Majorization ordering of dependent aggregate claims clustered by statistical machine learning
The primary driver of decision-making is prioritization or ordering of risks, which plays a vital role in optimizing risk management strategies. This paper focuses on ordering aggregate claim vectors across various risk clusters utilizing agricultural insurance data. The data was sourced from the Tu...
Saved in:
Published in | Expert systems with applications Vol. 277; p. 127279 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
05.06.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The primary driver of decision-making is prioritization or ordering of risks, which plays a vital role in optimizing risk management strategies. This paper focuses on ordering aggregate claim vectors across various risk clusters utilizing agricultural insurance data. The data was sourced from the Turkish Agricultural Insurance Pool (TARSİM), the sole entity responsible for compiling agricultural insurance claim datasets. We consider the spatial and temporal features of claims, supposing that individual claims subject to similar environmental risks are dependent. We cluster risks based on meteorological values related to the location and time of the reported crop-hail insurance claims, estimated using an extended spatiotemporal interpolation method that we proposed. Bayesian regularization enhanced the performance of the statistical machine learning approach. Having clustered the risk regions, we order the aggregate claim vectors by using majorization relation and Schur-convex risk measures, which are more flexible for multivariate actuarial risks. Moreover, as a contribution to the literature, we modify the definition of majorization to fulfill the criteria for continuous random variables. The findings of this study indicate that the risk clusters, when ordered according to both the modified majorization conditions and the Schur-convex risk measure, exhibit consistency. These results further demonstrate the compatibility of the climate-based, probabilistic clustering method with the modified majorization relation.
•Actuarial risks are ordered to improve risk assessment and management strategies.•The majorization relation eliminates ambiguity in ordering aggregate claim vectors.•The proposed multivariate framework is highly effective for majorization relation.•The majorization conditions are modified based on the continuous aggregate claims.•Bayesian statistical machine learning performed better at clustering risks. |
---|---|
AbstractList | The primary driver of decision-making is prioritization or ordering of risks, which plays a vital role in optimizing risk management strategies. This paper focuses on ordering aggregate claim vectors across various risk clusters utilizing agricultural insurance data. The data was sourced from the Turkish Agricultural Insurance Pool (TARSİM), the sole entity responsible for compiling agricultural insurance claim datasets. We consider the spatial and temporal features of claims, supposing that individual claims subject to similar environmental risks are dependent. We cluster risks based on meteorological values related to the location and time of the reported crop-hail insurance claims, estimated using an extended spatiotemporal interpolation method that we proposed. Bayesian regularization enhanced the performance of the statistical machine learning approach. Having clustered the risk regions, we order the aggregate claim vectors by using majorization relation and Schur-convex risk measures, which are more flexible for multivariate actuarial risks. Moreover, as a contribution to the literature, we modify the definition of majorization to fulfill the criteria for continuous random variables. The findings of this study indicate that the risk clusters, when ordered according to both the modified majorization conditions and the Schur-convex risk measure, exhibit consistency. These results further demonstrate the compatibility of the climate-based, probabilistic clustering method with the modified majorization relation.
•Actuarial risks are ordered to improve risk assessment and management strategies.•The majorization relation eliminates ambiguity in ordering aggregate claim vectors.•The proposed multivariate framework is highly effective for majorization relation.•The majorization conditions are modified based on the continuous aggregate claims.•Bayesian statistical machine learning performed better at clustering risks. |
ArticleNumber | 127279 |
Author | Yildirak, Kasirga SenGupta, Ashis Nevruz, Ezgi |
Author_xml | – sequence: 1 givenname: Ezgi orcidid: 0000-0002-1756-7906 surname: Nevruz fullname: Nevruz, Ezgi email: ezginevruz@hacettepe.edu.tr organization: Department of Actuarial Sciences, Hacettepe University, Ankara, Türkiye – sequence: 2 givenname: Kasirga surname: Yildirak fullname: Yildirak, Kasirga email: kasirga@hacettepe.edu.tr organization: Department of Actuarial Sciences, Hacettepe University, Ankara, Türkiye – sequence: 3 givenname: Ashis surname: SenGupta fullname: SenGupta, Ashis email: ashis@isical.ac.in organization: Department of Population Health Sciences, MCG Augusta University, Augusta, GA, USA |
BookMark | eNp9kLtOwzAYRj0UibbwAkx-gQTbdepGYkEVN6mIBUZk-fI7OErtyjag8vQkKjPTmc6nT2eBZiEGQOiKkpoSur7ua8jfqmaENTVlgol2huakbUTFqeDnaJFzTwgVhIg5en9WfUz-RxUfA47JQvKhw9FhCwcIFkLBqusSdKoANoPy-zziMxdIYLE-4lxGNxdv1ID3ynz4AHgAlcK4c4HOnBoyXP5xid7u7163j9Xu5eFpe7urDCNtqVoHbM04EWAVOKs3whlDLNfWCqrYxjlmtdFccyZ00zRUEcMbJ1aGtbqlbrVE7LRrUsw5gZOH5PcqHSUlcooiezlFkVMUeYoySjcnCcZnXx6SzMZDMGB9AlOkjf4__Rc4pXJI |
Cites_doi | 10.1142/S0219024905003402 10.1017/S0269964821000280 10.1061/(ASCE)EE.1943-7870.0000121 10.3390/s16081245 10.1007/978-0-387-68276-1_8 10.1080/10920277.2016.1234398 10.1007/s00357-006-0002-6 10.1086/306386 10.1016/j.cam.2018.11.022 10.1016/j.eswa.2022.119259 10.1198/016214502760047131 10.1080/03610926.2019.1659368 10.1023/A:1008981510081 10.1080/10920277.2019.1575242 10.1016/j.chemosphere.2010.09.053 10.1007/s00357-007-0004-5 10.1063/5.0141859 10.1002/joc.1462 10.1016/0031-3203(94)00125-6 10.1023/A:1008202821328 10.3390/risks9030047 10.1080/01621459.1998.10474110 10.1093/comjnl/41.8.578 10.1007/BF01908064 10.1111/j.2517-6161.1977.tb01600.x 10.1198/jcgs.2009.08054 10.1016/j.cam.2023.115265 |
ContentType | Journal Article |
Copyright | 2025 Elsevier Ltd |
Copyright_xml | – notice: 2025 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.eswa.2025.127279 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
ExternalDocumentID | 10_1016_j_eswa_2025_127279 S0957417425009017 |
GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABJNI ABMAC ABMVD ABUCO ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AFJKZ AFTJW AFXIZ AGCQF AGHFR AGRNS AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIIUN AIKHN AITUG AKRWK ALEQD ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APLSM APXCP AXJTR BJAXD BKOJK BLXMC BNPGV BNSAS CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SSH SSL SST SSV SSZ T5K TN5 ~G- 29G AAAKG AAQXK AAYXX ABKBG ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEUPX AFPUW AGQPQ AIGII AKBMS AKYEP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- RIG SBC SET WUQ XPP ZMT |
ID | FETCH-LOGICAL-c209t-9fe262407edaefdb87fcc0d4bdd71a28ff2dbcb4b427b5551a0c45f73c29b91f3 |
IEDL.DBID | .~1 |
ISSN | 0957-4174 |
IngestDate | Thu Aug 14 05:53:55 EDT 2025 Sat Jun 07 17:01:21 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Schur-convexity Multivariate actuarial risk Expectation-maximization algorithm Agricultural insurance Partial order theory |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c209t-9fe262407edaefdb87fcc0d4bdd71a28ff2dbcb4b427b5551a0c45f73c29b91f3 |
ORCID | 0000-0002-1756-7906 |
ParticipantIDs | crossref_primary_10_1016_j_eswa_2025_127279 elsevier_sciencedirect_doi_10_1016_j_eswa_2025_127279 |
PublicationCentury | 2000 |
PublicationDate | 2025-06-05 |
PublicationDateYYYYMMDD | 2025-06-05 |
PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-05 day: 05 |
PublicationDecade | 2020 |
PublicationTitle | Expert systems with applications |
PublicationYear | 2025 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Kettenring (b17) 2006; 23 O’Hagan, Ferrari (b28) 2017; 21 Bouveyron, Celeux, Murphy, Raftery (b2) 2019 Dempster, Laird, Rubin (b7) 1977; 39 Hardy, Littlewood, Pólya (b15) 1952 Celeux, Govaert (b4) 1995; 28 Zhang, Yan, Zhang (b42) 2023; 431 Ninyerola, Pons, Roure (b27) 2007; 27 Peel, McLachlan (b30) 2000; 10 Fraley, Raftery (b11) 1998; 41 Susanto, de Souza, He (b36) 2016; 16 Denuit, Dhaene, Goovaerts, Kaas (b8) 2005 Marshall, A. W., Olkin, I., & Arnold, B. C. (2009). SenGupta, A., & Roy, M. (2023). Clustering on the cylinder, sphere and torus - Statistical machine learning approaches. In Wang, Palomar (b38) 2012 Nevruz, Yildirak, SenGupta (b26) 2017 Storn, Price (b35) 1997; 11 Maitra, Melnykov (b18) 2010; 19 Dasgupta, Raftery (b6) 1998; 93 (2nd ed.). New York, Dordrecht, Heidelberg, London. Settipalli, Gangadharan (b34) 2023; 215 Nevruz, Yıldırak (b25) 2019; 352 Nevruz, Atıcı, Yildirak (b24) 2022; 12 Mukerjee, Feigelson, Babu, Murtagh, Fraley, Raftery (b21) 1998; 508 Fraley, Raftery (b13) 2007; 24 Gan, Valdez (b14) 2020; 24 Murphy, Curriero, Ball (b22) 2010; 136 Sahin, Karabey, Bulut Karageyik, Nevruz, Yıldırak (b31) 2016; 22 Fang, Zheng, Ding (b10) 2023 Ortobelli, Rachev, Stoyanov, Fabozzi, Biglova (b29) 2005; 8 Xie, Chen, Lei, Yang, Guo, Song, Zhou (b40) 2011; 82 TARSIM (b37) 2023 , . Ambagaspitiya (b1) 1998; 23 Hartigan (b16) 1985; 2 Wang, Qian, Zhang, Liu (b39) 2021; 50 Yin, Gan, Valdez, Vadiveloo (b41) 2021; 9 Fraley, Raftery (b12) 2002 Nevruz (b23) 2018 Scrucca, Fraley, Murphy, Raftery (b32) 2023 (b20) 1997 Das, Kayal, Balakrishnan (b5) 2022; 36 Dhaene, Denuit, Goovaerts, Kaas, Vyncke (b9) 2002; 31 Brüggemann, Patil (b3) 2011 Brüggemann (10.1016/j.eswa.2025.127279_b3) 2011 Wang (10.1016/j.eswa.2025.127279_b38) 2012 Ambagaspitiya (10.1016/j.eswa.2025.127279_b1) 1998; 23 Nevruz (10.1016/j.eswa.2025.127279_b26) 2017 Storn (10.1016/j.eswa.2025.127279_b35) 1997; 11 Settipalli (10.1016/j.eswa.2025.127279_b34) 2023; 215 Dhaene (10.1016/j.eswa.2025.127279_b9) 2002; 31 Celeux (10.1016/j.eswa.2025.127279_b4) 1995; 28 Fraley (10.1016/j.eswa.2025.127279_b11) 1998; 41 Nevruz (10.1016/j.eswa.2025.127279_b23) 2018 Ninyerola (10.1016/j.eswa.2025.127279_b27) 2007; 27 Gan (10.1016/j.eswa.2025.127279_b14) 2020; 24 Murphy (10.1016/j.eswa.2025.127279_b22) 2010; 136 Dasgupta (10.1016/j.eswa.2025.127279_b6) 1998; 93 Denuit (10.1016/j.eswa.2025.127279_b8) 2005 TARSIM (10.1016/j.eswa.2025.127279_b37) 2023 Maitra (10.1016/j.eswa.2025.127279_b18) 2010; 19 Peel (10.1016/j.eswa.2025.127279_b30) 2000; 10 10.1016/j.eswa.2025.127279_b33 Fang (10.1016/j.eswa.2025.127279_b10) 2023 Susanto (10.1016/j.eswa.2025.127279_b36) 2016; 16 Hartigan (10.1016/j.eswa.2025.127279_b16) 1985; 2 O’Hagan (10.1016/j.eswa.2025.127279_b28) 2017; 21 10.1016/j.eswa.2025.127279_b19 Bouveyron (10.1016/j.eswa.2025.127279_b2) 2019 Dempster (10.1016/j.eswa.2025.127279_b7) 1977; 39 Hardy (10.1016/j.eswa.2025.127279_b15) 1952 Ortobelli (10.1016/j.eswa.2025.127279_b29) 2005; 8 Zhang (10.1016/j.eswa.2025.127279_b42) 2023; 431 Mukerjee (10.1016/j.eswa.2025.127279_b21) 1998; 508 Sahin (10.1016/j.eswa.2025.127279_b31) 2016; 22 Nevruz (10.1016/j.eswa.2025.127279_b24) 2022; 12 Wang (10.1016/j.eswa.2025.127279_b39) 2021; 50 Fraley (10.1016/j.eswa.2025.127279_b12) 2002 Yin (10.1016/j.eswa.2025.127279_b41) 2021; 9 Nevruz (10.1016/j.eswa.2025.127279_b25) 2019; 352 Scrucca (10.1016/j.eswa.2025.127279_b32) 2023 Xie (10.1016/j.eswa.2025.127279_b40) 2011; 82 Fraley (10.1016/j.eswa.2025.127279_b13) 2007; 24 (10.1016/j.eswa.2025.127279_b20) 1997 Kettenring (10.1016/j.eswa.2025.127279_b17) 2006; 23 Das (10.1016/j.eswa.2025.127279_b5) 2022; 36 |
References_xml | – volume: 31 start-page: 3 year: 2002 end-page: 33 ident: b9 article-title: The concept of comonotonicity in actuarial science and finance: Theory publication-title: Insurance: Mathematics & