Inter- and Intra-Subject transfer learning for High-Performance SSVEP-BCI with extremely little calibration effort

High-performance steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) typically requires large amounts of calibration data to derive individual-specific model parameters. This imposes a significant burden on the use of SSVEP-BCI and limits its practical applications. Exi...

Full description

Saved in:
Bibliographic Details
Published inExpert systems with applications Vol. 276; p. 127208
Main Authors Li, Hui, Xu, Guanghua, Li, Zejin, Zhang, Kai, Jiang, Hanli, Guo, Xiaobing, Zhu, Yongzhen, Yang, Xuwei, Zhao, Yihua, Han, Chengcheng
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.06.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract High-performance steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) typically requires large amounts of calibration data to derive individual-specific model parameters. This imposes a significant burden on the use of SSVEP-BCI and limits its practical applications. Existing transfer learning methods with poor transfer performance and inefficient use of the calibration data for SSVEP-BCI still rely on many calibration data from target or source subjects. This study proposed an effective inter- and intra-subject transfer learning framework (IISTLF), which requires only one source subject and one class calibration data from the target subject. The prior knowledge from limited calibration data of the target subject is utilized for inter-subject domain alignment and extracting intra-subject common knowledge. A conditional distribution alignment method, least-squares transformation (CSTL-LST), and the proposed marginal distribution alignment method, channel-wise alignment (CSTL-CWA), are employed for effective inter-subject transfer. Extensive experiments on the Benchmark dataset confirm the feasibility of CSTL-CWA in reducing spatial distribution differences of SSVEP signals between subjects. The results also reveal that IISTLF exhibits satisfactory performance, achieving an averaged classification accuracy of 77.11 ± 15.50 % across all signal lengths, significantly outperforming comparison methods FBCCA (65.11 ± 16.73 %), tt-CCA (64.81 ± 18.01 %), CSSFT (67.36 ± 16.58 %), LST-based method (42.24 ± 23.99 %), and stCCA (50.14 ± 14.29 %). Additionally, IISTLF exhibits the least negative transfer rate 2.10 ± 1.11 %, which is substantially lower than other methods. The IISTLF provides a promising solution for minimizing the required calibration data from both target and source subjects and promotes the practical application of SSVEP-BCI.
AbstractList High-performance steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) typically requires large amounts of calibration data to derive individual-specific model parameters. This imposes a significant burden on the use of SSVEP-BCI and limits its practical applications. Existing transfer learning methods with poor transfer performance and inefficient use of the calibration data for SSVEP-BCI still rely on many calibration data from target or source subjects. This study proposed an effective inter- and intra-subject transfer learning framework (IISTLF), which requires only one source subject and one class calibration data from the target subject. The prior knowledge from limited calibration data of the target subject is utilized for inter-subject domain alignment and extracting intra-subject common knowledge. A conditional distribution alignment method, least-squares transformation (CSTL-LST), and the proposed marginal distribution alignment method, channel-wise alignment (CSTL-CWA), are employed for effective inter-subject transfer. Extensive experiments on the Benchmark dataset confirm the feasibility of CSTL-CWA in reducing spatial distribution differences of SSVEP signals between subjects. The results also reveal that IISTLF exhibits satisfactory performance, achieving an averaged classification accuracy of 77.11 ± 15.50 % across all signal lengths, significantly outperforming comparison methods FBCCA (65.11 ± 16.73 %), tt-CCA (64.81 ± 18.01 %), CSSFT (67.36 ± 16.58 %), LST-based method (42.24 ± 23.99 %), and stCCA (50.14 ± 14.29 %). Additionally, IISTLF exhibits the least negative transfer rate 2.10 ± 1.11 %, which is substantially lower than other methods. The IISTLF provides a promising solution for minimizing the required calibration data from both target and source subjects and promotes the practical application of SSVEP-BCI.
ArticleNumber 127208
Author Guo, Xiaobing
Han, Chengcheng
Zhu, Yongzhen
Zhao, Yihua
Li, Hui
Yang, Xuwei
Xu, Guanghua
Li, Zejin
Zhang, Kai
Jiang, Hanli
Author_xml – sequence: 1
  givenname: Hui
  orcidid: 0000-0002-0752-5710
  surname: Li
  fullname: Li, Hui
