Artificial Intelligence in Clinical Decision Support: Challenges for Evaluating AI and Practical Implications A Position Paper from the IMIA Technology Assessment & Quality Development in Health Informatics Working Group and the EFMI Working Group for Assessment of Health Information Systems

Objectives: This paper draws attention to: i) key considerations for evaluating artificial intelligence (AI) enabled clinical decision support; and ii) challenges and practical implications of AI design, development, selection, use, and ongoing surveillance. Method: A narrative review of existing re...

Full description

Saved in:
Bibliographic Details
Published inYearbook of medical informatics Vol. 28; no. 1; pp. 128 - 134
Main Authors Magrabi, Farah, Ammenwerth, Elske, McNair, Jytte Brender, De Keizer, Nicolet F., Hyppönen, Hannele, Nykänen, Pirkko, Rigby, Michael, Scott, Philip J., Vehko, Tuulikki, Wong, Zoie Shui-Yee, Georgiou, Andrew
Format Journal Article
LanguageEnglish
Published Stuttgart Georg Thieme Verlag KG 01.08.2019
Subjects
Online AccessGet full text
ISSN0943-4747
2364-0502
DOI10.1055/s-0039-1677903

Cover

Loading…
Abstract Objectives: This paper draws attention to: i) key considerations for evaluating artificial intelligence (AI) enabled clinical decision support; and ii) challenges and practical implications of AI design, development, selection, use, and ongoing surveillance. Method: A narrative review of existing research and evaluation approaches along with expert perspectives drawn from the International Medical Informatics Association (IMIA) Working Group on Technology Assessment and Quality Development in Health Informatics and the European Federation for Medical Informatics (EFMI) Working Group for Assessment of Health Information Systems. Results: There is a rich history and tradition of evaluating AI in healthcare. While evaluators can learn from past efforts, and build on best practice evaluation frameworks and methodologies, questions remain about how to evaluate the safety and effectiveness of AI that dynamically harness vast amounts of genomic, biomarker, phenotype, electronic record, and care delivery data from across health systems. This paper first provides a historical perspective about the evaluation of AI in healthcare. It then examines key challenges of evaluating AI-enabled clinical decision support during design, development, selection, use, and ongoing surveillance. Practical aspects of evaluating AI in healthcare, including approaches to evaluation and indicators to monitor AI are also discussed. Conclusion: Commitment to rigorous initial and ongoing evaluation will be critical to ensuring the safe and effective integration of AI in complex sociotechnical settings. Specific enhancements that are required for the new generation of AI-enabled clinical decision support will emerge through practical application.
AbstractList Objectives: This paper draws attention to: i) key considerations for evaluating artificial intelligence (AI) enabled clinical decision support; and ii) challenges and practical implications of AI design, development, selection, use, and ongoing surveillance. Method: A narrative review of existing research and evaluation approaches along with expert perspectives drawn from the International Medical Informatics Association (IMIA) Working Group on Technology Assessment and Quality Development in Health Informatics and the European Federation for Medical Informatics (EFMI) Working Group for Assessment of Health Information Systems. Results: There is a rich history and tradition of evaluating AI in healthcare. While evaluators can learn from past efforts, and build on best practice evaluation frameworks and methodologies, questions remain about how to evaluate the safety and effectiveness of AI that dynamically harness vast amounts of genomic, biomarker, phenotype, electronic record, and care delivery data from across health systems. This paper first provides a historical perspective about the evaluation of AI in healthcare. It then examines key challenges of evaluating AI-enabled clinical decision support during design, development, selection, use, and ongoing surveillance. Practical aspects of evaluating AI in healthcare, including approaches to evaluation and indicators to monitor AI are also discussed. Conclusion: Commitment to rigorous initial and ongoing evaluation will be critical to ensuring the safe and effective integration of AI in complex sociotechnical settings. Specific enhancements that are required for the new generation of AI-enabled clinical decision support will emerge through practical application.
Objectives : This paper draws attention to: i) key considerations for evaluating artificial intelligence (AI) enabled clinical decision support; and ii) challenges and practical implications of AI design, development, selection, use, and ongoing surveillance. Method : A narrative review of existing research and evaluation approaches along with expert perspectives drawn from the International Medical Informatics Association (IMIA) Working Group on Technology Assessment and Quality Development in Health Informatics and the European Federation for Medical Informatics (EFMI) Working Group for Assessment of Health Information Systems. Results : There is a rich history and tradition of evaluating AI in healthcare. While evaluators can learn from past efforts, and build on best practice evaluation frameworks and methodologies, questions remain about how to evaluate the safety and effectiveness of AI that dynamically harness vast amounts of genomic, biomarker, phenotype, electronic record, and care delivery data from across health systems. This paper first provides a historical perspective about the evaluation of AI in healthcare. It then examines key challenges of evaluating AI-enabled clinical decision support during design, development, selection, use, and ongoing surveillance. Practical aspects of evaluating AI in healthcare, including approaches to evaluation and indicators to monitor AI are also discussed. Conclusion : Commitment to rigorous initial and ongoing evaluation will be critical to ensuring the safe and effective integration of AI in complex sociotechnical settings. Specific enhancements that are required for the new generation of AI-enabled clinical decision support will emerge through practical application.
Author De Keizer, Nicolet F.
Wong, Zoie Shui-Yee
Rigby, Michael
Magrabi, Farah
Scott, Philip J.
Vehko, Tuulikki
Ammenwerth, Elske
Nykänen, Pirkko
Hyppönen, Hannele
McNair, Jytte Brender
Georgiou, Andrew
AuthorAffiliation 7 Keele University, School of Social Science and Public Policy, Keele, United Kingdom
8 University of Portsmouth, Centre for Healthcare Modelling and Informatics, Portsmouth, United Kingdom
4 Amsterdam UMC, University of Amsterdam, Department of Medical Informatics, Amsterdam Public Health research institute, The Netherlands
2 UMIT, University for Health Sciences, Medical Informatics and Technology, Institute of Medical Informatics, Hall in Tyrol, Austria
3 Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
6 Tampere University, Faculty for Information Technology and Communication Sciences, Tampere, Finland
1 Macquarie University, Australian Institute of Health Innovation, Sydney, Australia
5 National Institute for Health and Welfare, Information Department, Helsinki, Finland
9 St. Luke’s International University, Tokyo, Japan
AuthorAffiliation_xml – name: 2 UMIT, University for Health Sciences, Medical Informatics and Technology, Institute of Medical Informatics, Hall in Tyrol, Austria
– name: 1 Macquarie University, Australian Institute of Health Innovation, Sydney, Australia
– name: 9 St. Luke’s International University, Tokyo, Japan
– name: 4 Amsterdam UMC, University of Amsterdam, Department of Medical Informatics, Amsterdam Public Health research institute, The Netherlands
– name: 5 National Institute for Health and Welfare, Information Department, Helsinki, Finland
– name: 6 Tampere University, Faculty for Information Technology and Communication Sciences, Tampere, Finland
– name: 7 Keele University, School of Social Science and Public Policy, Keele, United Kingdom
– name: 8 University of Portsmouth, Centre for Healthcare Modelling and Informatics, Portsmouth, United Kingdom
– name: 3 Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
Author_xml – sequence: 1
  givenname: Farah
  surname: Magrabi
  fullname: Magrabi, Farah
  organization: Macquarie University, Australian Institute of Health Innovation, Sydney, Australia
– sequence: 2
  givenname: Elske
  surname: Ammenwerth
  fullname: Ammenwerth, Elske
  organization: UMIT, University for Health Sciences, Medical Informatics and Technology, Institute of Medical Informatics, Hall in Tyrol, Austria
– sequence: 3
  givenname: Jytte Brender
  surname: McNair
  fullname: McNair, Jytte Brender
  organization: Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
– sequence: 4
  givenname: Nicolet F.
