Rank-Based Verification for Long-Term Face Tracking in Crowded Scenes
Most current multi-object trackers focus on short-term tracking, and are based on deep and complex systems that often cannot operate in real-time, making them impractical for video-surveillance. In this paper we present a long-term, multi-face tracking architecture conceived for working in crowded c...
Saved in:
Published in | IEEE transactions on biometrics, behavior, and identity science Vol. 3; no. 4; pp. 495 - 505 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.10.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Most current multi-object trackers focus on short-term tracking, and are based on deep and complex systems that often cannot operate in real-time, making them impractical for video-surveillance. In this paper we present a long-term, multi-face tracking architecture conceived for working in crowded contexts where faces are often the only visible part of a person. Our system benefits from advances in the fields of face detection and face recognition to achieve long-term tracking, and is particularly unconstrained to the motion and occlusions of people. It follows a tracking-by-detection approach, combining a fast short-term visual tracker with a novel online tracklet reconnection strategy grounded on rank-based face verification. The proposed rank-based constraint favours higher inter-class distance among tracklets, and reduces the propagation of errors due to wrong reconnections. Additionally, a correction module is included to correct past assignments with no extra computational cost. We present a series of experiments introducing novel specialized metrics for the evaluation of long-term tracking capabilities, and publicly release a video dataset with 10 manually annotated videos and a total length of 8' 54". Our findings validate the robustness of each of the proposed modules, and demonstrate that, in these challenging contexts, our approach yields up to 50% longer tracks than state-of-the-art deep learning trackers. |
---|---|
AbstractList | Most current multi-object trackers focus on short-term tracking, and are based on deep and complex systems that often cannot operate in real-time, making them impractical for video-surveillance. In this paper we present a long-term, multi-face tracking architecture conceived for working in crowded contexts where faces are often the only visible part of a person. Our system benefits from advances in the fields of face detection and face recognition to achieve long-term tracking, and is particularly unconstrained to the motion and occlusions of people. It follows a tracking-by-detection approach, combining a fast short-term visual tracker with a novel online tracklet reconnection strategy grounded on rank-based face verification. The proposed rank-based constraint favours higher inter-class distance among tracklets, and reduces the propagation of errors due to wrong reconnections. Additionally, a correction module is included to correct past assignments with no extra computational cost. We present a series of experiments introducing novel specialized metrics for the evaluation of long-term tracking capabilities, and publicly release a video dataset with 10 manually annotated videos and a total length of 8’ 54”. Our findings validate the robustness of each of the proposed modules, and demonstrate that, in these challenging contexts, our approach yields up to 50% longer tracks than state-of-the-art deep learning trackers. |