  email: hueylee@stu.xjtu.edu.cn
  organization: School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, China
– sequence: 2
  givenname: Guanghua
  orcidid: 0000-0002-8684-7055
  surname: Xu
  fullname: Xu, Guanghua
  email: ghxu@mail.xjtu.edu.cn
  organization: School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, China
– sequence: 3
  givenname: Zejin
  orcidid: 0000-0001-6313-1364
  surname: Li
  fullname: Li, Zejin
  email: lizejin@stu.xjtu.edu.cn
  organization: School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, China
– sequence: 4
  givenname: Kai
  surname: Zhang
  fullname: Zhang, Kai
  email: Kai.Zhang@uth.tmc.edu
  organization: Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
– sequence: 5
  givenname: Hanli
  surname: Jiang
  fullname: Jiang, Hanli
  email: sharkpike@stu.xjtu.edu.cn
  organization: School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, China
– sequence: 6
  givenname: Xiaobing
  surname: Guo
  fullname: Guo, Xiaobing
  email: xiaobingguo@stu.xjtu.edu.cn
  organization: School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, China
– sequence: 7
  givenname: Yongzhen
  surname: Zhu
  fullname: Zhu, Yongzhen
  email: 15959347@stu.xjtu.edu.cn
  organization: School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, China
– sequence: 8
  givenname: Xuwei
  orcidid: 0009-0000-2568-0928
  surname: Yang
  fullname: Yang, Xuwei
  email: 1510902361@stu.xjtu.edu.cn
  organization: School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, China
– sequence: 9
  givenname: Yihua
  orcidid: 0009-0002-4065-3738
  surname: Zhao
  fullname: Zhao, Yihua
  email: zyh111@stu.xjtu.edu.cn
  organization: School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, China
– sequence: 10
  givenname: Chengcheng
  surname: Han
  fullname: Han, Chengcheng
  email: hanchengcheng@xjtu.edu.cn
  organization: School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, China
BookMark eNp9kMFOAjEQQHvAREB_wFN_oGvb3aW7iRclKCQkkqBem7Y7hW6WrulWkb-3BM-e5l3eZOZN0Mj3HhC6YzRjlM3u2wyGo8o45WXGuOC0GqExrUtBCiaKazQZhpZSJigVYxRWPkIgWPkGJwyKbL90CybixH6wEHAHKnjnd9j2AS_dbk82EBIflDeAt9uPxYY8zVf46OIew08McIDuhDsXYwfYqM7poKLrPQabtHiDrqzqBrj9m1P0_rx4my_J-vVlNX9cE8NpHYnWTZFby2ylq5wpXhe15TMFTVmxpipzUWmtFCtVRYXJLc11UZgChM3BMlrm-RTxy14T-mEIYOVncAcVTpJReS4lW3kuJc-l5KVUkh4uEqTLvh0EORgH6dHGhVRFNr37T_8FrKd3Yw
Cites_doi 10.1109/TNSRE.2023.3288397
10.1088/1741-2560/12/4/046006
10.1109/TBME.2020.2975552
10.3389/fnins.2020.00627
10.1515/bmt.2010.013
10.1109/TBME.2017.2694818
10.1038/s41597-022-01372-9
10.1167/9.7.8
10.1109/TNSRE.2024.3387283
10.1088/1741-2552/ac81ee
10.1088/1741-2560/12/4/046008
10.1016/S1388-2457(02)00057-3
10.1007/s11571-024-10134-9
10.26599/TST.2020.9010015
10.1109/TBME.2006.886577
10.1016/j.pneurobio.2009.11.005
10.1109/TNSRE.2020.3019276
10.3390/s22207715
10.1109/TNSRE.2023.3250953
10.1088/1741-2552/abcb6e
10.1109/TNSRE.2023.3309543
10.1523/JNEUROSCI.23-37-11621.2003
10.1007/s10548-006-0267-4
10.1109/TASE.2021.3054741
10.1109/TNSRE.2022.3225878
10.1088/1741-2552/ab2373
10.1016/j.eng.2021.09.011
10.1088/1741-2552/abfdfa
10.1016/j.bspc.2024.106282
10.1109/TNSRE.2021.3114340
10.1109/TBME.2021.3133594
10.1109/TNSRE.2023.3274121
10.1142/S0129065718500284
10.1109/TNSRE.2023.3305202
10.1088/1741-2552/ac6b57
10.1109/TNSRE.2021.3057938
10.1109/TNSRE.2016.2627556
10.1016/j.eswa.2023.122155
10.1016/j.eswa.2022.117574
10.1109/TBME.2022.3227036
10.1109/TNSRE.2023.3245654
10.3389/fnins.2023.1161511
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.eswa.2025.127208
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_eswa_2025_127208
S0957417425008309
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMVD
ABUCO
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGCQF
AGHFR
AGRNS
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APLSM
APXCP
AXJTR
BJAXD
BKOJK
BLXMC
BNPGV
BNSAS
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SSH
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
AAAKG
AAQXK
AAYXX
ABKBG
ABWVN
ABXDB
ACNNM
ACRPL
ADJOM
ADMUD
ADNMO
AGQPQ
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
RIG
SBC
SET
WUQ
XPP
ZMT
ID FETCH-LOGICAL-c209t-bbd43ff1f8b831a2949f26aed581d85378bbaa15a807c3f03b44c4e7f3ef10533
IEDL.DBID .~1
ISSN 0957-4174
IngestDate Tue Aug 05 11:59:58 EDT 2025
Sat Jun 21 16:53:52 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords electroencephalography (EEG)
Brain-computer interface (BCI)
Intra-subject transfer learning
Inter-subject transfer learning
steady-state visual evoked potential (SSVEP)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c209t-bbd43ff1f8b831a2949f26aed581d85378bbaa15a807c3f03b44c4e7f3ef10533
ORCID 0000-0002-8684-7055
0009-0002-4065-3738
0000-0002-0752-5710
0000-0001-6313-1364
0009-0000-2568-0928