  surname: De Keizer
  fullname: De Keizer, Nicolet F.
  organization: Amsterdam UMC, University of Amsterdam, Department of Medical Informatics, Amsterdam Public Health research institute, The Netherlands
– sequence: 5
  givenname: Hannele
  surname: Hyppönen
  fullname: Hyppönen, Hannele
  organization: National Institute for Health and Welfare, Information Department, Helsinki, Finland
– sequence: 6
  givenname: Pirkko
  surname: Nykänen
  fullname: Nykänen, Pirkko
  organization: Tampere University, Faculty for Information Technology and Communication Sciences, Tampere, Finland
– sequence: 7
  givenname: Michael
  surname: Rigby
  fullname: Rigby, Michael
  organization: Keele University, School of Social Science and Public Policy, Keele, United Kingdom
– sequence: 8
  givenname: Philip J.
  surname: Scott
  fullname: Scott, Philip J.
  organization: University of Portsmouth, Centre for Healthcare Modelling and Informatics, Portsmouth, United Kingdom
– sequence: 9
  givenname: Tuulikki
  surname: Vehko
  fullname: Vehko, Tuulikki
  organization: National Institute for Health and Welfare, Information Department, Helsinki, Finland
– sequence: 10
  givenname: Zoie Shui-Yee
  surname: Wong
  fullname: Wong, Zoie Shui-Yee
  organization: St. Luke’s International University, Tokyo, Japan
– sequence: 11
  givenname: Andrew
  surname: Georgiou
  fullname: Georgiou, Andrew
  organization: Macquarie University, Australian Institute of Health Innovation, Sydney, Australia
BookMark eNp1kE1LAzEURYNUbP3Yus4fGM3XTCYuhFKrFgoK6jpkMpk2kmaGJC34702rCAq-zXtwOQfePQUj33sDwCVGVxiV5XUsEKKiwBXnAtEjMCG0YgUqERmBCRKMFowzPgYXMb6jPBXGjPATMKYYEcJLMgGbaUi2s9oqBxc-GefsynhtoPVw5qy3Ogd3Rttoew9ftsPQh3QDZ2vlnPErE2HXBzjfKbdVyfoVnC6g8i18DkqnA7zYDC4fKfPxHBx3ykVz8b3PwNv9_HX2WCyfHhaz6bLQBIlUGE3qskJEVU3d0rIWmhmGW1pzwymlLWpqzBXDrGs6qvOqBO8EZaputNGtpmfg9ss7bJuNabXxKSgnh2A3KnzIXln5O_F2LVf9TlbZxITIgqsvgQ59jMF0PyxGct-9jHLfvfzuPgPsD6BtOjyd_db9h30CXhSKiQ
CitedBy_id crossref_primary_10_1515_cclm_2023_1037
crossref_primary_10_1186_s12911_021_01634_3
crossref_primary_10_1007_s10489_022_03276_y
crossref_primary_10_1016_j_artmed_2023_102514
crossref_primary_10_1093_jamia_ocad180
crossref_primary_10_3390_s22208073
crossref_primary_10_2174_0929867328666210405114938
crossref_primary_10_3390_encyclopedia1010021
crossref_primary_10_1016_j_ijhcs_2023_103216
crossref_primary_10_2196_67269
crossref_primary_10_1080_24750158_2022_2081111
crossref_primary_10_1007_s00330_023_09967_5
crossref_primary_10_1111_ans_16343
crossref_primary_10_1371_journal_pdig_0000514
crossref_primary_10_18231_j_sajcrr_2023_003
crossref_primary_10_3390_jpm10030104
crossref_primary_10_1016_j_ijnsa_2024_100257
crossref_primary_10_1016_j_techfore_2021_120969
crossref_primary_10_1093_jamia_ocad213
crossref_primary_10_1186_s12912_024_02571_y
crossref_primary_10_1186_s12909_025_06735_5
crossref_primary_10_1016_j_heliyon_2023_e19210
crossref_primary_10_1080_14737167_2021_1886083
crossref_primary_10_1016_j_actpha_2021_10_006
crossref_primary_10_1016_j_actpha_2021_10_005
crossref_primary_10_11124_JBIES_24_00042
crossref_primary_10_1002_ohn_410
crossref_primary_10_1007_s10916_021_01727_6
crossref_primary_10_1016_j_healthpol_2023_104889