Author | Fernandez Tena, Carles Barquero, German Hupont, Isabelle |
Author_xml | – sequence: 1 givenname: German orcidid: 0000-0001-8381-3549 surname: Barquero fullname: Barquero, German email: german.barquero@hertasecurity.com organization: Research Department, Herta, Barcelona, Spain – sequence: 2 givenname: Isabelle orcidid: 0000-0002-9811-9397 surname: Hupont fullname: Hupont, Isabelle organization: Research Department, Herta, Barcelona, Spain – sequence: 3 givenname: Carles surname: Fernandez Tena fullname: Fernandez Tena, Carles organization: Research Department, Herta, Barcelona, Spain |
BookMark | eNp9kEtLAzEUhYMoWGv_gG4GXE_Nq5lkaUurhUpBR7chk7lT0kdSM1PEf-_0gYgL4cK9i_PdwzlX6NwHDwjdENwnBKv7fDidP_cppqTPsFIDIc9QhwqWpYLj7PzXfYl6db3EGFPMVTsdNH4xfpUOTQ1l8g7RVc6axgWfVCEms-AXaQ5xk0yMhSSPxq6cXyTOJ6MYPsuWebXgob5GF5VZ19A77S56m4zz0VM6mz9ORw-z1FKCm5SSgcksY5lgAqwUJeeiKmhRVLKiYCnwkjOuBpiUipQD4FwqKcus4EIWQlrWRXfHv9sYPnZQN3oZdtG3lpqKNg8VrUWrkkeVjaGuI1TauuaQqonGrTXBet-bPvSm973pU28tSv-g2-g2Jn79D90eIQcAP4DiinOu2Df57nkF |
CitedBy_id | crossref_primary_10_1007_s11042_023_17297_3 crossref_primary_10_1177_25158414241302871 crossref_primary_10_1109_TGRS_2024_3516833 crossref_primary_10_1142_S0218001424560019 crossref_primary_10_1038_s41598_022_14981_6 crossref_primary_10_1142_S0219691323500443 crossref_primary_10_1109_TIFS_2023_3274359 crossref_primary_10_1007_s11042_023_17758_9 |
Cites_doi | 10.1609/aaai.v34i07.6758 10.1145/2647868.2654966 10.1109/ICCV.2011.6126374 10.1109/ICPR.2010.675 10.1109/AVSS.2018.8639144 10.1109/TPAMI.2015.2509974 10.1109/BTAS.2017.8272675 10.1109/TPAMI.2014.2345390 10.1109/CVPR.2018.00684 10.1109/CVPR.2015.7298684 10.1109/AVSS.2015.7301767 10.1109/CVPR46437.2021.00386 10.1016/j.patcog.2015.08.002 10.1109/ICIP.2010.5653525 10.1109/CVPR46437.2021.01217 10.1109/ICIP.2016.7533003 10.1109/FG.2019.8756581 10.1002/nav.3800020109 10.1109/CVPR.2019.00441 10.1109/CVPR42600.2020.00632 10.1007/s11042-017-4672-3 10.1007/978-3-319-46454-1_26 10.1109/CVPR.2010.5539960 10.1109/TPAMI.2017.2778152 10.1155/2008/246309 10.1007/978-3-030-01240-3_7 10.1109/CVPR.2018.00063 10.1109/CVPRW.2011.5981881 10.1109/ACCESS.2019.2900296 10.1109/CVPR.2019.00813 10.1016/j.neucom.2019.11.023 10.1109/CVPR.2017.515 10.1109/IJCB48548.2020.9304892 10.1109/CVPR.2019.00142 10.1109/CVPR.2019.00482 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
DOI | 10.1109/TBIOM.2021.3099568 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2637-6407 |
EndPage | 505 |
ExternalDocumentID | 10_1109_TBIOM_2021_3099568 9494449 |
Genre | orig-research |
GrantInformation_xml | – fundername: Spanish Project AI-MARS (CIEN CDTI Programme) grantid: IDI-20181108 |
GroupedDBID | 0R~ 97E AAJGR AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG AGQYO AHBIQ AKJIK ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE JAVBF OCL RIA RIE AAYXX CITATION 7SP 8FD L7M |
ID | FETCH-LOGICAL-c210t-215a7c337636ec86d446fb2bbf8f2ec2e4d4349501d91d5e448988d7b468b68c3 |
IEDL.DBID | RIE |
ISSN | 2637-6407 |
IngestDate | Sun Jun 29 12:06:07 EDT 2025 Tue Jul 01 02:43:54 EDT 2025 Thu Apr 24 23:03:12 EDT 2025 Wed Aug 27 05:01:18 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c210t-215a7c337636ec86d446fb2bbf8f2ec2e4d4349501d91d5e448988d7b468b68c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9811-9397 0000-0001-8381-3549 |
PQID | 2604926215 |
PQPubID | 4437219 |
PageCount | 11 |
ParticipantIDs | crossref_primary_10_1109_TBIOM_2021_3099568 ieee_primary_9494449 proquest_journals_2604926215 crossref_citationtrail_10_1109_TBIOM_2021_3099568 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-10-01 |
PublicationDateYYYYMMDD | 2021-10-01 |
PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE transactions on biometrics, behavior, and identity science |
PublicationTitleAbbrev | TBIOM |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref34 ref12 sauer (ref16) 2019 ref37 ref36 ref31 ref30 bertinetto (ref29) 2016 ref33 ref11 ref32 ref10 li (ref2) 2014 zhang (ref15) 2020 ref1 ref39 ref38 ref19 meinhardt (ref18) 2021 dendorfer (ref40) 2019 milan (ref47) 2016 vaswani (ref17) 2017 zheng (ref35) 2018 ref24 ref45 ref23 ref48 ref26 ref25 ref42 ref41 ref22 ref44 yan (ref20) 2021 ref21 ref43 nikitin (ref46) 2014 ref28 wang (ref14) 2019 ref27 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref8 doi: 10.1609/aaai.v34i07.6758 – start-page: 111 year: 2014 ident: ref46 article-title: Face quality assessment for face verification in video publication-title: Proc GraphiCon – ident: ref37 doi: 10.1145/2647868.2654966 – ident: ref38 doi: 10.1109/ICCV.2011.6126374 – ident: ref25 doi: 10.1109/ICPR.2010.675 – ident: ref22 doi: 10.1109/AVSS.2018.8639144 – ident: ref27 doi: 10.1109/TPAMI.2015.2509974 – ident: ref42 doi: 10.1109/BTAS.2017.8272675 – year: 2020 ident: ref15 publication-title: FairMOT On the Fairness of Detection and Re-Identification in Multiple Object Tracking – ident: ref28 doi: 10.1109/TPAMI.2014.2345390 – ident: ref36 doi: 10.1109/CVPR.2018.00684 – ident: ref39 doi: 10.1109/CVPR.2015.7298684 – ident: ref26 doi: 10.1109/AVSS.2015.7301767 – ident: ref1 doi: 10.1109/CVPR46437.2021.00386 – year: 2021 ident: ref18 publication-title: Trackformer Multi-object tracking with transformers – ident: ref34 doi: 10.1016/j.patcog.2015.08.002 – ident: ref31 doi: 10.1109/ICIP.2010.5653525 – start-page: 850 year: 2016 ident: ref29 article-title: Fully-convolutional siamese networks for object tracking publication-title: Proc Eur Conf Comput Vis – ident: ref19 doi: 10.1109/CVPR46437.2021.01217 – year: 2019 ident: ref16 publication-title: Tracking holistic object representations – ident: ref7 doi: 10.1109/ICIP.2016.7533003 – year: 2021 ident: ref20 publication-title: Learning spatio-temporal transformer for visual tracking – ident: ref4 doi: 10.1109/FG.2019.8756581 – ident: ref43 doi: 10.1002/nav.3800020109 – ident: ref10 doi: 10.1109/CVPR.2019.00441 – year: 2019 ident: ref14 publication-title: Towards real-time multi-object tracking – ident: ref21 doi: 10.1109/CVPR42600.2020.00632 – ident: ref30 doi: 10.1007/s11042-017-4672-3 – start-page: 152 year: 2014 ident: ref2 article-title: DeepReID: Deep filter pairing neural network for person re-identification publication-title: Proc CVPR – ident: ref33 doi: 10.1007/978-3-319-46454-1_26 – ident: ref23 doi: 10.1109/CVPR.2010.5539960 – ident: ref45 doi: 10.1109/TPAMI.2017.2778152 – ident: ref48 doi: 10.1155/2008/246309 – ident: ref9 doi: 10.1007/978-3-030-01240-3_7 – ident: ref32 doi: 10.1109/CVPR.2018.00063 – year: 2019 ident: ref40 publication-title: Cvpr19 tracking and detection challenge