ParticipantIDs crossref_primary_10_1016_j_eswa_2025_127208
elsevier_sciencedirect_doi_10_1016_j_eswa_2025_127208
PublicationCentury 2000
PublicationDate 2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-01
  day: 01
PublicationDecade 2020
PublicationTitle Expert systems with applications
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Sun, Chen, Zhang, Li, Kang (b0140) 2021; 18
Huang, Zhang, Xiong, Wang, Wan, Li, Yang (b0045) 2023; 31
Wang, Chen, Gao, Gao (b0160) 2017; 25
Wong, Wang, Rosa, Chen, Jung, Hu, Wan (b0195) 2021; 18
Kwon, Im (b0050) 2022; 203
Liu, Chen, Shi, Wang, Gao, Gao (b0085) 2021; 29
Yuan, Chen, Wang, Gao, Gao (b0230) 2015; 12
Ales, Norcia (b0005) 2009; 9
Xu, He, Jung, Gu, Ming (b0205) 2021; 7
Liu, Wang, Gao, Chen (b0095) 2022; 9
Pan, Li, Zhang, Xu, Yao (b0120) 2024
Wang, Sun, Wang, Cao, Zhou, Wang, Chen (b0155) 2021; 29
Yan, He, Zhao (b0210) 2023; 17
Nakanishi, Wang, Chen, Wang, Gao, Jung (b0110) 2017; 65
Chiang, Wei, Nakanishi, Jung (b0030) 2021; 18
Lan, Wang, He, Zong, Leng, Iramina, Zheng, Ge (b0055) 2023; 31
Pastor, Artieda, Arbizu, Valencia, Masdeu (b0125) 2003; 23
Wong, Wang, Nakanishi, Wang, Rosa, Chen, Jung, Wan (b0190) 2022; 69
Yang, Han, Wang, Saab, Gao, Gao (b0225) 2018; 28
Bian, Wu, Liu, Wu (b0015) 2023; 31
Wong, Wan, Wang, Wang, Nan, Lao, Mak, Vai, Rosa (b0180) 2020; 17
Tanaka (b0145) 2020; 10
Wang, Wong, Rosa, Qian, Jung, Wan (b0165) 2022
Chen, Wang, Gao, Jung, Gao (b0020) 2015; 12
Wei, Zhang, Wang, Gao (b0170) 2023; 31
Vialatte, Maurice, Dauwels, Cichocki (b0150) 2010; 90
Wong, Wang, Wang, Lao, Rosa, Xu, Jung, Chen, Wan (b0200) 2020; 28
Shi, Li, Liu, Yang, Wang, Gao (b0130) 2023; 31
Chiang, Wei, Nakanishi, Jung (b0025) 2019
Du, Ke, Liu, Chen, Ming (b0035) 2024; 94
Wolpaw, Birbaumer, McFarland, Pfurtscheller, Vaughan (b0175) 2002; 113
Li, Xu, Li, Zhang, Zheng, Du, Han, Kuang, Du, Zhang (b0070) 2023; 31
Wong, Wang, Wang, Lao, Rosa, Wan (b0185) 2020; 67
Liu, Huang, Wang, Chen, Gao (b0090) 2020; 14
Yan, Wu, Du, Xu (b0215) 2022; 19
Yan, Wu, Du, Xu (b0220) 2022; 19
Luo, Xu, Zhou, Xiao, Jung, Ming (b0100) 2023; 70
He, Allison, Qin, Liang, Wang, Cichocki, Jin (b0040) 2024; 1–15
Oikonomou (b0115) 2022; 22
Zhang, Xie, Shi, Li, Zhang (b0240) 2023; 31
Lin, Zhang, Wu, Gao (b0080) 2006; 53
Zhang, An, Liu, Wei, Sun (b0235) 2024; 238
Barnes, Kuś, Duszyk, Milanowski, Łabęcki, Bierzyńska, Radzikowska, Michalska, Żygierewicz, Suffczyński, Durka (b0010) 2013; 8
Li, Xu, Du, Li, Han, Tian, Li, Zhang (b0065) 2024; 249
Molina, Mihajlovic (b0105) 2010; 55
Li, Wang, Dou, Zhao, Cui, Xiang, Wang (b0060) 2024; 32
Srinivasan, Bibi, Nunez (b0135) 2006; 18
Lin, Liang, Han, Yang, Chen, Gao (b0075) 2021; 26
Liu (10.1016/j.eswa.2025.127208_b0085) 2021; 29
Li (10.1016/j.eswa.2025.127208_b0070) 2023; 31
Sun (10.1016/j.eswa.2025.127208_b0140) 2021; 18
Pan (10.1016/j.eswa.2025.127208_b0120) 2024
Zhang (10.1016/j.eswa.2025.127208_b0240) 2023; 31
Li (10.1016/j.eswa.2025.127208_b0060) 2024; 32
Liu (10.1016/j.eswa.2025.127208_b0095) 2022; 9
Ales (10.1016/j.eswa.2025.127208_b0005) 2009; 9
Chen (10.1016/j.eswa.2025.127208_b0020) 2015; 12
Molina (10.1016/j.eswa.2025.127208_b0105) 2010; 55
Shi (10.1016/j.eswa.2025.127208_b0130) 2023; 31
Nakanishi (10.1016/j.eswa.2025.127208_b0110) 2017; 65
Srinivasan (10.1016/j.eswa.2025.127208_b0135) 2006; 18
Du (10.1016/j.eswa.2025.127208_b0035) 2024; 94
Yan (10.1016/j.eswa.2025.127208_b0210) 2023; 17
Yan (10.1016/j.eswa.2025.127208_b0215) 2022; 19
Yang (10.1016/j.eswa.2025.127208_b0225) 2018; 28
Wolpaw (10.1016/j.eswa.2025.127208_b0175) 2002; 113
Liu (10.1016/j.eswa.2025.127208_b0090) 2020; 14
Chiang (10.1016/j.eswa.2025.127208_b0025) 2019
Lan (10.1016/j.eswa.2025.127208_b0055) 2023; 31
He (10.1016/j.eswa.2025.127208_b0040) 2024; 1–15
Wong (10.1016/j.eswa.2025.127208_b0180) 2020; 17
Oikonomou (10.1016/j.eswa.2025.127208_b0115) 2022; 22
Tanaka (10.1016/j.eswa.2025.127208_b0145) 2020; 10
Chiang (10.1016/j.eswa.2025.127208_b0030) 2021; 18
Wang (10.1016/j.eswa.2025.127208_b0155) 2021; 29
Huang (10.1016/j.eswa.2025.127208_b0045) 2023; 31
Barnes (10.1016/j.eswa.2025.127208_b0010) 2013; 8
Xu (10.1016/j.eswa.2025.127208_b0205) 2021; 7
Wong (10.1016/j.eswa.2025.127208_b0185) 2020; 67
Zhang (10.1016/j.eswa.2025.127208_b0235) 2024; 238
Li (10.1016/j.eswa.2025.127208_b0065) 2024; 249
Pastor (10.1016/j.eswa.2025.127208_b0125) 2003; 23
Wang (10.1016/j.eswa.2025.127208_b0165) 2022
Luo (10.1016/j.eswa.2025.127208_b0100) 2023; 70
Wong (10.1016/j.eswa.2025.127208_b0190) 2022; 69
Yan (10.1016/j.eswa.2025.127208_b0220) 2022; 19
Lin (10.1016/j.eswa.2025.127208_b0075) 2021; 26
Lin (10.1016/j.eswa.2025.127208_b0080) 2006; 53
Wang (10.1016/j.eswa.2025.127208_b0160) 2017; 25
Kwon (10.1016/j.eswa.2025.127208_b0050) 2022; 203
Yuan (10.1016/j.eswa.2025.127208_b0230) 2015; 12
Bian (10.1016/j.eswa.2025.127208_b0015) 2023; 31
