Empirical Analysis of Sales Decline Risk Estimation Model Based on COVID-19: Comparison of Airline, Railway, and Travel Companies in Japan

Owing to the coronavirus disease 2019 (COVID-19) pandemic, many companies have experienced a rapid and considerable decline in sales, causing a major crisis. Particularly, the effect of the drastic drop in demand was critical for transportation companies, whose performance has been stable for many y...

Full description

Saved in:
Bibliographic Details
Published inJournal of disaster research Vol. 20; no. 4; pp. 489 - 502
Main Author Ohori, Katsumasa
Format Journal Article
LanguageEnglish
Published 01.08.2025
Online AccessGet full text

Cover

Loading…
Abstract Owing to the coronavirus disease 2019 (COVID-19) pandemic, many companies have experienced a rapid and considerable decline in sales, causing a major crisis. Particularly, the effect of the drastic drop in demand was critical for transportation companies, whose performance has been stable for many years. These companies find it difficult to predict a major decline in sales far beyond the historical maximum. To address this issue, Ohori ( J. Disaster Res. , Vol.18, No.7, 2023) proposed a model for estimating the sales decline risk by applying the quantile method of three-parameter lognormal distribution with a good fit for both tails, and demonstrated the model in a single case. In this study, to elucidate the reliability, limitations, and applicability of the model, we empirically analyze it using actual sales data from three stable performing companies in the airline, railway, and travel industries in Japan. This study has revealed the following: (1) as a common characteristic of three companies, the statistic is lognormally distributed for a time interval of one, two, and three years, regardless of whether pre- or post-pandemic; (2) the time interval for which high estimation accuracy can be obtained depends on the sales stability of each company; (3) the cases in which the model is not applicable or the estimation accuracy is considerably deteriorated are verified using actual data; (4) the excess probabilities of the three companies’ actual sales declines (2020 and 2021) are estimated to be between 0.06% and 1.6%; (5) the estimated sales decline risk curve reflects the sales change trend for each company. These findings would be useful for stable companies and insurance companies to analyze the worst-case scenario of sales decline in the future and to consider specific countermeasures, such as risk financing.
AbstractList Owing to the coronavirus disease 2019 (COVID-19) pandemic, many companies have experienced a rapid and considerable decline in sales, causing a major crisis. Particularly, the effect of the drastic drop in demand was critical for transportation companies, whose performance has been stable for many years. These companies find it difficult to predict a major decline in sales far beyond the historical maximum. To address this issue, Ohori ( J. Disaster Res. , Vol.18, No.7, 2023) proposed a model for estimating the sales decline risk by applying the quantile method of three-parameter lognormal distribution with a good fit for both tails, and demonstrated the model in a single case. In this study, to elucidate the reliability, limitations, and applicability of the model, we empirically analyze it using actual sales data from three stable performing companies in the airline, railway, and travel industries in Japan. This study has revealed the following: (1) as a common characteristic of three companies, the statistic is lognormally distributed for a time interval of one, two, and three years, regardless of whether pre- or post-pandemic; (2) the time interval for which high estimation accuracy can be obtained depends on the sales stability of each company; (3) the cases in which the model is not applicable or the estimation accuracy is considerably deteriorated are verified using actual data; (4) the excess probabilities of the three companies’ actual sales declines (2020 and 2021) are estimated to be between 0.06% and 1.6%; (5) the estimated sales decline risk curve reflects the sales change trend for each company. These findings would be useful for stable companies and insurance companies to analyze the worst-case scenario of sales decline in the future and to consider specific countermeasures, such as risk financing.
Author Ohori, Katsumasa
Author_xml – sequence: 1
  givenname: Katsumasa
  surname: Ohori
  fullname: Ohori, Katsumasa
  organization: Graduate School of Software and Information Science, Iwate Prefectural University, 152-52 Sugo, Takizawa, Iwate 020-0693, Japan
BookMark eNotkM9OwzAMxiM0JMbYmWseYGX517ThNroBQ0OTxuBaeU0qZXRplUygvQJPTVbwxZ8t-7P8u0YD1zqD0C0ld4womU732kfF0ruOiFxdoCHNc57khJNBr2nCRMav0DiEPYmRikxxOUQ_i0Nnva2gwTMHzSnYgNsav0FjAp6bqrHO4I0Nn3gRjvYAR9s6_Npq0-AHCEbjWBbrj-U8oeoeF-2hA29DbEaTmfXn9QnegG2-4TTB4DTeeviK2_2os_GKdfgFor5BlzU0wYz_8wi9Py62xXOyWj8ti9kqqRglKjFaMqKVEYxRmapaCg0pcCqMqgXRoFROJSdM6ixXqVC7epcxIBUVUghRZXyEpn--lW9D8KYuOx8_86eSkrKnWUaa5Zlm2dPkv7jqaSI
Cites_doi 10.1016/j.ijforecast.2022.01.002
10.1007/978-3-7643-7399-3
10.1080/10629360500109023
10.3130/aijs.74.1879
10.2469/faj.v52.n6.2039
10.1016/0022-1694(84)90069-6
10.2208/jscej.1988.393_151
10.20965/jdr.2023.p0796
10.20965/jdr.2014.p0699
10.2208/jscejsp.70.33
10.1002/9780470391341
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.20965/jdr.2025.p0489
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Social Welfare & Social Work
EISSN 1883-8030
EndPage 502
ExternalDocumentID 10_20965_jdr_2025_p0489
GroupedDBID 6KP
7.U
AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
EBS
EJD
GROUPED_DOAJ
JSF
JSH
OK1
RJT
RZJ
TH9
ID FETCH-LOGICAL-c2109-ed620d9e4221659f64da5a314e9f40da998163026d789549bfb72a0c146444c73
ISSN 1881-2473
IngestDate Wed Aug 06 19:13:35 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2109-ed620d9e4221659f64da5a314e9f40da998163026d789549bfb72a0c146444c73
OpenAccessLink https://doi.org/10.20965/jdr.2025.p0489
PageCount 14
ParticipantIDs crossref_primary_10_20965_jdr_2025_p0489
PublicationCentury 2000
PublicationDate 2025-08-01
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-01
  day: 01
PublicationDecade 2020
PublicationTitle Journal of disaster research
PublicationYear 2025
References key-10.20965/jdr.2025.p0489-25
key-10.20965/jdr.2025.p0489-26
key-10.20965/jdr.2025.p0489-27
key-10.20965/jdr.2025.p0489-28
key-10.20965/jdr.2025.p0489-21
key-10.20965/jdr.2025.p0489-22
key-10.20965/jdr.2025.p0489-23
key-10.20965/jdr.2025.p0489-24
key-10.20965/jdr.2025.p0489-20
key-10.20965/jdr.2025.p0489-7
key-10.20965/jdr.2025.p0489-8
key-10.20965/jdr.2025.p0489-5
key-10.20965/jdr.2025.p0489-6
key-10.20965/jdr.2025.p0489-3
key-10.20965/jdr.2025.p0489-4
key-10.20965/jdr.2025.p0489-1
key-10.20965/jdr.2025.p0489-2
key-10.20965/jdr.2025.p0489-18
key-10.20965/jdr.2025.p0489-19
key-10.20965/jdr.2025.p0489-14
key-10.20965/jdr.2025.p0489-15
key-10.20965/jdr.2025.p0489-16
key-10.20965/jdr.2025.p0489-17
key-10.20965/jdr.2025.p0489-10
key-10.20965/jdr.2025.p0489-32
key-10.20965/jdr.2025.p0489-11
key-10.20965/jdr.2025.p0489-33
key-10.20965/jdr.2025.p0489-12
key-10.20965/jdr.2025.p0489-13
key-10.20965/jdr.2025.p0489-30
key-10.20965/jdr.2025.p0489-31
key-10.20965/jdr.2025.p0489-9
key-10.20965/jdr.2025.p0489-29
References_xml – ident: key-10.20965/jdr.2025.p0489-9
– ident: key-10.20965/jdr.2025.p0489-19
  doi: 10.1016/j.ijforecast.2022.01.002
– ident: key-10.20965/jdr.2025.p0489-7
– ident: key-10.20965/jdr.2025.p0489-17
  doi: 10.1007/978-3-7643-7399-3
– ident: key-10.20965/jdr.2025.p0489-33
– ident: key-10.20965/jdr.2025.p0489-12
– ident: key-10.20965/jdr.2025.p0489-14
– ident: key-10.20965/jdr.2025.p0489-3
– ident: key-10.20965/jdr.2025.p0489-27
– ident: key-10.20965/jdr.2025.p0489-5
– ident: key-10.20965/jdr.2025.p0489-29
– ident: key-10.20965/jdr.2025.p0489-31
  doi: 10.1080/10629360500109023
– ident: key-10.20965/jdr.2025.p0489-23
– ident: key-10.20965/jdr.2025.p0489-10
  doi: 10.3130/aijs.74.1879
– ident: key-10.20965/jdr.2025.p0489-4
  doi: 10.2469/faj.v52.n6.2039
– ident: key-10.20965/jdr.2025.p0489-25
– ident: key-10.20965/jdr.2025.p0489-21
– ident: key-10.20965/jdr.2025.p0489-20
  doi: 10.1016/0022-1694(84)90069-6
– ident: key-10.20965/jdr.2025.p0489-8
– ident: key-10.20965/jdr.2025.p0489-13
  doi: 10.2208/jscej.1988.393_151
– ident: key-10.20965/jdr.2025.p0489-32
– ident: key-10.20965/jdr.2025.p0489-1
  doi: 10.20965/jdr.2023.p0796
– ident: key-10.20965/jdr.2025.p0489-15
– ident: key-10.20965/jdr.2025.p0489-30
– ident: key-10.20965/jdr.2025.p0489-6
– ident: key-10.20965/jdr.2025.p0489-28
– ident: key-10.20965/jdr.2025.p0489-2
– ident: key-10.20965/jdr.2025.p0489-18
  doi: 10.20965/jdr.2014.p0699
– ident: key-10.20965/jdr.2025.p0489-11
  doi: 10.2208/jscejsp.70.33
– ident: key-10.20965/jdr.2025.p0489-26
– ident: key-10.20965/jdr.2025.p0489-24
– ident: key-10.20965/jdr.2025.p0489-22
– ident: key-10.20965/jdr.2025.p0489-16
  doi: 10.1002/9780470391341
SSID ssj0000547936
Score 2.3167837
Snippet Owing to the coronavirus disease 2019 (COVID-19) pandemic, many companies have experienced a rapid and considerable decline in sales, causing a major crisis....
SourceID crossref
SourceType Index Database
StartPage 489
Title Empirical Analysis of Sales Decline Risk Estimation Model Based on COVID-19: Comparison of Airline, Railway, and Travel Companies in Japan
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKcuGClpd4LGgOCCF1UxLHSWpuSylaFsFK0IW9RXbsiIhuWrVdIfgJ_GrGj6TmsdLCJUqtdpR6vsyM7ZlvCHkccwzi81pEkicyYlznkZSMRrrIkpprQ_dhNvTfvssPT9jRaXY6GIRZS-cbOaq-_7Wu5H-0imOoV1Ml-w-a7YXiAN6jfvGKGsbrpXQ8PVs2juIj5Bb5gDZ_jYakshHke5M7PsUX2dUo2uZn8-ELdF7KHBRMjj--fhkl3OwMTMKehMODZuVYSFEHopl_Fd-6TM-ZaVk096aksRldwyN0uu0Fka5q1sLwMQw9s1C_A338eeEK3d-IDc6bWItwE4JmfQpcZzfH4ySizHUlGeluLEUH6I9dvLGlcQAqFlhO5joJeSec2TLsP-w7NVw1xsArQ-VKs9Ey7n8XMmn_5uH6vENc8VgRJQoojYDSCrhCrlJcZYQrckcNb7YdbX1a9_ccOZSV8ezXhwjimiBAme2S636-4cDB5AYZ6PYm2XPl1_BJz2ux0vAEuoHF6sst8qNHEHQIgkUNFkHgEQQGQbBFEFgEgUUQ4McOQc9hix8jxONnHzx69gGxAw470GMHmhYsdm6Tk1fT2eQw8t05ooomMY-0ymmsuGaUJnnG65wpkYk0YZrXLFYC1_EY6-MSXxVjc5Ysa1lQEVfomhljVZHeITvtotV3CQgmKONJKnlVMEWl5ELroogrmlWp4MU98rSb23LpSFjKC1R5__JffUCubaG8R3Y2q3P9ECPMjXxkcfAT3Mt5Dg
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Empirical+Analysis+of+Sales+Decline+Risk+Estimation+Model+Based+on+COVID-19%3A+Comparison+of+Airline%2C+Railway%2C+and+Travel+Companies+in+Japan&rft.jtitle=Journal+of+disaster+research&rft.au=Ohori%2C+Katsumasa&rft.date=2025-08-01&rft.issn=1881-2473&rft.eissn=1883-8030&rft.volume=20&rft.issue=4&rft.spage=489&rft.epage=502&rft_id=info:doi/10.20965%2Fjdr.2025.p0489&rft.externalDBID=n%2Fa&rft.externalDocID=10_20965_jdr_2025_p0489
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1881-2473&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1881-2473&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1881-2473&client=summon