Rank-Based Verification for Long-Term Face Tracking in Crowded Scenes

Most current multi-object trackers focus on short-term tracking, and are based on deep and complex systems that often cannot operate in real-time, making them impractical for video-surveillance. In this paper we present a long-term, multi-face tracking architecture conceived for working in crowded c...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biometrics, behavior, and identity science Vol. 3; no. 4; pp. 495 - 505
Main Authors Barquero, German, Hupont, Isabelle, Fernandez Tena, Carles
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.10.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Most current multi-object trackers focus on short-term tracking, and are based on deep and complex systems that often cannot operate in real-time, making them impractical for video-surveillance. In this paper we present a long-term, multi-face tracking architecture conceived for working in crowded contexts where faces are often the only visible part of a person. Our system benefits from advances in the fields of face detection and face recognition to achieve long-term tracking, and is particularly unconstrained to the motion and occlusions of people. It follows a tracking-by-detection approach, combining a fast short-term visual tracker with a novel online tracklet reconnection strategy grounded on rank-based face verification. The proposed rank-based constraint favours higher inter-class distance among tracklets, and reduces the propagation of errors due to wrong reconnections. Additionally, a correction module is included to correct past assignments with no extra computational cost. We present a series of experiments introducing novel specialized metrics for the evaluation of long-term tracking capabilities, and publicly release a video dataset with 10 manually annotated videos and a total length of 8' 54". Our findings validate the robustness of each of the proposed modules, and demonstrate that, in these challenging contexts, our approach yields up to 50% longer tracks than state-of-the-art deep learning trackers.
AbstractList Most current multi-object trackers focus on short-term tracking, and are based on deep and complex systems that often cannot operate in real-time, making them impractical for video-surveillance. In this paper we present a long-term, multi-face tracking architecture conceived for working in crowded contexts where faces are often the only visible part of a person. Our system benefits from advances in the fields of face detection and face recognition to achieve long-term tracking, and is particularly unconstrained to the motion and occlusions of people. It follows a tracking-by-detection approach, combining a fast short-term visual tracker with a novel online tracklet reconnection strategy grounded on rank-based face verification. The proposed rank-based constraint favours higher inter-class distance among tracklets, and reduces the propagation of errors due to wrong reconnections. Additionally, a correction module is included to correct past assignments with no extra computational cost. We present a series of experiments introducing novel specialized metrics for the evaluation of long-term tracking capabilities, and publicly release a video dataset with 10 manually annotated videos and a total length of 8’ 54”. Our findings validate the robustness of each of the proposed modules, and demonstrate that, in these challenging contexts, our approach yields up to 50% longer tracks than state-of-the-art deep learning trackers.