Wei (10.1016/j.eswa.2025.127208_b0170) 2023; 31
Wong (10.1016/j.eswa.2025.127208_b0200) 2020; 28
Vialatte (10.1016/j.eswa.2025.127208_b0150) 2010; 90
Wong (10.1016/j.eswa.2025.127208_b0195) 2021; 18
References_xml – volume: 203
  year: 2022
  ident: b0050
  article-title: Novel signal-to-signal translation method based on StarGAN to generate artificial EEG for SSVEP-based brain-computer interfaces
– volume: 18
  start-page: 167
  year: 2006
  end-page: 187
  ident: b0135
  article-title: Steady-state visual evoked potentials: Distributed local sources and wave-like dynamics are sensitive to flicker frequency
– volume: 14
  year: 2020
  ident: b0090
  article-title: BETA: a large benchmark database toward SSVEP-BCI application
– volume: 17
  year: 2020
  ident: b0180
  article-title: Learning across multi-stimulus enhances target recognition methods in SSVEP-based BCIs
– volume: 65
  start-page: 104
  year: 2017
  end-page: 112
  ident: b0110
  article-title: Enhancing detection of SSVEPs for a high-speed brain speller using task-related component analysis
– year: 2024
  ident: b0120
  article-title: Short-length SSVEP data extension by a novel generative adversarial networks based framework
– start-page: pp
  year: 2022
  ident: b0165
  article-title: Stimulus-stimulus transfer based on time-frequency-joint representation in SSVEP-based BCIs
– volume: 8
  year: 2013
  ident: b0010
  article-title: On the Quantification of SSVEP Frequency Responses in Human EEG in Realistic BCI Conditions
– volume: 32
  start-page: 1606
  year: 2024
  end-page: 1615
  ident: b0060
  article-title: Multi-stimulus least-squares transformation with online adaptation scheme to reduce calibration effort for SSVEP-based BCIs
– volume: 249
  year: 2024
  ident: b0065
  article-title: Facilitating applications of SSVEP-BCI by effective cross-subject knowledge transfer
– volume: 67
  start-page: 3057
  year: 2020
  end-page: 3072
  ident: b0185
  article-title: Spatial filtering in SSVEP-based BCIs: unified framework and new improvements
– volume: 31
  start-page: 446
  year: 2023
  end-page: 455
  ident: b0015
  article-title: Small data least-squares transformation (sd-LST) for fast calibration of SSVEP-based BCIs
– volume: 113
  start-page: 767
  year: 2002
  end-page: 791
  ident: b0175
  article-title: Brain-computer interfaces for communication and control
– volume: 9
  year: 2022
  ident: b0095
  article-title: Eldbeta: a large eldercare-oriented benchmark database of SSVEP-BCI for the aging population
– volume: 53
  start-page: 2610
  year: 2006
  end-page: 2614
  ident: b0080
  article-title: Frequency recognition based on canonical correlation analysis for SSVEP-based BCIs
– volume: 90
  start-page: 418
  year: 2010
  end-page: 438
  ident: b0150
  article-title: Steady-state visually evoked potentials: Focus on essential paradigms and future perspectives
– volume: 18
  year: 2021
  ident: b0030
  article-title: Boosting template-based SSVEP decoding by cross-domain transfer learning
– volume: 25
  start-page: 1746
  year: 2017
  end-page: 1752
  ident: b0160
  article-title: A benchmark dataset for SSVEP-based brain-computer interfaces
– volume: 94
  year: 2024
  ident: b0035
  article-title: Enhancing cross-subject transfer performance for SSVEP identification using small data-based transferability evaluation
– volume: 18
  start-page: 552
  year: 2021
  end-page: 563
  ident: b0195
  article-title: Transferring subject-specific knowledge across stimulus frequencies in SSVEP-based BCIs
– volume: 70
  start-page: 1775
  year: 2023
  end-page: 1785
  ident: b0100
  article-title: Data augmentation of SSVEPs using source aliasing matrix estimation for brain-computer interfaces
– volume: 12
  year: 2015
  ident: b0020
  article-title: Filter bank canonical correlation analysis for implementing a high-speed SSVEP-based brain-computer interface
– volume: 29
  start-page: 1998
  year: 2021
  end-page: 2007
  ident: b0085
  article-title: Improving the performance of individually calibrated SSVEP-BCI by task- discriminant component analysis
– volume: 238
  year: 2024
  ident: b0235
  article-title: Unsupervised multi-source variational domain adaptation for inter-subject SSVEP-based BCIs
– volume: 31
  start-page: 2809
  year: 2023
  end-page: 2821
  ident: b0170
  article-title: A canonical correlation analysis-based transfer learning framework for enhancing the performance of SSVEP-based BCIs
– volume: 69
  start-page: 2018
  year: 2022
  end-page: 2028
  ident: b0190
  article-title: Online adaptation boosts SSVEP-based BCI performance
– volume: 9
  year: 2009
  ident: b0005
  article-title: Assessing direction-specific adaptation using the steady-state visual evoked potential: Results from EEG source imaging
