Inter- and Intra-Subject transfer learning for High-Performance SSVEP-BCI with extremely little calibration effort
High-performance steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) typically requires large amounts of calibration data to derive individual-specific model parameters. This imposes a significant burden on the use of SSVEP-BCI and limits its practical applications. Exi...
Saved in:
Published in | Expert systems with applications Vol. 276; p. 127208 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.06.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | High-performance steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) typically requires large amounts of calibration data to derive individual-specific model parameters. This imposes a significant burden on the use of SSVEP-BCI and limits its practical applications. Existing transfer learning methods with poor transfer performance and inefficient use of the calibration data for SSVEP-BCI still rely on many calibration data from target or source subjects. This study proposed an effective inter- and intra-subject transfer learning framework (IISTLF), which requires only one source subject and one class calibration data from the target subject. The prior knowledge from limited calibration data of the target subject is utilized for inter-subject domain alignment and extracting intra-subject common knowledge. A conditional distribution alignment method, least-squares transformation (CSTL-LST), and the proposed marginal distribution alignment method, channel-wise alignment (CSTL-CWA), are employed for effective inter-subject transfer. Extensive experiments on the Benchmark dataset confirm the feasibility of CSTL-CWA in reducing spatial distribution differences of SSVEP signals between subjects. The results also reveal that IISTLF exhibits satisfactory performance, achieving an averaged classification accuracy of 77.11 ± 15.50 % across all signal lengths, significantly outperforming comparison methods FBCCA (65.11 ± 16.73 %), tt-CCA (64.81 ± 18.01 %), CSSFT (67.36 ± 16.58 %), LST-based method (42.24 ± 23.99 %), and stCCA (50.14 ± 14.29 %). Additionally, IISTLF exhibits the least negative transfer rate 2.10 ± 1.11 %, which is substantially lower than other methods. The IISTLF provides a promising solution for minimizing the required calibration data from both target and source subjects and promotes the practical application of SSVEP-BCI. |
---|---|
AbstractList | High-performance steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) typically requires large amounts of calibration data to derive individual-specific model parameters. This imposes a significant burden on the use of SSVEP-BCI and limits its practical applications. Existing transfer learning methods with poor transfer performance and inefficient use of the calibration data for SSVEP-BCI still rely on many calibration data from target or source subjects. This study proposed an effective inter- and intra-subject transfer learning framework (IISTLF), which requires only one source subject and one class calibration data from the target subject. The prior knowledge from limited calibration data of the target subject is utilized for inter-subject domain alignment and extracting intra-subject common knowledge. A conditional distribution alignment method, least-squares transformation (CSTL-LST), and the proposed marginal distribution alignment method, channel-wise alignment (CSTL-CWA), are employed for effective inter-subject transfer. Extensive experiments on the Benchmark dataset confirm the feasibility of CSTL-CWA in reducing spatial distribution differences of SSVEP signals between subjects. The results also reveal that IISTLF exhibits satisfactory performance, achieving an averaged classification accuracy of 77.11 ± 15.50 % across all signal lengths, significantly outperforming comparison methods FBCCA (65.11 ± 16.73 %), tt-CCA (64.81 ± 18.01 %), CSSFT (67.36 ± 16.58 %), LST-based method (42.24 ± 23.99 %), and stCCA (50.14 ± 14.29 %). Additionally, IISTLF exhibits the least negative transfer rate 2.10 ± 1.11 %, which is substantially lower than other methods. The IISTLF provides a promising solution for minimizing the required calibration data from both target and source subjects and promotes the practical application of SSVEP-BCI. |
ArticleNumber | 127208 |
Author | Guo, Xiaobing Han, Chengcheng Zhu, Yongzhen Zhao, Yihua Li, Hui Yang, Xuwei Xu, Guanghua Li, Zejin Zhang, Kai Jiang, Hanli |