crossref_primary_10_1080_13625187_2025_2450011
crossref_primary_10_3389_fpubh_2024_1428396
crossref_primary_10_2139_ssrn_4275953
crossref_primary_10_1071_AH21034
crossref_primary_10_3390_biomedicines11010110
crossref_primary_10_3389_frobt_2021_612415
crossref_primary_10_1016_j_ibmed_2023_100112
crossref_primary_10_1016_j_ajem_2023_11_022
crossref_primary_10_1002_hsr2_1919
crossref_primary_10_1186_s41235_024_00572_8
crossref_primary_10_1136_bmjhci_2021_100331
crossref_primary_10_18231_j_jdp_2023_006
crossref_primary_10_1136_bmjhci_2019_100114
crossref_primary_10_2196_25929
crossref_primary_10_32542_implantology_2024003
crossref_primary_10_1051_bioconf_202414802003
crossref_primary_10_3389_fcomp_2023_1187299
crossref_primary_10_3389_fmed_2023_1123863
crossref_primary_10_1007_s40290_021_00412_w
crossref_primary_10_1016_j_neuroscience_2025_03_017
crossref_primary_10_3390_math12040502
crossref_primary_10_1016_j_patter_2021_100347
crossref_primary_10_2196_50124
crossref_primary_10_2196_67485
crossref_primary_10_1007_s10278_022_00683_y
crossref_primary_10_1111_vru_13159
crossref_primary_10_1016_j_jsse_2023_10_003
crossref_primary_10_1142_S1793351X24410022
crossref_primary_10_3233_BD_240018
crossref_primary_10_1155_2021_8828677
crossref_primary_10_1016_j_artmed_2024_102841
crossref_primary_10_1038_s41415_024_7184_3
crossref_primary_10_1016_j_procs_2024_06_208
crossref_primary_10_1016_j_artmed_2023_102547
crossref_primary_10_1017_S0266462324000059
crossref_primary_10_2147_JMDH_S482757
crossref_primary_10_3390_cancers16020401
crossref_primary_10_1016_j_infoh_2024_05_001
crossref_primary_10_3389_fbloc_2023_1116124
crossref_primary_10_5492_wjccm_v13_i2_89644
crossref_primary_10_2147_RMHP_S256165
crossref_primary_10_18006_2022_10_1__211_226
crossref_primary_10_3389_fpsyg_2023_1124734
crossref_primary_10_1016_j_compbiomed_2024_109391
crossref_primary_10_1016_j_ijmedinf_2023_105084
crossref_primary_10_1038_s41598_022_14422_4
crossref_primary_10_1136_bmjopen_2022_066322
crossref_primary_10_2196_62732
crossref_primary_10_5812_amh_134440
crossref_primary_10_3389_frai_2023_1133677
crossref_primary_10_4236_ijis_2023_133005
crossref_primary_10_1108_EJIM_01_2024_0078
crossref_primary_10_1007_s10916_024_02104_9
crossref_primary_10_1186_s13005_023_00368_z
crossref_primary_10_1016_j_jnlssr_2024_06_001
crossref_primary_10_1016_j_semradonc_2022_06_011
crossref_primary_10_1177_0022034520969115
crossref_primary_10_26565_2074_8167_2022_50_01
crossref_primary_10_1155_2021_4997329
crossref_primary_10_1136_rapm_2023_104526
crossref_primary_10_1016_j_heliyon_2024_e26297
crossref_primary_10_1080_10447318_2023_2235882
crossref_primary_10_2196_28659
crossref_primary_10_1055_a_2327_4121
crossref_primary_10_3389_fpsyt_2022_923613
crossref_primary_10_3390_diagnostics12061406
crossref_primary_10_2196_46407
crossref_primary_10_1007_s10916_024_02098_4
crossref_primary_10_1016_j_jradnu_2024_05_005
crossref_primary_10_3390_informatics8030055
crossref_primary_10_2196_63548
crossref_primary_10_1016_j_optom_2022_09_005
crossref_primary_10_1177_2050312120934839
crossref_primary_10_1007_s00117_020_00787_y
crossref_primary_10_1016_j_aej_2024_04_073
crossref_primary_10_1186_s12911_024_02844_1
crossref_primary_10_3389_fcomp_2023_1265902
crossref_primary_10_1097_CCM_0000000000006109
crossref_primary_10_4103_EHSJ_EHSJ_6_24
crossref_primary_10_3390_ecm2010002
crossref_primary_10_3390_socsci13070381
crossref_primary_10_1093_jamiaopen_ooac114
crossref_primary_10_1097_MS9_0000000000001700
crossref_primary_10_1007_s12609_020_00368_x
crossref_primary_10_1186_s40537_022_00605_3
crossref_primary_10_1016_j_artmed_2023_102698
crossref_primary_10_1016_j_procs_2023_01_335
crossref_primary_10_1093_jamia_ocab064
crossref_primary_10_54565_jphcfum_1506552
crossref_primary_10_2196_36823
crossref_primary_10_2196_43632
crossref_primary_10_2196_27343
crossref_primary_10_1038_s41746_021_00549_7
crossref_primary_10_1016_j_ijmedinf_2023_105150
crossref_primary_10_7759_cureus_11137
crossref_primary_10_1016_j_ogla_2024_08_004
crossref_primary_10_1016_j_wneu_2024_05_052
crossref_primary_10_1055_s_0041_1736461
crossref_primary_10_1016_j_jpi_2022_100139
crossref_primary_10_7180_kmj_24_140
crossref_primary_10_1007_s10462_024_11005_9
crossref_primary_10_2196_26646
crossref_primary_10_1016_j_ijmedinf_2024_105347
crossref_primary_10_3389_fonc_2024_1440626
crossref_primary_10_1016_j_ejcped_2024_100213
crossref_primary_10_2196_22161
crossref_primary_10_1186_s12911_021_01682_9
crossref_primary_10_1007_s10488_020_01065_8
ContentType Journal Article
DBID AAYXX
CITATION
5PM
DOI 10.1055/s-0039-1677903
DatabaseName CrossRef
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2364-0502
EndPage 134
ExternalDocumentID PMC6697499
10_1055_s_0039_1677903
GroupedDBID ---
0R~
0U6
53G
AAYXX
ACGFS
AKOSD
ALMA_UNASSIGNED_HOLDINGS
APFFQ
CITATION
DIK
EBS
EJD
F5P
H13
HYE
O9-
OK1
RPM
RTC
RTE
5PM
ID FETCH-LOGICAL-c209t-ec285602a6b8d3589c4e41d387e7333d0b817a414fbf3c14f697f934a8bcecdc3
ISSN 0943-4747
IngestDate Thu Aug 21 18:15:33 EDT 2025
Tue Jul 01 03:29:20 EDT 2025
Thu Apr 24 22:58:16 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 1
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License, which permits unrestricted reproduction and distribution, for non-commercial purposes only; and use and reproduction, but not distribution, of adapted material for non-commercial purposes only, provided the original work is properly cited.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c209t-ec285602a6b8d3589c4e41d387e7333d0b817a414fbf3c14f697f934a8bcecdc3
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC6697499
PMID 31022752
PageCount 7
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6697499
crossref_primary_10_1055_s_0039_1677903
crossref_citationtrail_10_1055_s_0039_1677903
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-08-01
PublicationDateYYYYMMDD 2019-08-01
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-08-01
  day: 01
PublicationDecade 2010
PublicationPlace Stuttgart
PublicationPlace_xml – name: Stuttgart
PublicationTitle Yearbook of medical informatics
PublicationYear 2019
Publisher Georg Thieme Verlag KG
Publisher_xml – name: Georg Thieme Verlag KG
SSID ssj0000611427
Score 2.540855
Snippet Objectives: This paper draws attention to: i) key considerations for evaluating artificial intelligence (AI) enabled clinical decision support; and ii)...
Objectives : This paper draws attention to: i) key considerations for evaluating artificial intelligence (AI) enabled clinical decision support; and ii)...
SourceID pubmedcentral
crossref
SourceType Open Access Repository
Enrichment Source
Index Database
StartPage 128
SubjectTerms Section 5: Decision Support
Subtitle A Position Paper from the IMIA Technology Assessment & Quality Development in Health Informatics Working Group and the EFMI Working Group for Assessment of Health Information Systems
Title Artificial Intelligence in Clinical Decision Support: Challenges for Evaluating AI and Practical Implications
URI https://pubmed.ncbi.nlm.nih.gov/PMC6697499
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKkBAviKsYN_kBiYfKJYnt2OGtYq3WTd3TJo2nKnYcqFgDajMh9rv4gfjYzo0NafCSVo6TND1f4uPj73wHobem5FTkWUq4znJih4CC5EUpSCJVaaiAgyAOuTxJD8_Y0Tk_H41-9VhLl7Wa6Ksb80r-x6q2zdoVsmT_wbLtSW2D_W7ta7fWwnZ7KxtPt47p4_UyetKakMnXZDwehCI6Y6jfCWXj6RTW2H0FFSfGMJ4FxW8IkCxC-oDLnYLz9hjnfUf2k31CwEFv1-edeEfwgDsC_TL_vM2VYwzM-7Hn6WZjqh8m0BNnF7uvHQdXn-Rrh6Ojn3UN7AVX7a71uM342KyvPNIcjk09nk_60QtImJJN9CKEIRklTHjVzYlxbaBpTyIeDd7SibyGRv_KjcMeP3rHPjR6bWCIOGho7AjkIpM4BZVF2g2BzbL_HyNjy1d0K_Wcr3YgpZqtwvF30N3ETk6gbsbB4riN7FkPKWa-VnBzc41aKOfvhz9h4A0NWbk9N-f0IXoQ5id46sH2CI1M9RjdWwYGxhO06TCH-5jD6wo3mMMN5nDA3AfcIQ5bjOAOcXi6wBZxuEUc7iPuKTqbz04_HpJQsoPoJMpqYnQirQ-d5KmSBeUy08ywuKBSGEEpLSIlY5GzmJWqpNp-pJkoM8pyqbTRhabP0F71rTLPES5UkkRMKc11wnghVFxqI7USdoINfvU-Is1ft9JBzx7KqlysbrbWPnrX9v_ulVz-2lMMLNF2Byn24Z5q_cVJsqf2PliWvbj1NV6i-93j8Art1dtL89q6t7V649D0G8YUp_c
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+Intelligence+in+Clinical+Decision+Support%3A+Challenges+for+Evaluating+AI+and+Practical+Implications&rft.jtitle=Yearbook+of+medical+informatics&rft.au=Magrabi%2C+Farah&rft.au=Ammenwerth%2C+Elske&rft.au=McNair%2C+Jytte+Brender&rft.au=De+Keizer%2C+Nicolet+F.&rft.date=2019-08-01&rft.issn=0943-4747&rft.eissn=2364-0502&rft.volume=28&rft.issue=1&rft.spage=128&rft.epage=134&rft_id=info:doi/10.1055%2Fs-0039-1677903&rft.externalDBID=n%2Fa&rft.externalDocID=10_1055_s_0039_1677903
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0943-4747&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0943-4747&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0943-4747&client=summon