  publication-title: Journal of Vision
– volume: 55
  start-page: 173
  year: 2010
  end-page: 182
  ident: b0105
  article-title: Spatial filters to detect steady-state visual evoked potentials elicited by high frequency stimulation: BCI application
– volume: 17
  year: 2023
  ident: b0210
  article-title: SSVEP unsupervised adaptive feature recognition method based on self-similarity of same-frequency signals
– volume: 1–15
  year: 2024
  ident: b0040
  article-title: Leveraging transfer superposition theory for stablestate visual evoked potential cross-subject frequency recognition
– volume: 31
  start-page: 1521
  year: 2023
  end-page: 1531
  ident: b0130
  article-title: Representative-based cold start for adaptive SSVEP-BCI
– volume: 28
  year: 2018
  ident: b0225
  article-title: A dynamic window recognition algorithm for SSVEP-based brain-computer interfaces using a spatio-temporal equalizer
– volume: 31
  start-page: 1574
  year: 2023
  end-page: 1583
  ident: b0240
  article-title: Cross-subject transfer learning for boosting recognition performance in SSVEP-based BCIs
– volume: 26
  start-page: 505
  year: 2021
  end-page: 522
  ident: b0075
  article-title: Cross-target transfer algorithm based on the volterra model of SSVEP-BCI
– volume: 19
  year: 2022
  ident: b0215
  article-title: Cross-subject spatial filter transfer method for SSVEP-EEG feature recognition
– volume: 28
  start-page: 2123
  year: 2020
  end-page: 2135
  ident: b0200
  article-title: Inter- and intra-subject transfer reduces calibration effort for high-speed SSVEP-based BCIs
– start-page: 424
  year: 2019
  end-page: 427
  ident: b0025
  article-title: Cross-Subject Transfer Learning Improves the Practicality of Real-World Applications of Brain-Computer Interfaces
– volume: 31
  start-page: 3307
  year: 2023
  end-page: 3319
  ident: b0045
  article-title: Cross-subject transfer method based on domain generalization for facilitating calibration of SSVEP-based BCIs
– volume: 31
  start-page: 3545
  year: 2023
  end-page: 3555
  ident: b0055
  article-title: Cross domain correlation maximization for enhancing the target recognition of SSVEP-based brain-computer interfaces
– volume: 7
  start-page: 1710
  year: 2021
  end-page: 1712
  ident: b0205
  article-title: Current challenges for the practical application of electroencephalography-based brain-computer interfaces
– volume: 10
  year: 2020
  ident: b0145
  article-title: Group task-related component analysis (gTRCA): A multivariate method for inter-trial reproducibility and inter-subject similarity maximization for EEG data analysis
– volume: 19
  year: 2022
  ident: b0220
  article-title: An improved cross-subject spatial filter transfer method for SSVEP-based BCI
  publication-title: Journal of Neural Engineering
– volume: 31
  start-page: 2486
  year: 2023
  end-page: 2496
  ident: b0070
  article-title: A precise frequency recognition method of short-time SSVEP signals based on signal extension
– volume: 23
  start-page: 11621
  year: 2003
  end-page: 11627
  ident: b0125
  article-title: Human cerebral activation during steady-state visual-evoked responses
– volume: 29
  start-page: 517
  year: 2021
  end-page: 526
  ident: b0155
  article-title: Cross-subject assistance: inter- and intra-subject maximal correlation for enhancing the performance of SSVEP-based BCIs
– volume: 12
  year: 2015
  ident: b0230
  article-title: Enhancing performances of SSVEP-based brain-computer interfaces via exploiting inter-subject information
– volume: 22
  year: 2022
  ident: b0115
  article-title: An adaptive task-related component analysis method for SSVEP recognition
– volume: 18
  year: 2021
  ident: b0140
  article-title: Similarity-constrained task-related component analysis for enhancing SSVEP detection
– volume: 31
  start-page: 2809
  year: 2023
  ident: 10.1016/j.eswa.2025.127208_b0170
  article-title: A canonical correlation analysis-based transfer learning framework for enhancing the performance of SSVEP-based BCIs
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
  doi: 10.1109/TNSRE.2023.3288397
– volume: 12
  issue: 4
  year: 2015
  ident: 10.1016/j.eswa.2025.127208_b0230
  article-title: Enhancing performances of SSVEP-based brain-computer interfaces via exploiting inter-subject information
  publication-title: Journal of Neural Engineering
  doi: 10.1088/1741-2560/12/4/046006
– volume: 249
  year: 2024
  ident: 10.1016/j.eswa.2025.127208_b0065
  article-title: Facilitating applications of SSVEP-BCI by effective cross-subject knowledge transfer
  publication-title: Expert Systems with Applications
– volume: 67
  start-page: 3057
  issue: 11
  year: 2020
  ident: 10.1016/j.eswa.2025.127208_b0185
  article-title: Spatial filtering in SSVEP-based BCIs: unified framework and new improvements