Author_xml | – sequence: 1 givenname: Hui orcidid: 0000-0002-0752-5710 surname: Li fullname: Li, Hui email: hueylee@stu.xjtu.edu.cn organization: School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, China – sequence: 2 givenname: Guanghua orcidid: 0000-0002-8684-7055 surname: Xu fullname: Xu, Guanghua email: ghxu@mail.xjtu.edu.cn organization: School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, China – sequence: 3 givenname: Zejin orcidid: 0000-0001-6313-1364 surname: Li fullname: Li, Zejin email: lizejin@stu.xjtu.edu.cn organization: School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, China – sequence: 4 givenname: Kai surname: Zhang fullname: Zhang, Kai email: Kai.Zhang@uth.tmc.edu organization: Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA – sequence: 5 givenname: Hanli surname: Jiang fullname: Jiang, Hanli email: sharkpike@stu.xjtu.edu.cn organization: School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, China – sequence: 6 givenname: Xiaobing surname: Guo fullname: Guo, Xiaobing email: xiaobingguo@stu.xjtu.edu.cn organization: School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, China – sequence: 7 givenname: Yongzhen surname: Zhu fullname: Zhu, Yongzhen email: 15959347@stu.xjtu.edu.cn organization: School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, China – sequence: 8 givenname: Xuwei orcidid: 0009-0000-2568-0928 surname: Yang fullname: Yang, Xuwei email: 1510902361@stu.xjtu.edu.cn organization: School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, China – sequence: 9 givenname: Yihua orcidid: 0009-0002-4065-3738 surname: Zhao fullname: Zhao, Yihua email: zyh111@stu.xjtu.edu.cn organization: School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, China – sequence: 10 givenname: Chengcheng surname: Han fullname: Han, Chengcheng email: hanchengcheng@xjtu.edu.cn organization: School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, China |
BookMark | eNp9kMFOAjEQQHvAREB_wFN_oGvb3aW7iRclKCQkkqBem7Y7hW6WrulWkb-3BM-e5l3eZOZN0Mj3HhC6YzRjlM3u2wyGo8o45WXGuOC0GqExrUtBCiaKazQZhpZSJigVYxRWPkIgWPkGJwyKbL90CybixH6wEHAHKnjnd9j2AS_dbk82EBIflDeAt9uPxYY8zVf46OIew08McIDuhDsXYwfYqM7poKLrPQabtHiDrqzqBrj9m1P0_rx4my_J-vVlNX9cE8NpHYnWTZFby2ylq5wpXhe15TMFTVmxpipzUWmtFCtVRYXJLc11UZgChM3BMlrm-RTxy14T-mEIYOVncAcVTpJReS4lW3kuJc-l5KVUkh4uEqTLvh0EORgH6dHGhVRFNr37T_8FrKd3Yw |
Cites_doi | 10.1109/TNSRE.2023.3288397 10.1088/1741-2560/12/4/046006 10.1109/TBME.2020.2975552 10.3389/fnins.2020.00627 10.1515/bmt.2010.013 10.1109/TBME.2017.2694818 10.1038/s41597-022-01372-9 10.1167/9.7.8 10.1109/TNSRE.2024.3387283 10.1088/1741-2552/ac81ee 10.1088/1741-2560/12/4/046008 10.1016/S1388-2457(02)00057-3 10.1007/s11571-024-10134-9 10.26599/TST.2020.9010015 10.1109/TBME.2006.886577 10.1016/j.pneurobio.2009.11.005 10.1109/TNSRE.2020.3019276 10.3390/s22207715 10.1109/TNSRE.2023.3250953 10.1088/1741-2552/abcb6e 10.1109/TNSRE.2023.3309543 10.1523/JNEUROSCI.23-37-11621.2003 10.1007/s10548-006-0267-4 10.1109/TASE.2021.3054741 10.1109/TNSRE.2022.3225878 10.1088/1741-2552/ab2373 10.1016/j.eng.2021.09.011 10.1088/1741-2552/abfdfa 10.1016/j.bspc.2024.106282 10.1109/TNSRE.2021.3114340 10.1109/TBME.2021.3133594 10.1109/TNSRE.2023.3274121 10.1142/S0129065718500284 10.1109/TNSRE.2023.3305202 10.1088/1741-2552/ac6b57 10.1109/TNSRE.2021.3057938 10.1109/TNSRE.2016.2627556 10.1016/j.eswa.2023.122155 10.1016/j.eswa.2022.117574 10.1109/TBME.2022.3227036 10.1109/TNSRE.2023.3245654 10.3389/fnins.2023.1161511 |
ContentType | Journal Article |
Copyright | 2025 Elsevier Ltd |
Copyright_xml | – notice: 2025 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.eswa.2025.127208 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
ExternalDocumentID | 10_1016_j_eswa_2025_127208 S0957417425008309 |
GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABJNI ABMAC ABMVD ABUCO ACDAQ ACGFS ACHRH ACNTT ACRLP ACVFH ACZNC ADBBV ADCNI ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AFXIZ AGCQF AGHFR AGRNS AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALEQD ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APLSM APXCP AXJTR BJAXD BKOJK BLXMC BNPGV BNSAS CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SSH SSL SST SSV SSZ T5K TN5 ~G- 29G AAAKG AAQXK AAYXX ABKBG ABWVN ABXDB ACNNM ACRPL ADJOM ADMUD ADNMO AGQPQ ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- RIG SBC SET WUQ XPP ZMT |
ID | FETCH-LOGICAL-c209t-bbd43ff1f8b831a2949f26aed581d85378bbaa15a807c3f03b44c4e7f3ef10533 |
IEDL.DBID | .~1 |
ISSN | 0957-4174 |
IngestDate | Tue Aug 05 11:59:58 EDT 2025 Sat Jun 21 16:53:52 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | electroencephalography (EEG) Brain-computer interface (BCI) Intra-subject transfer learning Inter-subject transfer learning steady-state visual evoked potential (SSVEP) |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c209t-bbd43ff1f8b831a2949f26aed581d85378bbaa15a807c3f03b44c4e7f3ef10533 |