Author Fernandez Tena, Carles
Barquero, German
Hupont, Isabelle
Author_xml – sequence: 1
  givenname: German
  orcidid: 0000-0001-8381-3549
  surname: Barquero
  fullname: Barquero, German
  email: german.barquero@hertasecurity.com
  organization: Research Department, Herta, Barcelona, Spain
– sequence: 2
  givenname: Isabelle
  orcidid: 0000-0002-9811-9397
  surname: Hupont
  fullname: Hupont, Isabelle
  organization: Research Department, Herta, Barcelona, Spain
– sequence: 3
  givenname: Carles
  surname: Fernandez Tena
  fullname: Fernandez Tena, Carles
  organization: Research Department, Herta, Barcelona, Spain
BookMark eNp9kEtLAzEUhYMoWGv_gG4GXE_Nq5lkaUurhUpBR7chk7lT0kdSM1PEf-_0gYgL4cK9i_PdwzlX6NwHDwjdENwnBKv7fDidP_cppqTPsFIDIc9QhwqWpYLj7PzXfYl6db3EGFPMVTsdNH4xfpUOTQ1l8g7RVc6axgWfVCEms-AXaQ5xk0yMhSSPxq6cXyTOJ6MYPsuWebXgob5GF5VZ19A77S56m4zz0VM6mz9ORw-z1FKCm5SSgcksY5lgAqwUJeeiKmhRVLKiYCnwkjOuBpiUipQD4FwqKcus4EIWQlrWRXfHv9sYPnZQN3oZdtG3lpqKNg8VrUWrkkeVjaGuI1TauuaQqonGrTXBet-bPvSm973pU28tSv-g2-g2Jn79D90eIQcAP4DiinOu2Df57nkF
CitedBy_id crossref_primary_10_1007_s11042_023_17297_3
crossref_primary_10_1177_25158414241302871
crossref_primary_10_1109_TGRS_2024_3516833
crossref_primary_10_1142_S0218001424560019
crossref_primary_10_1038_s41598_022_14981_6
crossref_primary_10_1142_S0219691323500443
crossref_primary_10_1109_TIFS_2023_3274359
crossref_primary_10_1007_s11042_023_17758_9
Cites_doi 10.1609/aaai.v34i07.6758
10.1145/2647868.2654966
10.1109/ICCV.2011.6126374
10.1109/ICPR.2010.675
10.1109/AVSS.2018.8639144
10.1109/TPAMI.2015.2509974
10.1109/BTAS.2017.8272675
10.1109/TPAMI.2014.2345390
10.1109/CVPR.2018.00684
10.1109/CVPR.2015.7298684
10.1109/AVSS.2015.7301767
10.1109/CVPR46437.2021.00386
10.1016/j.patcog.2015.08.002
10.1109/ICIP.2010.5653525
10.1109/CVPR46437.2021.01217
10.1109/ICIP.2016.7533003
10.1109/FG.2019.8756581
10.1002/nav.3800020109
10.1109/CVPR.2019.00441
10.1109/CVPR42600.2020.00632
10.1007/s11042-017-4672-3
10.1007/978-3-319-46454-1_26
10.1109/CVPR.2010.5539960
10.1109/TPAMI.2017.2778152
10.1155/2008/246309
10.1007/978-3-030-01240-3_7
10.1109/CVPR.2018.00063
10.1109/CVPRW.2011.5981881
10.1109/ACCESS.2019.2900296
10.1109/CVPR.2019.00813
10.1016/j.neucom.2019.11.023
10.1109/CVPR.2017.515
10.1109/IJCB48548.2020.9304892
10.1109/CVPR.2019.00142
10.1109/CVPR.2019.00482
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TBIOM.2021.3099568
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2637-6407
EndPage 505
ExternalDocumentID 10_1109_TBIOM_2021_3099568
9494449
Genre orig-research
GrantInformation_xml – fundername: Spanish Project AI-MARS (CIEN CDTI Programme)
  grantid: IDI-20181108
GroupedDBID 0R~
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AGQYO
AHBIQ
AKJIK
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
JAVBF
OCL
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c210t-215a7c337636ec86d446fb2bbf8f2ec2e4d4349501d91d5e448988d7b468b68c3
IEDL.DBID RIE
ISSN 2637-6407
IngestDate Sun Jun 29 12:06:07 EDT 2025
Tue Jul 01 02:43:54 EDT 2025
Thu Apr 24 23:03:12 EDT 2025
Wed Aug 27 05:01:18 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c210t-215a7c337636ec86d446fb2bbf8f2ec2e4d4349501d91d5e448988d7b468b68c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9811-9397
