss7u7DoHP7fNO1i5ILttC-39wWkklHKURkxIXLEZMu9hBReqAJ40btTODQaTOBhCJckwVKGIsk8SXysXDa3gHU4iSODsFi2hfjkmGFQ4W0l0p9Ro2cmoNCZUpLNKC1BD0QhR65KYsxCbK4OKWBgSowUAU5VA24LK-Y5locv9he6BEIig8y_dHu6I92x7Dhmo0PWSLLCdTms0V0qunInJ9lr90H9SvVVQ
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bT8IwFD4RjEYfvKBGvO5BH3wYsK3t1kejIqhcHiThba7tmhDIRhho4q-33QZBo8bEt605u33d1u_0nH4H4MJya9TGdmhqLm0ihkKTCYRNIWuYE-p5JJ3KbrVJo4ce-rif1zlN18LE4_zXX1GbmVBwBmGeEOdVLYdYJsEIVQNOA5tXx0IWYBU7xNHi-c1OdxFGUOR5UUvedS2cxym_O8uncamgrr00zNS34WV-g1l2ybAym7IKf_-i3fiPJ9iBrZyCGteZ-S6shFEJNpeECdVea6HmmpRgLU0T5ckeuJ3IGI-CKJgYchS_JUYsjddBwuNQkXBlrFpnA5E232v5ieEsMfQk7z706nfPNw0zL71gcuUDTk0uqLCkRESEjNsMUWFjBxGpOpxQplXPOA6sGuWIS8IUafAIpaEgrkAu5lbNOYBiFEfhIRhU-WRMUCxxIJHyVj2XelpWzUKB1CUmylCdA-_zXJdcl8cY-Wl83PN8DZev4fIzuMpwtThinGly_GJ7qXrBzz_M5Ee7oz_ancN697buPzXbj8ewYeu1EGluywkUp5NZeKoYypSdpW_hBzaL2rk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+planar+flows+of+viscoelastic+fluids+of+Giesekus+type&rft.jtitle=Nonlinearity&rft.au=Bul%C3%AD%C4%8Dek%2C+Miroslav&rft.au=Los%2C+Tom%C3%A1%C5%A1&rft.au=Lu%2C+Yong&rft.au=M%C3%A1lek%2C+Josef&rft.date=2022-12-01&rft.issn=0951-7715&rft.eissn=1361-6544&rft.volume=35&rft.issue=12&rft.spage=6557&rft.epage=6604&rft_id=info:doi/10.1088%2F1361-6544%2Fac9a2c&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1361_6544_ac9a2c
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-7715&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-7715&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-7715&client=summon