ORCID | 0000-0002-8684-7055 0009-0002-4065-3738 0000-0002-0752-5710 0000-0001-6313-1364 0009-0000-2568-0928 |
ParticipantIDs | crossref_primary_10_1016_j_eswa_2025_127208 elsevier_sciencedirect_doi_10_1016_j_eswa_2025_127208 |
PublicationCentury | 2000 |
PublicationDate | 2025-06-01 |
PublicationDateYYYYMMDD | 2025-06-01 |
PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Expert systems with applications |
PublicationYear | 2025 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Sun, Chen, Zhang, Li, Kang (b0140) 2021; 18 Huang, Zhang, Xiong, Wang, Wan, Li, Yang (b0045) 2023; 31 Wang, Chen, Gao, Gao (b0160) 2017; 25 Wong, Wang, Rosa, Chen, Jung, Hu, Wan (b0195) 2021; 18 Kwon, Im (b0050) 2022; 203 Liu, Chen, Shi, Wang, Gao, Gao (b0085) 2021; 29 Yuan, Chen, Wang, Gao, Gao (b0230) 2015; 12 Ales, Norcia (b0005) 2009; 9 Xu, He, Jung, Gu, Ming (b0205) 2021; 7 Liu, Wang, Gao, Chen (b0095) 2022; 9 Pan, Li, Zhang, Xu, Yao (b0120) 2024 Wang, Sun, Wang, Cao, Zhou, Wang, Chen (b0155) 2021; 29 Yan, He, Zhao (b0210) 2023; 17 Nakanishi, Wang, Chen, Wang, Gao, Jung (b0110) 2017; 65 Chiang, Wei, Nakanishi, Jung (b0030) 2021; 18 Lan, Wang, He, Zong, Leng, Iramina, Zheng, Ge (b0055) 2023; 31 Pastor, Artieda, Arbizu, Valencia, Masdeu (b0125) 2003; 23 Wong, Wang, Nakanishi, Wang, Rosa, Chen, Jung, Wan (b0190) 2022; 69 Yang, Han, Wang, Saab, Gao, Gao (b0225) 2018; 28 Bian, Wu, Liu, Wu (b0015) 2023; 31 Wong, Wan, Wang, Wang, Nan, Lao, Mak, Vai, Rosa (b0180) 2020; 17 Tanaka (b0145) 2020; 10 Wang, Wong, Rosa, Qian, Jung, Wan (b0165) 2022 Chen, Wang, Gao, Jung, Gao (b0020) 2015; 12 Wei, Zhang, Wang, Gao (b0170) 2023; 31 Vialatte, Maurice, Dauwels, Cichocki (b0150) 2010; 90 Wong, Wang, Wang, Lao, Rosa, Xu, Jung, Chen, Wan (b0200) 2020; 28 Shi, Li, Liu, Yang, Wang, Gao (b0130) 2023; 31 Chiang, Wei, Nakanishi, Jung (b0025) 2019 Du, Ke, Liu, Chen, Ming (b0035) 2024; 94 Wolpaw, Birbaumer, McFarland, Pfurtscheller, Vaughan (b0175) 2002; 113 Li, Xu, Li, Zhang, Zheng, Du, Han, Kuang, Du, Zhang (b0070) 2023; 31 Wong, Wang, Wang, Lao, Rosa, Wan (b0185) 2020; 67 Liu, Huang, Wang, Chen, Gao (b0090) 2020; 14 Yan, Wu, Du, Xu (b0215) 2022; 19 Yan, Wu, Du, Xu (b0220) 2022; 19 Luo, Xu, Zhou, Xiao, Jung, Ming (b0100) 2023; 70 He, Allison, Qin, Liang, Wang, Cichocki, Jin (b0040) 2024; 1–15 Oikonomou (b0115) 2022; 22 Zhang, Xie, Shi, Li, Zhang (b0240) 2023; 31 Lin, Zhang, Wu, Gao (b0080) 2006; 53 Zhang, An, Liu, Wei, Sun (b0235) 2024; 238 Barnes, Kuś, Duszyk, Milanowski, Łabęcki, Bierzyńska, Radzikowska, Michalska, Żygierewicz, Suffczyński, Durka (b0010) 2013; 8 Li, Xu, Du, Li, Han, Tian, Li, Zhang (b0065) 2024; 249 Molina, Mihajlovic (b0105) 2010; 55 Li, Wang, Dou, Zhao, Cui, Xiang, Wang (b0060) 2024; 32 Srinivasan, Bibi, Nunez (b0135) 2006; 18 Lin, Liang, Han, Yang, Chen, Gao (b0075) 2021; 26 Liu (10.1016/j.eswa.2025.127208_b0085) 2021; 29 Li (10.1016/j.eswa.2025.127208_b0070) 2023; 31 Sun (10.1016/j.eswa.2025.127208_b0140) 2021; 18 Pan (10.1016/j.eswa.2025.127208_b0120) 2024 Zhang (10.1016/j.eswa.2025.127208_b0240) 2023; 31 Li (10.1016/j.eswa.2025.127208_b0060) 2024; 32 Liu (10.1016/j.eswa.2025.127208_b0095) 2022; 9 Ales (10.1016/j.eswa.2025.127208_b0005) 2009; 9 Chen (10.1016/j.eswa.2025.127208_b0020) 2015; 12 Molina (10.1016/j.eswa.2025.127208_b0105) 2010; 55 Shi (10.1016/j.eswa.2025.127208_b0130) 2023; 31 Nakanishi (10.1016/j.eswa.2025.127208_b0110) 2017; 65 Srinivasan (10.1016/j.eswa.2025.127208_b0135) 2006; 18 Du (10.1016/j.eswa.2025.127208_b0035) 2024; 94 Yan (10.1016/j.eswa.2025.127208_b0210) 2023; 17 Yan (10.1016/j.eswa.2025.127208_b0215) 2022; 19 Yang (10.1016/j.eswa.2025.127208_b0225) 2018; 28 Wolpaw (10.1016/j.eswa.2025.127208_b0175) 2002; 113 Liu (10.1016/j.eswa.2025.127208_b0090) 2020; 14 Chiang (10.1016/j.eswa.2025.127208_b0025) 2019 Lan (10.1016/j.eswa.2025.127208_b0055) 2023; 31 He (10.1016/j.eswa.2025.127208_b0040) 2024; 1–15 Wong (10.1016/j.eswa.2025.127208_b0180) 2020; 17 Oikonomou (10.1016/j.eswa.2025.127208_b0115) 2022; 22 Tanaka (10.1016/j.eswa.2025.127208_b0145) 2020; 10 Chiang (10.1016/j.eswa.2025.127208_b0030) 2021; 18 Wang (10.1016/j.eswa.2025.127208_b0155) 2021; 29 Huang (10.1016/j.eswa.2025.127208_b0045) 2023; 31 Barnes (10.1016/j.eswa.2025.127208_b0010) 2013; 8 Xu (10.1016/j.eswa.2025.127208_b0205) 2021; 7 Wong (10.1016/j.eswa.2025.127208_b0185) 2020; 67 Zhang (10.1016/j.eswa.2025.127208_b0235) 2024; 238 Li (10.1016/j.eswa.2025.127208_b0065) 2024; 249 Pastor (10.1016/j.eswa.2025.127208_b0125) 2003; 23 Wang (10.1016/j.eswa.2025.127208_b0165) 2022 Luo (10.1016/j.eswa.2025.127208_b0100) 2023; 70 Wong (10.1016/j.eswa.2025.127208_b0190) 2022; 69 Yan (10.1016/j.eswa.2025.127208_b0220) 2022; 19 Lin (10.1016/j.eswa.2025.127208_b0075) 2021; 26 Lin (10.1016/j.eswa.2025.127208_b0080) 2006; 53 Wang (10.1016/j.eswa.2025.127208_b0160) 2017; 25 Kwon (10.1016/j.eswa.2025.127208_b0050) 2022; 203 Yuan (10.1016/j.eswa.2025.127208_b0230) 2015; 12 Bian (10.1016/j.eswa.2025.127208_b0015) 2023; 31 Wei (10.1016/j.eswa.2025.127208_b0170) 2023; 31 Wong (10.1016/j.eswa.2025.127208_b0200) 2020; 28 Vialatte (10.1016/j.eswa.2025.127208_b0150) 2010; 90 Wong (10.1016/j.eswa.2025.127208_b0195) 2021; 18 |