0000-0001-8381-3549
PQID 2604926215
PQPubID 4437219
PageCount 11
ParticipantIDs crossref_primary_10_1109_TBIOM_2021_3099568
ieee_primary_9494449
proquest_journals_2604926215
crossref_citationtrail_10_1109_TBIOM_2021_3099568
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-10-01
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on biometrics, behavior, and identity science
PublicationTitleAbbrev TBIOM
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref34
ref12
sauer (ref16) 2019
ref37
ref36
ref31
ref30
bertinetto (ref29) 2016
ref33
ref11
ref32
ref10
li (ref2) 2014
zhang (ref15) 2020
ref1
ref39
ref38
ref19
meinhardt (ref18) 2021
dendorfer (ref40) 2019
milan (ref47) 2016
vaswani (ref17) 2017
zheng (ref35) 2018
ref24
ref45
ref23
ref48
ref26
ref25
ref42
ref41
ref22
ref44
yan (ref20) 2021
ref21
ref43
nikitin (ref46) 2014
ref28
wang (ref14) 2019
ref27
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref8
  doi: 10.1609/aaai.v34i07.6758
– start-page: 111
  year: 2014
  ident: ref46
  article-title: Face quality assessment for face verification in video
  publication-title: Proc GraphiCon
– ident: ref37
  doi: 10.1145/2647868.2654966
– ident: ref38
  doi: 10.1109/ICCV.2011.6126374
– ident: ref25
  doi: 10.1109/ICPR.2010.675
– ident: ref22
  doi: 10.1109/AVSS.2018.8639144
– ident: ref27
  doi: 10.1109/TPAMI.2015.2509974
– ident: ref42
  doi: 10.1109/BTAS.2017.8272675
– year: 2020
  ident: ref15
  publication-title: FairMOT On the Fairness of Detection and Re-Identification in Multiple Object Tracking
– ident: ref28
  doi: 10.1109/TPAMI.2014.2345390
– ident: ref36
  doi: 10.1109/CVPR.2018.00684
– ident: ref39
  doi: 10.1109/CVPR.2015.7298684
– ident: ref26
  doi: 10.1109/AVSS.2015.7301767
– ident: ref1
  doi: 10.1109/CVPR46437.2021.00386
– year: 2021
  ident: ref18
  publication-title: Trackformer Multi-object tracking with transformers
– ident: ref34
  doi: 10.1016/j.patcog.2015.08.002
– ident: ref31
  doi: 10.1109/ICIP.2010.5653525
– start-page: 850
  year: 2016
  ident: ref29
  article-title: Fully-convolutional siamese networks for object tracking
  publication-title: Proc Eur Conf Comput Vis
– ident: ref19
  doi: 10.1109/CVPR46437.2021.01217
– year: 2019
  ident: ref16
  publication-title: Tracking holistic object representations
– ident: ref7
  doi: 10.1109/ICIP.2016.7533003
– year: 2021
  ident: ref20
  publication-title: Learning spatio-temporal transformer for visual tracking
– ident: ref4
  doi: 10.1109/FG.2019.8756581
– ident: ref43
  doi: 10.1002/nav.3800020109
– ident: ref10
  doi: 10.1109/CVPR.2019.00441
– year: 2019
  ident: ref14
  publication-title: Towards real-time multi-object tracking
– ident: ref21
  doi: 10.1109/CVPR42600.2020.00632
– ident: ref30
  doi: 10.1007/s11042-017-4672-3
– start-page: 152
  year: 2014
  ident: ref2
  article-title: DeepReID: Deep filter pairing neural network for person re-identification
  publication-title: Proc CVPR
– ident: ref33
  doi: 10.1007/978-3-319-46454-1_26
– ident: ref23
  doi: 10.1109/CVPR.2010.5539960
– ident: ref45
  doi: 10.1109/TPAMI.2017.2778152
– ident: ref48
  doi: 10.1155/2008/246309
– ident: ref9
  doi: 10.1007/978-3-030-01240-3_7
– ident: ref32
  doi: 10.1109/CVPR.2018.00063
– year: 2019
  ident: ref40
  publication-title: Cvpr19 tracking and detection challenge How crowded can it get?
– year: 2016
  ident: ref47
  publication-title: Mot16 A benchmark for multi-object tracking
– year: 2017
  ident: ref17
  publication-title: Attention is all you need
– ident: ref41
  doi: 10.1109/CVPRW.2011.5981881
– ident: ref3
  doi: 10.1109/ACCESS.2019.2900296
– ident: ref13
  doi: 10.1109/CVPR.2019.00813
– ident: ref5
  doi: 10.1016/j.neucom.2019.11.023
– ident: ref24
  doi: 10.1109/CVPR.2017.515
– ident: ref12
  doi: 10.1109/CVPR.2019.00813
– ident: ref6
  doi: 10.1109/IJCB48548.2020.9304892
– year: 2018
  ident: ref35
  publication-title: An automatic system for unconstrained video-based face recognition
– ident: ref11
  doi: 10.1109/CVPR.2019.00142
– ident: ref44
  doi: 10.1109/CVPR.2019.00482
SSID ssj0002049049
Score 2.2333074
Snippet Most current multi-object trackers focus on short-term tracking, and are based on deep and complex systems that often cannot operate in real-time, making them...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 495
SubjectTerms Complex systems
Face recognition
face tracking
face verification
Faces
Long-term tracking
Machine learning
Modules
rank-based verification
Real-time systems
Target tracking
Tracking
Verification
Video surveillance
Title Rank-Based Verification for Long-Term Face Tracking in Crowded Scenes
URI https://ieeexplore.ieee.org/document/9494449
https://www.proquest.com/docview/2604926215
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB5qQfDiq4rVKnvwpmmTzSbdPdrSUsUqaCu9hexLpJKKtgf99c4macEH4i2H3bDMzM7MNzsPgFPrp0yFAd40V_7LTKA8boVCzGMjlZqozYos35t4MGZXk2hSgfNVLYwxJk8-M033mb_l65lauFBZSzDBGBNrsIbArajVWsVTqHvCYmJZF-OL1qhzeTtEBEiDZui7Ak7-xfbkw1R-aODcrPS3YLg8UJFNMm0u5rKpPr71avzvibdhs_QvyUUhEDtQMdkurBcTJ99r0LtLs6nXQdOlyQMKny1DdgR9V3I9yx69Eapq0k-VIWjGlAukk6eMdBGta9xzr5xu3INxvzfqDrxykoKnENLNPbTraVuFTpnERvFYIwi0kkppuaVGUcM0CxEq-YEWgY4MYjbBuW5LFnMZcxXuQzWbZeYACG1bFnKNhg2dD0utjLVOFQ1lEFrKY1aHYEnjRJVtxt20i-ckhxu-SHK-JI4vScmXOpyt9rwUTTb-XF1zhF6tLGlch8aSlUl5D98SRGt5R8QgOvx91xFsuH8X6XkNqM5fF-YY3Yy5PMnl6xMLGs0X
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB2xCMGFHVEo4AM3SIkdJ7WPFFEVaEGCgrhF8YYQKEXQHuDrGSdpJRYhbjnYiuWx580bzwKw78KM64jiTfPpv9xSHQgnNXIeF-vMxk1eRvleJp1bfn4f30_B4SQXxlpbBJ_Zhv8s3vLNQI-8q-xIcsk5l9Mwi7gf0zJba-JRYf4Ri8txZkwoj_qts6seckBGG1HoUzjFF_Qp2qn80MEFsLSXoDdeUhlP8tQYDVVDf3yr1vjfNS_DYmVhkuPySKzAlM1XYa7sOfm-BqfXWf4UtBC8DLnD4-cqpx1B65V0B_lD0EdlTdqZtgSBTHtXOnnMyQnydYNzbrTXjutw2z7tn3SCqpdCoJHUDQNE9qypI69OEqtFYpAGOsWUcsIxq5nlhkdIlkJqJDWxRdYmhTBNxROhEqGjDZjJB7ndBMKajkfCILSh-eGYU4kxmWaRopFjIuE1oOM9TnVVaNz3u3hOC8IRyrSQS-rlklZyqcHBZM5LWWbjz9FrfqMnI6s9rkF9LMq0uolvKfK1oiYijbd-n7UH851-r5t2zy4vtmHB_6cM1qvDzPB1ZHfQ6Biq3eKsfQLr2tBg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rank-Based+Verification+for+Long-Term+Face+Tracking+in+Crowded+Scenes&rft.jtitle=IEEE+transactions+on+biometrics%2C+behavior%2C+and+identity+science&rft.au=Barquero%2C+German&rft.au=Hupont%2C+Isabelle&rft.au=Fernandez+Tena%2C+Carles&rft.date=2021-10-01&rft.issn=2637-6407&rft.eissn=2637-6407&rft.volume=3&rft.issue=4&rft.spage=495&rft.epage=505&rft_id=info:doi/10.1109%2FTBIOM.2021.3099568&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TBIOM_2021_3099568
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2637-6407&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2637-6407&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2637-6407&client=summon