How crowded can it get? – year: 2016 ident: ref47 publication-title: Mot16 A benchmark for multi-object tracking – year: 2017 ident: ref17 publication-title: Attention is all you need – ident: ref41 doi: 10.1109/CVPRW.2011.5981881 – ident: ref3 doi: 10.1109/ACCESS.2019.2900296 – ident: ref13 doi: 10.1109/CVPR.2019.00813 – ident: ref5 doi: 10.1016/j.neucom.2019.11.023 – ident: ref24 doi: 10.1109/CVPR.2017.515 – ident: ref12 doi: 10.1109/CVPR.2019.00813 – ident: ref6 doi: 10.1109/IJCB48548.2020.9304892 – year: 2018 ident: ref35 publication-title: An automatic system for unconstrained video-based face recognition – ident: ref11 doi: 10.1109/CVPR.2019.00142 – ident: ref44 doi: 10.1109/CVPR.2019.00482 |
SSID | ssj0002049049 |
Score | 2.2333074 |
Snippet | Most current multi-object trackers focus on short-term tracking, and are based on deep and complex systems that often cannot operate in real-time, making them... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 495 |
SubjectTerms | Complex systems Face recognition face tracking face verification Faces Long-term tracking Machine learning Modules rank-based verification Real-time systems Target tracking Tracking Verification Video surveillance |
Title | Rank-Based Verification for Long-Term Face Tracking in Crowded Scenes |
URI | https://ieeexplore.ieee.org/document/9494449 https://www.proquest.com/docview/2604926215 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB5qQfDiq4rVKnvwpmmTzSbdPdrSUsUqaCu9hexLpJKKtgf99c4macEH4i2H3bDMzM7MNzsPgFPrp0yFAd40V_7LTKA8boVCzGMjlZqozYos35t4MGZXk2hSgfNVLYwxJk8-M033mb_l65lauFBZSzDBGBNrsIbArajVWsVTqHvCYmJZF-OL1qhzeTtEBEiDZui7Ak7-xfbkw1R-aODcrPS3YLg8UJFNMm0u5rKpPr71avzvibdhs_QvyUUhEDtQMdkurBcTJ99r0LtLs6nXQdOlyQMKny1DdgR9V3I9yx69Eapq0k-VIWjGlAukk6eMdBGta9xzr5xu3INxvzfqDrxykoKnENLNPbTraVuFTpnERvFYIwi0kkppuaVGUcM0CxEq-YEWgY4MYjbBuW5LFnMZcxXuQzWbZeYACG1bFnKNhg2dD0utjLVOFQ1lEFrKY1aHYEnjRJVtxt20i-ckhxu-SHK-JI4vScmXOpyt9rwUTTb-XF1zhF6tLGlch8aSlUl5D98SRGt5R8QgOvx91xFsuH8X6XkNqM5fF-YY3Yy5PMnl6xMLGs0X |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB2xCMGFHVEo4AM3SIkdJ7WPFFEVaEGCgrhF8YYQKEXQHuDrGSdpJRYhbjnYiuWx580bzwKw78KM64jiTfPpv9xSHQgnNXIeF-vMxk1eRvleJp1bfn4f30_B4SQXxlpbBJ_Zhv8s3vLNQI-8q-xIcsk5l9Mwi7gf0zJba-JRYf4Ri8txZkwoj_qts6seckBGG1HoUzjFF_Qp2qn80MEFsLSXoDdeUhlP8tQYDVVDf3yr1vjfNS_DYmVhkuPySKzAlM1XYa7sOfm-BqfXWf4UtBC8DLnD4-cqpx1B65V0B_lD0EdlTdqZtgSBTHtXOnnMyQnydYNzbrTXjutw2z7tn3SCqpdCoJHUDQNE9qypI69OEqtFYpAGOsWUcsIxq5nlhkdIlkJqJDWxRdYmhTBNxROhEqGjDZjJB7ndBMKajkfCILSh-eGYU4kxmWaRopFjIuE1oOM9TnVVaNz3u3hOC8IRyrSQS-rlklZyqcHBZM5LWWbjz9FrfqMnI6s9rkF9LMq0uolvKfK1oiYijbd-n7UH851-r5t2zy4vtmHB_6cM1qvDzPB1ZHfQ6Biq3eKsfQLr2tBg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rank-Based+Verification+for+Long-Term+Face+Tracking+in+Crowded+Scenes&rft.jtitle=IEEE+transactions+on+biometrics%2C+behavior%2C+and+identity+science&rft.au=Barquero%2C+German&rft.au=Hupont%2C+Isabelle&rft.au=Fernandez+Tena%2C+Carles&rft.date=2021-10-01&rft.issn=2637-6407&rft.eissn=2637-6407&rft.volume=3&rft.issue=4&rft.spage=495&rft.epage=505&rft_id=info:doi/10.1109%2FTBIOM.2021.3099568&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TBIOM_2021_3099568 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2637-6407&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2637-6407&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2637-6407&client=summon |