References_xml | – volume: 203 year: 2022 ident: b0050 article-title: Novel signal-to-signal translation method based on StarGAN to generate artificial EEG for SSVEP-based brain-computer interfaces – volume: 18 start-page: 167 year: 2006 end-page: 187 ident: b0135 article-title: Steady-state visual evoked potentials: Distributed local sources and wave-like dynamics are sensitive to flicker frequency – volume: 14 year: 2020 ident: b0090 article-title: BETA: a large benchmark database toward SSVEP-BCI application – volume: 17 year: 2020 ident: b0180 article-title: Learning across multi-stimulus enhances target recognition methods in SSVEP-based BCIs – volume: 65 start-page: 104 year: 2017 end-page: 112 ident: b0110 article-title: Enhancing detection of SSVEPs for a high-speed brain speller using task-related component analysis – year: 2024 ident: b0120 article-title: Short-length SSVEP data extension by a novel generative adversarial networks based framework – start-page: pp year: 2022 ident: b0165 article-title: Stimulus-stimulus transfer based on time-frequency-joint representation in SSVEP-based BCIs – volume: 8 year: 2013 ident: b0010 article-title: On the Quantification of SSVEP Frequency Responses in Human EEG in Realistic BCI Conditions – volume: 32 start-page: 1606 year: 2024 end-page: 1615 ident: b0060 article-title: Multi-stimulus least-squares transformation with online adaptation scheme to reduce calibration effort for SSVEP-based BCIs – volume: 249 year: 2024 ident: b0065 article-title: Facilitating applications of SSVEP-BCI by effective cross-subject knowledge transfer – volume: 67 start-page: 3057 year: 2020 end-page: 3072 ident: b0185 article-title: Spatial filtering in SSVEP-based BCIs: unified framework and new improvements – volume: 31 start-page: 446 year: 2023 end-page: 455 ident: b0015 article-title: Small data least-squares transformation (sd-LST) for fast calibration of SSVEP-based BCIs – volume: 113 start-page: 767 year: 2002 end-page: 791 ident: b0175 article-title: Brain-computer interfaces for communication and control – volume: 9 year: 2022 ident: b0095 article-title: Eldbeta: a large eldercare-oriented benchmark database of SSVEP-BCI for the aging population – volume: 53 start-page: 2610 year: 2006 end-page: 2614 ident: b0080 article-title: Frequency recognition based on canonical correlation analysis for SSVEP-based BCIs – volume: 90 start-page: 418 year: 2010 end-page: 438 ident: b0150 article-title: Steady-state visually evoked potentials: Focus on essential paradigms and future perspectives – volume: 18 year: 2021 ident: b0030 article-title: Boosting template-based SSVEP decoding by cross-domain transfer learning – volume: 25 start-page: 1746 year: 2017 end-page: 1752 ident: b0160 article-title: A benchmark dataset for SSVEP-based brain-computer interfaces – volume: 94 year: 2024 ident: b0035 article-title: Enhancing cross-subject transfer performance for SSVEP identification using small data-based transferability evaluation – volume: 18 start-page: 552 year: 2021 end-page: 563 ident: b0195 article-title: Transferring subject-specific knowledge across stimulus frequencies in SSVEP-based BCIs – volume: 70 start-page: 1775 year: 2023 end-page: 1785 ident: b0100 article-title: Data augmentation of SSVEPs using source aliasing matrix estimation for brain-computer interfaces – volume: 12 year: 2015 ident: b0020 article-title: Filter bank canonical correlation analysis for implementing a high-speed SSVEP-based brain-computer interface – volume: 29 start-page: 1998 year: 2021 end-page: 2007 ident: b0085 article-title: Improving the performance of individually calibrated SSVEP-BCI by task- discriminant component analysis – volume: 238 year: 2024 ident: b0235 article-title: Unsupervised multi-source variational domain adaptation for inter-subject SSVEP-based BCIs – volume: 31 start-page: 2809 year: 2023 end-page: 2821 ident: b0170 article-title: A canonical correlation analysis-based transfer learning framework for enhancing the performance of SSVEP-based BCIs – volume: 69 start-page: 2018 year: 2022 end-page: 2028 ident: b0190 article-title: Online adaptation boosts SSVEP-based BCI performance – volume: 9 year: 2009 ident: b0005 article-title: Assessing direction-specific adaptation using the steady-state visual evoked potential: Results from EEG source imaging publication-title: Journal of Vision – volume: 55 start-page: 173 year: 2010 end-page: 182 ident: b0105 article-title: Spatial filters to detect steady-state visual evoked potentials elicited by high frequency stimulation: BCI application – volume: 17 year: 2023 ident: b0210 article-title: SSVEP unsupervised adaptive feature recognition method based on self-similarity of same-frequency signals – volume: 1–15 year: 2024 ident: b0040 article-title: Leveraging transfer superposition theory for stablestate visual evoked potential cross-subject frequency recognition – volume: 31 start-page: 1521 year: 2023 end-page: 1531 ident: b0130 article-title: Representative-based cold start for adaptive SSVEP-BCI – volume: 28 year: 2018 ident: b0225 article-title: A dynamic window recognition algorithm for SSVEP-based brain-computer interfaces using a spatio-temporal equalizer – volume: 31 start-page: 1574 year: 2023 end-page: 1583 ident: b0240 article-title: Cross-subject transfer learning for boosting recognition performance in SSVEP-based BCIs – volume: 26 start-page: 505 year: 2021 end-page: 522 ident: b0075 article-title: Cross-target transfer algorithm based on the volterra model of SSVEP-BCI – volume: 19 year: 2022 ident: b0215 article-title: Cross-subject spatial filter transfer method for SSVEP-EEG feature recognition – volume: 28 start-page: 2123 year: 2020 end-page: 2135 ident: b0200 article-title: Inter- and intra-subject transfer reduces calibration effort for high-speed SSVEP-based BCIs – start-page: 424 year: 2019 end-page: 427 ident: b0025 article-title: Cross-Subject Transfer Learning Improves the Practicality of Real-World Applications of Brain-Computer Interfaces – volume: 31 start-page: 3307 year: 2023 end-page: 3319 ident: b0045 article-title: Cross-subject transfer method based on domain generalization for facilitating calibration of SSVEP-based BCIs – volume: 31 start-page: 3545 year: 2023 end-page: 3555 ident: b0055 article-title: Cross domain correlation maximization for enhancing the target recognition of SSVEP-based brain-computer interfaces – volume: 7 start-page: 1710 year: 2021 end-page: 1712 ident: b0205 article-title: Current challenges for the practical application of electroencephalography-based brain-computer interfaces – volume: 10 year: 2020 ident: b0145 article-title: Group task-related component analysis (gTRCA): A multivariate method for inter-trial reproducibility and inter-subject similarity maximization for EEG data analysis – volume: 19 year: 2022 ident: b0220 article-title: An improved cross-subject spatial filter transfer method for SSVEP-based BCI publication-title: Journal of Neural Engineering – volume: 31 start-page: 2486 year: 2023 end-page: 2496 ident: b0070 article-title: A precise frequency recognition method of short-time SSVEP signals based on signal extension – volume: 23 start-page: 11621 year: 2003 end-page: 11627 ident: b0125 article-title: Human cerebral activation during steady-state visual-evoked responses – volume: 29 start-page: 517 year: 2021 end-page: 526 ident: b0155 article-title: Cross-subject assistance: inter- and intra-subject maximal correlation for enhancing the performance of SSVEP-based BCIs – volume: 12 year: 2015 ident: b0230 article-title: Enhancing performances of SSVEP-based brain-computer interfaces via exploiting inter-subject information – volume: 22 year: 2022 ident: b0115 article-title: An adaptive task-related component analysis method for SSVEP recognition – volume: 18 year: 2021 ident: b0140 article-title: Similarity-constrained task-related component analysis for enhancing SSVEP detection – volume: 31 start-page: 2809 year: 2023 ident: 10.1016/j.eswa.2025.127208_b0170 article-title: A canonical correlation analysis-based transfer learning framework for enhancing the performance of SSVEP-based BCIs publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering doi: 10.1109/TNSRE.2023.3288397 – volume: 12 issue: 4 year: 2015 ident: 10.1016/j.eswa.2025.127208_b0230 article-title: Enhancing performances of SSVEP-based brain-computer interfaces via exploiting inter-subject information publication-title: Journal of Neural Engineering doi: 10.1088/1741-2560/12/4/046006 – volume: 249 year: 2024 ident: 10.1016/j.eswa.2025.127208_b0065 article-title: Facilitating applications of SSVEP-BCI by effective cross-subject knowledge transfer publication-title: Expert Systems with Applications – volume: 67 start-page: 3057 issue: 11 year: 2020 ident: 10.1016/j.eswa.2025.127208_b0185 article-title: Spatial filtering in SSVEP-based BCIs: unified framework and new improvements publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/TBME.2020.2975552 – volume: 14 year: 2020 ident: 10.1016/j.eswa.2025.127208_b0090 article-title: BETA: a large benchmark database toward SSVEP-BCI application publication-title: Frontiers in Neuroscience doi: 10.3389/fnins.2020.00627 – volume: 55 start-page: 173 issue: 3 year: 2010 ident: 10.1016/j.eswa.2025.127208_b0105 article-title: Spatial filters to detect steady-state visual evoked potentials elicited by high frequency stimulation: BCI application publication-title: Biomedizinische Technik doi: 10.1515/bmt.2010.013 – volume: 65 start-page: 104 issue: 1 year: 2017 ident: 10.1016/j.eswa.2025.127208_b0110 article-title: Enhancing detection of SSVEPs for a high-speed brain speller using task-related component analysis publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/TBME.2017.2694818 – volume: 9 issue: 1 year: 2022 ident: 10.1016/j.eswa.2025.127208_b0095 article-title: Eldbeta: a large eldercare-oriented benchmark database of SSVEP-BCI for the aging population publication-title: Scientific Data doi: 10.1038/s41597-022-01372-9 – volume: 9 year: 2009 ident: 10.1016/j.eswa.2025.127208_b0005 article-title: Assessing direction-specific adaptation using the steady-state visual evoked potential: Results from EEG source imaging publication-title: Journal of Vision doi: 10.1167/9.7.8 – volume: 32 start-page: 1606 year: 2024 ident: 10.1016/j.eswa.2025.127208_b0060 article-title: Multi-stimulus least-squares transformation with online adaptation scheme to reduce calibration effort for SSVEP-based BCIs publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering doi: 10.1109/TNSRE.2024.3387283 – volume: 19 issue: 4 year: 2022 ident: 10.1016/j.eswa.2025.127208_b0220 article-title: An improved cross-subject spatial filter transfer method for SSVEP-based BCI publication-title: Journal of Neural Engineering doi: 10.1088/1741-2552/ac81ee – volume: 12 issue: 4 year: 2015 ident: 10.1016/j.eswa.2025.127208_b0020 article-title: Filter bank canonical correlation analysis for implementing a high-speed SSVEP-based brain-computer interface publication-title: J Neural Eng doi: 10.1088/1741-2560/12/4/046008 – volume: 113 start-page: 767 issue: 6 year: 2002 ident: 10.1016/j.eswa.2025.127208_b0175 article-title: Brain-computer interfaces for communication and control publication-title: Clinical Neurophysiology doi: 10.1016/S1388-2457(02)00057-3 – volume: 10 issue: 1 year: 2020 ident: 10.1016/j.eswa.2025.127208_b0145 article-title: Group task-related component analysis (gTRCA): A multivariate method for inter-trial reproducibility and inter-subject similarity maximization for EEG data analysis publication-title: Scientific Reports – year: 2024 ident: 10.1016/j.eswa.2025.127208_b0120 article-title: Short-length SSVEP data extension by a novel generative adversarial networks based framework publication-title: Cognitive Neurodynamics doi: 10.1007/s11571-024-10134-9 – start-page: 424 year: 2019 ident: 10.1016/j.eswa.2025.127208_b0025 article-title: Cross-Subject Transfer Learning Improves the Practicality of Real-World Applications of Brain-Computer Interfaces – volume: 26 start-page: 505 issue: 4 year: 2021 ident: 10.1016/j.eswa.2025.127208_b0075 article-title: Cross-target transfer algorithm based on the volterra model of SSVEP-BCI publication-title: Tsinghua Science and Technology doi: 10.26599/TST.2020.9010015 – volume: 53 start-page: 2610 issue: 12 year: 2006 ident: 10.1016/j.eswa.2025.127208_b0080 article-title: Frequency recognition based on canonical correlation analysis for SSVEP-based BCIs publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/TBME.2006.886577 – volume: 90 start-page: 418 issue: 4 year: 2010 ident: 10.1016/j.eswa.2025.127208_b0150 article-title: Steady-state visually evoked potentials: Focus on essential paradigms and future perspectives publication-title: Progress in Neurobiology doi: 10.1016/j.pneurobio.2009.11.005 – volume: 28 start-page: 2123 issue: 10 year: 2020 ident: 10.1016/j.eswa.2025.127208_b0200 article-title: Inter- and intra-subject transfer reduces calibration effort for high-speed SSVEP-based BCIs publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2020.3019276 – volume: 22 issue: 20 year: 2022 ident: 10.1016/j.eswa.2025.127208_b0115 article-title: An adaptive task-related component analysis method for SSVEP recognition publication-title: Sensors doi: 10.3390/s22207715 – start-page: pp year: 2022 ident: 10.1016/j.eswa.2025.127208_b0165 article-title: Stimulus-stimulus transfer based on time-frequency-joint representation in SSVEP-based BCIs publication-title: IEEE