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2020.2975552
– volume: 14
  year: 2020
  ident: 10.1016/j.eswa.2025.127208_b0090
  article-title: BETA: a large benchmark database toward SSVEP-BCI application
  publication-title: Frontiers in Neuroscience
  doi: 10.3389/fnins.2020.00627
– volume: 55
  start-page: 173
  issue: 3
  year: 2010
  ident: 10.1016/j.eswa.2025.127208_b0105
  article-title: Spatial filters to detect steady-state visual evoked potentials elicited by high frequency stimulation: BCI application
  publication-title: Biomedizinische Technik
  doi: 10.1515/bmt.2010.013
– volume: 65
  start-page: 104
  issue: 1
  year: 2017
  ident: 10.1016/j.eswa.2025.127208_b0110
  article-title: Enhancing detection of SSVEPs for a high-speed brain speller using task-related component analysis
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2017.2694818
– volume: 9
  issue: 1
  year: 2022
  ident: 10.1016/j.eswa.2025.127208_b0095
  article-title: Eldbeta: a large eldercare-oriented benchmark database of SSVEP-BCI for the aging population
  publication-title: Scientific Data
  doi: 10.1038/s41597-022-01372-9
– volume: 9
  year: 2009
  ident: 10.1016/j.eswa.2025.127208_b0005
  article-title: Assessing direction-specific adaptation using the steady-state visual evoked potential: Results from EEG source imaging
  publication-title: Journal of Vision
  doi: 10.1167/9.7.8
– volume: 32
  start-page: 1606
  year: 2024
  ident: 10.1016/j.eswa.2025.127208_b0060
  article-title: Multi-stimulus least-squares transformation with online adaptation scheme to reduce calibration effort for SSVEP-based BCIs
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
  doi: 10.1109/TNSRE.2024.3387283
– volume: 19
  issue: 4
  year: 2022
  ident: 10.1016/j.eswa.2025.127208_b0220
  article-title: An improved cross-subject spatial filter transfer method for SSVEP-based BCI
  publication-title: Journal of Neural Engineering
  doi: 10.1088/1741-2552/ac81ee
– volume: 12
  issue: 4
  year: 2015
  ident: 10.1016/j.eswa.2025.127208_b0020
  article-title: Filter bank canonical correlation analysis for implementing a high-speed SSVEP-based brain-computer interface
  publication-title: J Neural Eng
  doi: 10.1088/1741-2560/12/4/046008
– volume: 113
  start-page: 767
  issue: 6
  year: 2002
  ident: 10.1016/j.eswa.2025.127208_b0175
  article-title: Brain-computer interfaces for communication and control
  publication-title: Clinical Neurophysiology
  doi: 10.1016/S1388-2457(02)00057-3
– volume: 10
  issue: 1
  year: 2020
  ident: 10.1016/j.eswa.2025.127208_b0145
  article-title: Group task-related component analysis (gTRCA): A multivariate method for inter-trial reproducibility and inter-subject similarity maximization for EEG data analysis
  publication-title: Scientific Reports
– year: 2024
  ident: 10.1016/j.eswa.2025.127208_b0120
  article-title: Short-length SSVEP data extension by a novel generative adversarial networks based framework
  publication-title: Cognitive Neurodynamics
  doi: 10.1007/s11571-024-10134-9
– start-page: 424
  year: 2019
  ident: 10.1016/j.eswa.2025.127208_b0025
  article-title: Cross-Subject Transfer Learning Improves the Practicality of Real-World Applications of Brain-Computer Interfaces
– volume: 26
  start-page: 505
  issue: 4
  year: 2021
  ident: 10.1016/j.eswa.2025.127208_b0075
  article-title: Cross-target transfer algorithm based on the volterra model of SSVEP-BCI
  publication-title: Tsinghua Science and Technology
  doi: 10.26599/TST.2020.9010015
– volume: 53
  start-page: 2610
  issue: 12
  year: 2006
  ident: 10.1016/j.eswa.2025.127208_b0080
  article-title: Frequency recognition based on canonical correlation analysis for SSVEP-based BCIs
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2006.886577
– volume: 90
  start-page: 418
  issue: 4
  year: 2010
  ident: 10.1016/j.eswa.2025.127208_b0150
  article-title: Steady-state visually evoked potentials: Focus on essential paradigms and future perspectives
  publication-title: Progress in Neurobiology
  doi: 10.1016/j.pneurobio.2009.11.005
– volume: 28
  start-page: 2123
  issue: 10
  year: 2020
  ident: 10.1016/j.eswa.2025.127208_b0200
  article-title: Inter- and intra-subject transfer reduces calibration effort for high-speed SSVEP-based BCIs
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2020.3019276
– volume: 22
  issue: 20
  year: 2022
  ident: 10.1016/j.eswa.2025.127208_b0115
  article-title: An adaptive task-related component analysis method for SSVEP recognition
  publication-title: Sensors
  doi: 10.3390/s22207715
– start-page: pp
  year: 2022
  ident: 10.1016/j.eswa.2025.127208_b0165
  article-title: Stimulus-stimulus transfer based on time-frequency-joint representation in SSVEP-based BCIs
  publication-title: IEEE Trans Biomed Eng
– volume: 31
  start-page: 1574
  year: 2023
  ident: 10.1016/j.eswa.2025.127208_b0240
  article-title: Cross-subject transfer learning for boosting recognition performance in SSVEP-based BCIs
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
  doi: 10.1109/TNSRE.2023.3250953
– volume: 18
  issue: 1
  year: 2021
  ident: 10.1016/j.eswa.2025.127208_b0030
  article-title: Boosting template-based SSVEP decoding by cross-domain transfer learning
  publication-title: Journal of Neural Engineering
  doi: 10.1088/1741-2552/abcb6e
– volume: 31
  start-page: 3545
  year: 2023
  ident: 10.1016/j.eswa.2025.127208_b0055
  article-title: Cross domain correlation maximization for enhancing the target recognition of SSVEP-based brain-computer interfaces
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
  doi: 10.1109/TNSRE.2023.3309543
– volume: 23
  start-page: 11621
  issue: 37
  year: 2003
  ident: 10.1016/j.eswa.2025.127208_b0125
  article-title: Human cerebral activation during steady-state visual-evoked responses
  publication-title: Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.23-37-11621.2003
– volume: 1–15
  year: 2024
  ident: 10.1016/j.eswa.2025.127208_b0040
  article-title: Leveraging transfer superposition theory for stablestate visual evoked potential cross-subject frequency recognition
  publication-title: IEEE Transactions on Biomedical Engineering
– volume: 18
  start-page: 167
  issue: 3
  year: 2006
  ident: 10.1016/j.eswa.2025.127208_b0135
  article-title: Steady-state visual evoked potentials: Distributed local sources and wave-like dynamics are sensitive to flicker frequency
  publication-title: Brain Topography
  doi: 10.1007/s10548-006-0267-4
– volume: 18
  start-page: 552
  issue: 2
  year: 2021
  ident: 10.1016/j.eswa.2025.127208_b0195
  article-title: Transferring subject-specific knowledge across stimulus frequencies in SSVEP-based BCIs
  publication-title: IEEE Transactions on Automation Science and Engineering
  doi: 10.1109/TASE.2021.3054741
– volume: 31
  start-page: 446
  year: 2023
  ident: 10.1016/j.eswa.2025.127208_b0015
  article-title: Small data least-squares transformation (sd-LST) for fast calibration of SSVEP-based BCIs
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
  doi: 10.1109/TNSRE.2022.3225878
– volume: 17
  issue: 1
  year: 2020
  ident: 10.1016/j.eswa.2025.127208_b0180
  article-title: Learning across multi-stimulus enhances target recognition methods in SSVEP-based BCIs
  publication-title: J Neural Eng
  doi: 10.1088/1741-2552/ab2373
– volume: 7
  start-page: 1710
  issue: 12
  year: 2021
  ident: 10.1016/j.eswa.2025.127208_b0205
  article-title: Current challenges for the practical application of electroencephalography-based brain-computer interfaces
  publication-title: Engineering
  doi: 10.1016/j.eng.2021.09.011
– volume: 18
  issue: 4
  year: 2021
  ident: 10.1016/j.eswa.2025.127208_b0140
  article-title: Similarity-constrained task-related component analysis for enhancing SSVEP detection
  publication-title: Journal of Neural Engineering
  doi: 10.1088/1741-2552/abfdfa
– volume: 94
  year: 2024
  ident: 10.1016/j.eswa.2025.127208_b0035
  article-title: Enhancing cross-subject transfer performance for SSVEP identification using small data-based transferability evaluation
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2024.106282
– volume: 29
  start-page: 1998
  year: 2021
  ident: 10.1016/j.eswa.2025.127208_b0085
  article-title: Improving the performance of individually calibrated SSVEP-BCI by task- discriminant component analysis
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
  doi: 10.1109/TNSRE.2021.3114340
– volume: 69
  start-page: 2018
  issue: 6
  year: 2022
  ident: 10.1016/j.eswa.2025.127208_b0190
  article-title: Online adaptation boosts SSVEP-based BCI performance
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2021.3133594
– volume: 31
  start-page: 2486
  year: 2023
  ident: 10.1016/j.eswa.2025.127208_b0070
  article-title: A precise frequency recognition method of short-time SSVEP signals based on signal extension
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
  doi: 10.1109/TNSRE.2023.3274121
– volume: 28
  issue: 10
  year: 2018
  ident: 10.1016/j.eswa.2025.127208_b0225
  article-title: A dynamic window recognition algorithm for SSVEP-based brain-computer interfaces using a spatio-temporal equalizer
  publication-title: International Journal of Neural Systems
  doi: 10.1142/S0129065718500284
– volume: 31
  start-page: 3307
  year: 2023
  ident: 10.1016/j.eswa.2025.127208_b0045
  article-title: Cross-subject transfer method based on domain generalization for facilitating calibration of SSVEP-based BCIs
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
  doi: 10.1109/TNSRE.2023.3305202
– volume: 19
  issue: 3
  year: 2022
  ident: 10.1016/j.eswa.2025.127208_b0215
  article-title: Cross-subject spatial filter transfer method for SSVEP-EEG feature recognition
  publication-title: Journal of Neural Engineering
  doi: 10.1088/1741-2552/ac6b57
– volume: 29
  start-page: 517
  year: 2021
  ident: 10.1016/j.eswa.2025.127208_b0155
  article-title: Cross-subject assistance: inter- and intra-subject maximal correlation for enhancing the performance of SSVEP-based BCIs
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
  doi: 10.1109/TNSRE.2021.3057938
– volume: 25
  start-page: 1746
  issue: 10
  year: 2017
  ident: 10.1016/j.eswa.2025.127208_b0160
  article-title: A benchmark dataset for SSVEP-based brain-computer interfaces
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
  doi: 10.1109/TNSRE.2016.2627556
– volume: 238
  year: 2024
  ident: 10.1016/j.eswa.2025.127208_b0235
  article-title: Unsupervised multi-source variational domain adaptation for inter-subject SSVEP-based BCIs
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2023.122155
– volume: 203
  year: 2022
  ident: 10.1016/j.eswa.2025.127208_b0050
  article-title: Novel signal-to-signal translation method based on StarGAN to generate artificial EEG for SSVEP-based brain-computer interfaces
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2022.117574
– volume: 70
  start-page: 1775
  issue: 6
  year: 2023
  ident: 10.1016/j.eswa.2025.127208_b0100
  article-title: Data augmentation of SSVEPs using source aliasing matrix estimation for brain-computer interfaces
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2022.3227036
– volume: 8
  issue: 10
  year: 2013
  ident: 10.1016/j.eswa.2025.127208_b0010
  article-title: On the Quantification of SSVEP Frequency Responses in Human EEG in Realistic BCI Conditions
  publication-title: PLoS One
– volume: 31
  start-page: 1521
  year: 2023
  ident: 10.1016/j.eswa.2025.127208_b0130
  article-title: Representative-based cold start for adaptive SSVEP-BCI
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
  doi: 10.1109/TNSRE.2023.3245654
– volume: 17
  year: 2023
  ident: 10.1016/j.eswa.2025.127208_b0210
  article-title: SSVEP unsupervised adaptive feature recognition method based on self-similarity of same-frequency signals
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2023.1161511
SSID ssj0017007
Score 2.4621625
Snippet High-performance steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) typically requires large amounts of calibration data to...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 127208
SubjectTerms Brain-computer interface (BCI)
electroencephalography (EEG)
Inter-subject transfer learning
Intra-subject transfer learning
steady-state visual evoked potential (SSVEP)
Title Inter- and Intra-Subject transfer learning for High-Performance SSVEP-BCI with extremely little calibration effort
URI https://dx.doi.org/10.1016/j.eswa.2025.127208
Volume 276
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lXrz4Fuuj5OBN0u4j6WaPtbS0iqVQK70tSZNIRdZSV8SLv92ZffgA8eBxlwksM5NvvszOTAg5D3kQBdJo5plAMB5bj0mzUExAcIMjtrNKYqPwzbgznPGruZjXSK_qhcGyyhL7C0zP0bp80y612V4tl-0pkAMIh3C0E8gj8iY-ziP08tb7Z5kHjp-Linl7EUPpsnGmqPGyz684eygQLR__R8rfg9O3gDPYIVslU6Td4mN2Sc2me2S7uoWBlptyn6zzpB6jKjV0hKlaBmCA2RWa5aQUZMurIe4pMFSKlR1s8tUvQKfTu_6EXfZGFJOyFNAac4aPbxQYOngSBSvimRotSK2DZdkBmQ36t70hK29SYIvAizOmteGhc76TWoa-CmIeu6CjrBFAVyFgR1JrpXyhpBctQueFmvMFt5ELrfOxW_eQ1NOn1B4R6gdKa2kBr0Gmw7WKlDAAVb7lBtiS1yAXlQqTVTEwI6kqyR4SVHiCCk8KhTeIqLSc_DB7Aoj-x7rjf647IZv4VNR6nZJ6tn6xZ8AqMt3M3aZJNrqj6-H4Aw-1zPw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lHvTiW6zPHLxJ2n0k3exRS0urbSm0ld6WpJtIRdZSV8SLv92ZffgA8eB1NwPLJPnmm9l5EHLhcy_wZKyZE3uC8dA4TMZzxQQYN3CxrVESC4UHw2Z3ym9mYlYhrbIWBtMqC-zPMT1D6-JJo9BmY7lYNMZADsAcgmsnkEdgEd8ah-uLYwzq7595Hth_Lsgb7gUMlxeVM3mSl3l-xeZDnqi7-ENS_m6dvlmczjbZLKgivcq_ZodUTLJLtsoxDLS4lXtklUX1GFVJTHsYq2WABhheoWnGSmFtMRvingJFpZjawUZfBQN0PL5rj9h1q0cxKksBrjFo-PhGgaLDUaKwjehU4xZSY0Es3SfTTnvS6rJilAKbe06YMq1j7lvrWqml7yov5KH1msrEAvgqWOxAaq2UK5R0grlvHV9zPucmsL6xLpbrHpBq8pSYQ0JdT2ktDQA2rGlyrQIlYsAq1_AY6JJTI5elCqNl3jEjKlPJHiJUeIQKj3KF14gotRz92PcIIP0PuaN_yp2T9e5k0I_6veHtMdnAN3ni1wmppqsXcwoUI9Vn2RH6AO96zoo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inter-+and+Intra-Subject+transfer+learning+for+High-Performance+SSVEP-BCI+with+extremely+little+calibration+effort&rft.jtitle=Expert+systems+with+applications&rft.au=Li%2C+Hui&rft.au=Xu%2C+Guanghua&rft.au=Li%2C+Zejin&rft.au=Zhang%2C+Kai&rft.date=2025-06-01&rft.issn=0957-4174&rft.volume=276&rft.spage=127208&rft_id=info:doi/10.1016%2Fj.eswa.2025.127208&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2025_127208
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon