Artificial Intelligence in Clinical Decision Support: Challenges for Evaluating AI and Practical Implications A Position Paper from the IMIA Technology Assessment & Quality Development in Health Informatics Working Group and the EFMI Working Group for Assessment of Health Information Systems
Objectives: This paper draws attention to: i) key considerations for evaluating artificial intelligence (AI) enabled clinical decision support; and ii) challenges and practical implications of AI design, development, selection, use, and ongoing surveillance. Method: A narrative review of existing re...
Saved in:
Published in | Yearbook of medical informatics Vol. 28; no. 1; pp. 128 - 134 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Stuttgart
Georg Thieme Verlag KG
01.08.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 0943-4747 2364-0502 |
DOI | 10.1055/s-0039-1677903 |
Cover
Loading…
Abstract | Objectives: This paper draws attention to: i) key considerations for evaluating artificial intelligence (AI) enabled clinical decision support; and ii) challenges and practical implications of AI design, development, selection, use, and ongoing surveillance.
Method: A narrative review of existing research and evaluation approaches along with expert perspectives drawn from the International Medical Informatics Association (IMIA) Working Group on Technology Assessment and Quality Development in Health Informatics and the European Federation for Medical Informatics (EFMI) Working Group for Assessment of Health Information Systems.
Results: There is a rich history and tradition of evaluating AI in healthcare. While evaluators can learn from past efforts, and build on best practice evaluation frameworks and methodologies, questions remain about how to evaluate the safety and effectiveness of AI that dynamically harness vast amounts of genomic, biomarker, phenotype, electronic record, and care delivery data from across health systems. This paper first provides a historical perspective about the evaluation of AI in healthcare. It then examines key challenges of evaluating AI-enabled clinical decision support during design, development, selection, use, and ongoing surveillance. Practical aspects of evaluating AI in healthcare, including approaches to evaluation and indicators to monitor AI are also discussed.
Conclusion: Commitment to rigorous initial and ongoing evaluation will be critical to ensuring the safe and effective integration of AI in complex sociotechnical settings. Specific enhancements that are required for the new generation of AI-enabled clinical decision support will emerge through practical application. |
---|---|
AbstractList | Objectives: This paper draws attention to: i) key considerations for evaluating artificial intelligence (AI) enabled clinical decision support; and ii) challenges and practical implications of AI design, development, selection, use, and ongoing surveillance.
Method: A narrative review of existing research and evaluation approaches along with expert perspectives drawn from the International Medical Informatics Association (IMIA) Working Group on Technology Assessment and Quality Development in Health Informatics and the European Federation for Medical Informatics (EFMI) Working Group for Assessment of Health Information Systems.
Results: There is a rich history and tradition of evaluating AI in healthcare. While evaluators can learn from past efforts, and build on best practice evaluation frameworks and methodologies, questions remain about how to evaluate the safety and effectiveness of AI that dynamically harness vast amounts of genomic, biomarker, phenotype, electronic record, and care delivery data from across health systems. This paper first provides a historical perspective about the evaluation of AI in healthcare. It then examines key challenges of evaluating AI-enabled clinical decision support during design, development, selection, use, and ongoing surveillance. Practical aspects of evaluating AI in healthcare, including approaches to evaluation and indicators to monitor AI are also discussed.
Conclusion: Commitment to rigorous initial and ongoing evaluation will be critical to ensuring the safe and effective integration of AI in complex sociotechnical settings. Specific enhancements that are required for the new generation of AI-enabled clinical decision support will emerge through practical application. Objectives : This paper draws attention to: i) key considerations for evaluating artificial intelligence (AI) enabled clinical decision support; and ii) challenges and practical implications of AI design, development, selection, use, and ongoing surveillance. Method : A narrative review of existing research and evaluation approaches along with expert perspectives drawn from the International Medical Informatics Association (IMIA) Working Group on Technology Assessment and Quality Development in Health Informatics and the European Federation for Medical Informatics (EFMI) Working Group for Assessment of Health Information Systems. Results : There is a rich history and tradition of evaluating AI in healthcare. While evaluators can learn from past efforts, and build on best practice evaluation frameworks and methodologies, questions remain about how to evaluate the safety and effectiveness of AI that dynamically harness vast amounts of genomic, biomarker, phenotype, electronic record, and care delivery data from across health systems. This paper first provides a historical perspective about the evaluation of AI in healthcare. It then examines key challenges of evaluating AI-enabled clinical decision support during design, development, selection, use, and ongoing surveillance. Practical aspects of evaluating AI in healthcare, including approaches to evaluation and indicators to monitor AI are also discussed. Conclusion : Commitment to rigorous initial and ongoing evaluation will be critical to ensuring the safe and effective integration of AI in complex sociotechnical settings. Specific enhancements that are required for the new generation of AI-enabled clinical decision support will emerge through practical application. |
Author | De Keizer, Nicolet F. Wong, Zoie Shui-Yee Rigby, Michael Magrabi, Farah Scott, Philip J. Vehko, Tuulikki Ammenwerth, Elske Nykänen, Pirkko Hyppönen, Hannele McNair, Jytte Brender Georgiou, Andrew |
AuthorAffiliation | 7 Keele University, School of Social Science and Public Policy, Keele, United Kingdom 8 University of Portsmouth, Centre for Healthcare Modelling and Informatics, Portsmouth, United Kingdom 4 Amsterdam UMC, University of Amsterdam, Department of Medical Informatics, Amsterdam Public Health research institute, The Netherlands 2 UMIT, University for Health Sciences, Medical Informatics and Technology, Institute of Medical Informatics, Hall in Tyrol, Austria 3 Department of Health Science and Technology, Aalborg University, Aalborg, Denmark 6 Tampere University, Faculty for Information Technology and Communication Sciences, Tampere, Finland 1 Macquarie University, Australian Institute of Health Innovation, Sydney, Australia 5 National Institute for Health and Welfare, Information Department, Helsinki, Finland 9 St. Luke’s International University, Tokyo, Japan |
AuthorAffiliation_xml | – name: 2 UMIT, University for Health Sciences, Medical Informatics and Technology, Institute of Medical Informatics, Hall in Tyrol, Austria – name: 1 Macquarie University, Australian Institute of Health Innovation, Sydney, Australia – name: 9 St. Luke’s International University, Tokyo, Japan – name: 4 Amsterdam UMC, University of Amsterdam, Department of Medical Informatics, Amsterdam Public Health research institute, The Netherlands – name: 5 National Institute for Health and Welfare, Information Department, Helsinki, Finland – name: 6 Tampere University, Faculty for Information Technology and Communication Sciences, Tampere, Finland – name: 7 Keele University, School of Social Science and Public Policy, Keele, United Kingdom – name: 8 University of Portsmouth, Centre for Healthcare Modelling and Informatics, Portsmouth, United Kingdom – name: 3 Department of Health Science and Technology, Aalborg University, Aalborg, Denmark |
Author_xml | – sequence: 1 givenname: Farah surname: Magrabi fullname: Magrabi, Farah organization: Macquarie University, Australian Institute of Health Innovation, Sydney, Australia – sequence: 2 givenname: Elske surname: Ammenwerth fullname: Ammenwerth, Elske organization: UMIT, University for Health Sciences, Medical Informatics and Technology, Institute of Medical Informatics, Hall in Tyrol, Austria – sequence: 3 givenname: Jytte Brender surname: McNair fullname: McNair, Jytte Brender organization: Department of Health Science and Technology, Aalborg University, Aalborg, Denmark – sequence: 4 givenname: Nicolet F. surname: De Keizer fullname: De Keizer, Nicolet F. organization: Amsterdam UMC, University of Amsterdam, Department of Medical Informatics, Amsterdam Public Health research institute, The Netherlands – sequence: 5 givenname: Hannele surname: Hyppönen fullname: Hyppönen, Hannele organization: National Institute for Health and Welfare, Information Department, Helsinki, Finland – sequence: 6 givenname: Pirkko surname: Nykänen fullname: Nykänen, Pirkko organization: Tampere University, Faculty for Information Technology and Communication Sciences, Tampere, Finland – sequence: 7 givenname: Michael surname: Rigby fullname: Rigby, Michael organization: Keele University, School of Social Science and Public Policy, Keele, United Kingdom – sequence: 8 givenname: Philip J. surname: Scott fullname: Scott, Philip J. organization: University of Portsmouth, Centre for Healthcare Modelling and Informatics, Portsmouth, United Kingdom – sequence: 9 givenname: Tuulikki surname: Vehko fullname: Vehko, Tuulikki organization: National Institute for Health and Welfare, Information Department, Helsinki, Finland – sequence: 10 givenname: Zoie Shui-Yee surname: Wong fullname: Wong, Zoie Shui-Yee organization: St. Luke’s International University, Tokyo, Japan – sequence: 11 givenname: Andrew surname: Georgiou fullname: Georgiou, Andrew organization: Macquarie University, Australian Institute of Health Innovation, Sydney, Australia |
BookMark | eNp1kE1LAzEURYNUbP3Yus4fGM3XTCYuhFKrFgoK6jpkMpk2kmaGJC34702rCAq-zXtwOQfePQUj33sDwCVGVxiV5XUsEKKiwBXnAtEjMCG0YgUqERmBCRKMFowzPgYXMb6jPBXGjPATMKYYEcJLMgGbaUi2s9oqBxc-GefsynhtoPVw5qy3Ogd3Rttoew9ftsPQh3QDZ2vlnPErE2HXBzjfKbdVyfoVnC6g8i18DkqnA7zYDC4fKfPxHBx3ykVz8b3PwNv9_HX2WCyfHhaz6bLQBIlUGE3qskJEVU3d0rIWmhmGW1pzwymlLWpqzBXDrGs6qvOqBO8EZaputNGtpmfg9ss7bJuNabXxKSgnh2A3KnzIXln5O_F2LVf9TlbZxITIgqsvgQ59jMF0PyxGct-9jHLfvfzuPgPsD6BtOjyd_db9h30CXhSKiQ |
CitedBy_id | crossref_primary_10_1515_cclm_2023_1037 crossref_primary_10_1186_s12911_021_01634_3 crossref_primary_10_1007_s10489_022_03276_y crossref_primary_10_1016_j_artmed_2023_102514 crossref_primary_10_1093_jamia_ocad180 crossref_primary_10_3390_s22208073 crossref_primary_10_2174_0929867328666210405114938 crossref_primary_10_3390_encyclopedia1010021 crossref_primary_10_1016_j_ijhcs_2023_103216 crossref_primary_10_2196_67269 crossref_primary_10_1080_24750158_2022_2081111 crossref_primary_10_1007_s00330_023_09967_5 crossref_primary_10_1111_ans_16343 crossref_primary_10_1371_journal_pdig_0000514 crossref_primary_10_18231_j_sajcrr_2023_003 crossref_primary_10_3390_jpm10030104 crossref_primary_10_1016_j_ijnsa_2024_100257 crossref_primary_10_1016_j_techfore_2021_120969 crossref_primary_10_1093_jamia_ocad213 crossref_primary_10_1186_s12912_024_02571_y crossref_primary_10_1186_s12909_025_06735_5 crossref_primary_10_1016_j_heliyon_2023_e19210 crossref_primary_10_1080_14737167_2021_1886083 crossref_primary_10_1016_j_actpha_2021_10_006 crossref_primary_10_1016_j_actpha_2021_10_005 crossref_primary_10_11124_JBIES_24_00042 crossref_primary_10_1002_ohn_410 crossref_primary_10_1007_s10916_021_01727_6 crossref_primary_10_1016_j_healthpol_2023_104889 crossref_primary_10_1080_13625187_2025_2450011 crossref_primary_10_3389_fpubh_2024_1428396 crossref_primary_10_2139_ssrn_4275953 crossref_primary_10_1071_AH21034 crossref_primary_10_3390_biomedicines11010110 crossref_primary_10_3389_frobt_2021_612415 crossref_primary_10_1016_j_ibmed_2023_100112 crossref_primary_10_1016_j_ajem_2023_11_022 crossref_primary_10_1002_hsr2_1919 crossref_primary_10_1186_s41235_024_00572_8 crossref_primary_10_1136_bmjhci_2021_100331 crossref_primary_10_18231_j_jdp_2023_006 crossref_primary_10_1136_bmjhci_2019_100114 crossref_primary_10_2196_25929 crossref_primary_10_32542_implantology_2024003 crossref_primary_10_1051_bioconf_202414802003 crossref_primary_10_3389_fcomp_2023_1187299 crossref_primary_10_3389_fmed_2023_1123863 crossref_primary_10_1007_s40290_021_00412_w crossref_primary_10_1016_j_neuroscience_2025_03_017 crossref_primary_10_3390_math12040502 crossref_primary_10_1016_j_patter_2021_100347 crossref_primary_10_2196_50124 crossref_primary_10_2196_67485 crossref_primary_10_1007_s10278_022_00683_y crossref_primary_10_1111_vru_13159 crossref_primary_10_1016_j_jsse_2023_10_003 crossref_primary_10_1142_S1793351X24410022 crossref_primary_10_3233_BD_240018 crossref_primary_10_1155_2021_8828677 crossref_primary_10_1016_j_artmed_2024_102841 crossref_primary_10_1038_s41415_024_7184_3 crossref_primary_10_1016_j_procs_2024_06_208 crossref_primary_10_1016_j_artmed_2023_102547 crossref_primary_10_1017_S0266462324000059 crossref_primary_10_2147_JMDH_S482757 crossref_primary_10_3390_cancers16020401 crossref_primary_10_1016_j_infoh_2024_05_001 crossref_primary_10_3389_fbloc_2023_1116124 crossref_primary_10_5492_wjccm_v13_i2_89644 crossref_primary_10_2147_RMHP_S256165 crossref_primary_10_18006_2022_10_1__211_226 crossref_primary_10_3389_fpsyg_2023_1124734 crossref_primary_10_1016_j_compbiomed_2024_109391 crossref_primary_10_1016_j_ijmedinf_2023_105084 crossref_primary_10_1038_s41598_022_14422_4 crossref_primary_10_1136_bmjopen_2022_066322 crossref_primary_10_2196_62732 crossref_primary_10_5812_amh_134440 crossref_primary_10_3389_frai_2023_1133677 crossref_primary_10_4236_ijis_2023_133005 crossref_primary_10_1108_EJIM_01_2024_0078 crossref_primary_10_1007_s10916_024_02104_9 crossref_primary_10_1186_s13005_023_00368_z crossref_primary_10_1016_j_jnlssr_2024_06_001 crossref_primary_10_1016_j_semradonc_2022_06_011 crossref_primary_10_1177_0022034520969115 crossref_primary_10_26565_2074_8167_2022_50_01 crossref_primary_10_1155_2021_4997329 crossref_primary_10_1136_rapm_2023_104526 crossref_primary_10_1016_j_heliyon_2024_e26297 crossref_primary_10_1080_10447318_2023_2235882 crossref_primary_10_2196_28659 crossref_primary_10_1055_a_2327_4121 crossref_primary_10_3389_fpsyt_2022_923613 crossref_primary_10_3390_diagnostics12061406 crossref_primary_10_2196_46407 crossref_primary_10_1007_s10916_024_02098_4 crossref_primary_10_1016_j_jradnu_2024_05_005 crossref_primary_10_3390_informatics8030055 crossref_primary_10_2196_63548 crossref_primary_10_1016_j_optom_2022_09_005 crossref_primary_10_1177_2050312120934839 crossref_primary_10_1007_s00117_020_00787_y crossref_primary_10_1016_j_aej_2024_04_073 crossref_primary_10_1186_s12911_024_02844_1 crossref_primary_10_3389_fcomp_2023_1265902 crossref_primary_10_1097_CCM_0000000000006109 crossref_primary_10_4103_EHSJ_EHSJ_6_24 crossref_primary_10_3390_ecm2010002 crossref_primary_10_3390_socsci13070381 crossref_primary_10_1093_jamiaopen_ooac114 crossref_primary_10_1097_MS9_0000000000001700 crossref_primary_10_1007_s12609_020_00368_x crossref_primary_10_1186_s40537_022_00605_3 crossref_primary_10_1016_j_artmed_2023_102698 crossref_primary_10_1016_j_procs_2023_01_335 crossref_primary_10_1093_jamia_ocab064 crossref_primary_10_54565_jphcfum_1506552 crossref_primary_10_2196_36823 crossref_primary_10_2196_43632 crossref_primary_10_2196_27343 crossref_primary_10_1038_s41746_021_00549_7 crossref_primary_10_1016_j_ijmedinf_2023_105150 crossref_primary_10_7759_cureus_11137 crossref_primary_10_1016_j_ogla_2024_08_004 crossref_primary_10_1016_j_wneu_2024_05_052 crossref_primary_10_1055_s_0041_1736461 crossref_primary_10_1016_j_jpi_2022_100139 crossref_primary_10_7180_kmj_24_140 crossref_primary_10_1007_s10462_024_11005_9 crossref_primary_10_2196_26646 crossref_primary_10_1016_j_ijmedinf_2024_105347 crossref_primary_10_3389_fonc_2024_1440626 crossref_primary_10_1016_j_ejcped_2024_100213 crossref_primary_10_2196_22161 crossref_primary_10_1186_s12911_021_01682_9 crossref_primary_10_1007_s10488_020_01065_8 |
ContentType | Journal Article |
DBID | AAYXX CITATION 5PM |
DOI | 10.1055/s-0039-1677903 |
DatabaseName | CrossRef PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2364-0502 |
EndPage | 134 |
ExternalDocumentID | PMC6697499 10_1055_s_0039_1677903 |
GroupedDBID | --- 0R~ 0U6 53G AAYXX ACGFS AKOSD ALMA_UNASSIGNED_HOLDINGS APFFQ CITATION DIK EBS EJD F5P H13 HYE O9- OK1 RPM RTC RTE 5PM |
ID | FETCH-LOGICAL-c209t-ec285602a6b8d3589c4e41d387e7333d0b817a414fbf3c14f697f934a8bcecdc3 |
ISSN | 0943-4747 |
IngestDate | Thu Aug 21 18:15:33 EDT 2025 Tue Jul 01 03:29:20 EDT 2025 Thu Apr 24 22:58:16 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://creativecommons.org/licenses/by-nc-nd/4.0 This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License, which permits unrestricted reproduction and distribution, for non-commercial purposes only; and use and reproduction, but not distribution, of adapted material for non-commercial purposes only, provided the original work is properly cited. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c209t-ec285602a6b8d3589c4e41d387e7333d0b817a414fbf3c14f697f934a8bcecdc3 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC6697499 |
PMID | 31022752 |
PageCount | 7 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6697499 crossref_primary_10_1055_s_0039_1677903 crossref_citationtrail_10_1055_s_0039_1677903 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-08-01 |
PublicationDateYYYYMMDD | 2019-08-01 |
PublicationDate_xml | – month: 08 year: 2019 text: 2019-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Stuttgart |
PublicationPlace_xml | – name: Stuttgart |
PublicationTitle | Yearbook of medical informatics |
PublicationYear | 2019 |
Publisher | Georg Thieme Verlag KG |
Publisher_xml | – name: Georg Thieme Verlag KG |
SSID | ssj0000611427 |
Score | 2.540855 |
Snippet | Objectives: This paper draws attention to: i) key considerations for evaluating artificial intelligence (AI) enabled clinical decision support; and ii)... Objectives : This paper draws attention to: i) key considerations for evaluating artificial intelligence (AI) enabled clinical decision support; and ii)... |
SourceID | pubmedcentral crossref |
SourceType | Open Access Repository Enrichment Source Index Database |
StartPage | 128 |
SubjectTerms | Section 5: Decision Support |
Subtitle | A Position Paper from the IMIA Technology Assessment & Quality Development in Health Informatics Working Group and the EFMI Working Group for Assessment of Health Information Systems |
Title | Artificial Intelligence in Clinical Decision Support: Challenges for Evaluating AI and Practical Implications |
URI | https://pubmed.ncbi.nlm.nih.gov/PMC6697499 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKkBAviKsYN_kBiYfKJYnt2OGtYq3WTd3TJo2nKnYcqFgDajMh9rv4gfjYzo0NafCSVo6TND1f4uPj73wHobem5FTkWUq4znJih4CC5EUpSCJVaaiAgyAOuTxJD8_Y0Tk_H41-9VhLl7Wa6Ksb80r-x6q2zdoVsmT_wbLtSW2D_W7ta7fWwnZ7KxtPt47p4_UyetKakMnXZDwehCI6Y6jfCWXj6RTW2H0FFSfGMJ4FxW8IkCxC-oDLnYLz9hjnfUf2k31CwEFv1-edeEfwgDsC_TL_vM2VYwzM-7Hn6WZjqh8m0BNnF7uvHQdXn-Rrh6Ojn3UN7AVX7a71uM342KyvPNIcjk09nk_60QtImJJN9CKEIRklTHjVzYlxbaBpTyIeDd7SibyGRv_KjcMeP3rHPjR6bWCIOGho7AjkIpM4BZVF2g2BzbL_HyNjy1d0K_Wcr3YgpZqtwvF30N3ETk6gbsbB4riN7FkPKWa-VnBzc41aKOfvhz9h4A0NWbk9N-f0IXoQ5id46sH2CI1M9RjdWwYGxhO06TCH-5jD6wo3mMMN5nDA3AfcIQ5bjOAOcXi6wBZxuEUc7iPuKTqbz04_HpJQsoPoJMpqYnQirQ-d5KmSBeUy08ywuKBSGEEpLSIlY5GzmJWqpNp-pJkoM8pyqbTRhabP0F71rTLPES5UkkRMKc11wnghVFxqI7USdoINfvU-Is1ft9JBzx7KqlysbrbWPnrX9v_ulVz-2lMMLNF2Byn24Z5q_cVJsqf2PliWvbj1NV6i-93j8Art1dtL89q6t7V649D0G8YUp_c |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+Intelligence+in+Clinical+Decision+Support%3A+Challenges+for+Evaluating+AI+and+Practical+Implications&rft.jtitle=Yearbook+of+medical+informatics&rft.au=Magrabi%2C+Farah&rft.au=Ammenwerth%2C+Elske&rft.au=McNair%2C+Jytte+Brender&rft.au=De+Keizer%2C+Nicolet+F.&rft.date=2019-08-01&rft.issn=0943-4747&rft.eissn=2364-0502&rft.volume=28&rft.issue=1&rft.spage=128&rft.epage=134&rft_id=info:doi/10.1055%2Fs-0039-1677903&rft.externalDBID=n%2Fa&rft.externalDocID=10_1055_s_0039_1677903 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0943-4747&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0943-4747&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0943-4747&client=summon |