Trans Biomed Eng – volume: 31 start-page: 1574 year: 2023 ident: 10.1016/j.eswa.2025.127208_b0240 article-title: Cross-subject transfer learning for boosting recognition performance in SSVEP-based BCIs publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering doi: 10.1109/TNSRE.2023.3250953 – volume: 18 issue: 1 year: 2021 ident: 10.1016/j.eswa.2025.127208_b0030 article-title: Boosting template-based SSVEP decoding by cross-domain transfer learning publication-title: Journal of Neural Engineering doi: 10.1088/1741-2552/abcb6e – volume: 31 start-page: 3545 year: 2023 ident: 10.1016/j.eswa.2025.127208_b0055 article-title: Cross domain correlation maximization for enhancing the target recognition of SSVEP-based brain-computer interfaces publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering doi: 10.1109/TNSRE.2023.3309543 – volume: 23 start-page: 11621 issue: 37 year: 2003 ident: 10.1016/j.eswa.2025.127208_b0125 article-title: Human cerebral activation during steady-state visual-evoked responses publication-title: Journal of Neuroscience doi: 10.1523/JNEUROSCI.23-37-11621.2003 – volume: 1–15 year: 2024 ident: 10.1016/j.eswa.2025.127208_b0040 article-title: Leveraging transfer superposition theory for stablestate visual evoked potential cross-subject frequency recognition publication-title: IEEE Transactions on Biomedical Engineering – volume: 18 start-page: 167 issue: 3 year: 2006 ident: 10.1016/j.eswa.2025.127208_b0135 article-title: Steady-state visual evoked potentials: Distributed local sources and wave-like dynamics are sensitive to flicker frequency publication-title: Brain Topography doi: 10.1007/s10548-006-0267-4 – volume: 18 start-page: 552 issue: 2 year: 2021 ident: 10.1016/j.eswa.2025.127208_b0195 article-title: Transferring subject-specific knowledge across stimulus frequencies in SSVEP-based BCIs publication-title: IEEE Transactions on Automation Science and Engineering doi: 10.1109/TASE.2021.3054741 – volume: 31 start-page: 446 year: 2023 ident: 10.1016/j.eswa.2025.127208_b0015 article-title: Small data least-squares transformation (sd-LST) for fast calibration of SSVEP-based BCIs publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering doi: 10.1109/TNSRE.2022.3225878 – volume: 17 issue: 1 year: 2020 ident: 10.1016/j.eswa.2025.127208_b0180 article-title: Learning across multi-stimulus enhances target recognition methods in SSVEP-based BCIs publication-title: J Neural Eng doi: 10.1088/1741-2552/ab2373 – volume: 7 start-page: 1710 issue: 12 year: 2021 ident: 10.1016/j.eswa.2025.127208_b0205 article-title: Current challenges for the practical application of electroencephalography-based brain-computer interfaces publication-title: Engineering doi: 10.1016/j.eng.2021.09.011 – volume: 18 issue: 4 year: 2021 ident: 10.1016/j.eswa.2025.127208_b0140 article-title: Similarity-constrained task-related component analysis for enhancing SSVEP detection publication-title: Journal of Neural Engineering doi: 10.1088/1741-2552/abfdfa – volume: 94 year: 2024 ident: 10.1016/j.eswa.2025.127208_b0035 article-title: Enhancing cross-subject transfer performance for SSVEP identification using small data-based transferability evaluation publication-title: Biomedical Signal Processing and Control doi: 10.1016/j.bspc.2024.106282 – volume: 29 start-page: 1998 year: 2021 ident: 10.1016/j.eswa.2025.127208_b0085 article-title: Improving the performance of individually calibrated SSVEP-BCI by task- discriminant component analysis publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering doi: 10.1109/TNSRE.2021.3114340 – volume: 69 start-page: 2018 issue: 6 year: 2022 ident: 10.1016/j.eswa.2025.127208_b0190 article-title: Online adaptation boosts SSVEP-based BCI performance publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/TBME.2021.3133594 – volume: 31 start-page: 2486 year: 2023 ident: 10.1016/j.eswa.2025.127208_b0070 article-title: A precise frequency recognition method of short-time SSVEP signals based on signal extension publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering doi: 10.1109/TNSRE.2023.3274121 – volume: 28 issue: 10 year: 2018 ident: 10.1016/j.eswa.2025.127208_b0225 article-title: A dynamic window recognition algorithm for SSVEP-based brain-computer interfaces using a spatio-temporal equalizer publication-title: International Journal of Neural Systems doi: 10.1142/S0129065718500284 – volume: 31 start-page: 3307 year: 2023 ident: 10.1016/j.eswa.2025.127208_b0045 article-title: Cross-subject transfer method based on domain generalization for facilitating calibration of SSVEP-based BCIs publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering doi: 10.1109/TNSRE.2023.3305202 – volume: 19 issue: 3 year: 2022 ident: 10.1016/j.eswa.2025.127208_b0215 article-title: Cross-subject spatial filter transfer method for SSVEP-EEG feature recognition publication-title: Journal of Neural Engineering doi: 10.1088/1741-2552/ac6b57 – volume: 29 start-page: 517 year: 2021 ident: 10.1016/j.eswa.2025.127208_b0155 article-title: Cross-subject assistance: inter- and intra-subject maximal correlation for enhancing the performance of SSVEP-based BCIs publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering doi: 10.1109/TNSRE.2021.3057938 – volume: 25 start-page: 1746 issue: 10 year: 2017 ident: 10.1016/j.eswa.2025.127208_b0160 article-title: A benchmark dataset for SSVEP-based brain-computer interfaces publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering doi: 10.1109/TNSRE.2016.2627556 – volume: 238 year: 2024 ident: 10.1016/j.eswa.2025.127208_b0235 article-title: Unsupervised multi-source variational domain adaptation for inter-subject SSVEP-based BCIs publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2023.122155 – volume: 203 year: 2022 ident: 10.1016/j.eswa.2025.127208_b0050 article-title: Novel signal-to-signal translation method based on StarGAN to generate artificial EEG for SSVEP-based brain-computer interfaces publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2022.117574 – volume: 70 start-page: 1775 issue: 6 year: 2023 ident: 10.1016/j.eswa.2025.127208_b0100 article-title: Data augmentation of SSVEPs using source aliasing matrix estimation for brain-computer interfaces publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/TBME.2022.3227036 – volume: 8 issue: 10 year: 2013 ident: 10.1016/j.eswa.2025.127208_b0010 article-title: On the Quantification of SSVEP Frequency Responses in Human EEG in Realistic BCI Conditions publication-title: PLoS One – volume: 31 start-page: 1521 year: 2023 ident: 10.1016/j.eswa.2025.127208_b0130 article-title: Representative-based cold start for adaptive SSVEP-BCI publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering doi: 10.1109/TNSRE.2023.3245654 – volume: 17 year: 2023 ident: 10.1016/j.eswa.2025.127208_b0210 article-title: SSVEP unsupervised adaptive feature recognition method based on self-similarity of same-frequency signals publication-title: Front Neurosci doi: 10.3389/fnins.2023.1161511 |
SSID | ssj0017007 |
Score | 2.4621625 |
Snippet | High-performance steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) typically requires large amounts of calibration data to... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 127208 |
SubjectTerms | Brain-computer interface (BCI) electroencephalography (EEG) Inter-subject transfer learning Intra-subject transfer learning steady-state visual evoked potential (SSVEP) |
Title | Inter- and Intra-Subject transfer learning for High-Performance SSVEP-BCI with extremely little calibration effort |
URI | https://dx.doi.org/10.1016/j.eswa.2025.127208 |
Volume | 276 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lXrz4Fuuj5OBN0u4j6WaPtbS0iqVQK70tSZNIRdZSV8SLv92ZffgA8eBxlwksM5NvvszOTAg5D3kQBdJo5plAMB5bj0mzUExAcIMjtrNKYqPwzbgznPGruZjXSK_qhcGyyhL7C0zP0bp80y612V4tl-0pkAMIh3C0E8gj8iY-ziP08tb7Z5kHjp-Linl7EUPpsnGmqPGyz684eygQLR__R8rfg9O3gDPYIVslU6Td4mN2Sc2me2S7uoWBlptyn6zzpB6jKjV0hKlaBmCA2RWa5aQUZMurIe4pMFSKlR1s8tUvQKfTu_6EXfZGFJOyFNAac4aPbxQYOngSBSvimRotSK2DZdkBmQ36t70hK29SYIvAizOmteGhc76TWoa-CmIeu6CjrBFAVyFgR1JrpXyhpBctQueFmvMFt5ELrfOxW_eQ1NOn1B4R6gdKa2kBr0Gmw7WKlDAAVb7lBtiS1yAXlQqTVTEwI6kqyR4SVHiCCk8KhTeIqLSc_DB7Aoj-x7rjf647IZv4VNR6nZJ6tn6xZ8AqMt3M3aZJNrqj6-H4Aw-1zPw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lHvTiW6zPHLxJ2n0k3exRS0urbSm0ld6WpJtIRdZSV8SLv92ZffgA8eB1NwPLJPnmm9l5EHLhcy_wZKyZE3uC8dA4TMZzxQQYN3CxrVESC4UHw2Z3ym9mYlYhrbIWBtMqC-zPMT1D6-JJo9BmY7lYNMZADsAcgmsnkEdgEd8ah-uLYwzq7595Hth_Lsgb7gUMlxeVM3mSl3l-xeZDnqi7-ENS_m6dvlmczjbZLKgivcq_ZodUTLJLtsoxDLS4lXtklUX1GFVJTHsYq2WABhheoWnGSmFtMRvingJFpZjawUZfBQN0PL5rj9h1q0cxKksBrjFo-PhGgaLDUaKwjehU4xZSY0Es3SfTTnvS6rJilAKbe06YMq1j7lvrWqml7yov5KH1msrEAvgqWOxAaq2UK5R0grlvHV9zPucmsL6xLpbrHpBq8pSYQ0JdT2ktDQA2rGlyrQIlYsAq1_AY6JJTI5elCqNl3jEjKlPJHiJUeIQKj3KF14gotRz92PcIIP0PuaN_yp2T9e5k0I_6veHtMdnAN3ni1wmppqsXcwoUI9Vn2RH6AO96zoo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inter-+and+Intra-Subject+transfer+learning+for+High-Performance+SSVEP-BCI+with+extremely+little+calibration+effort&rft.jtitle=Expert+systems+with+applications&rft.au=Li%2C+Hui&rft.au=Xu%2C+Guanghua&rft.au=Li%2C+Zejin&rft.au=Zhang%2C+Kai&rft.date=2025-06-01&rft.issn=0957-4174&rft.volume=276&rft.spage=127208&rft_id=info:doi/10.1016%2Fj.eswa.2025.127208&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2025_127208 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |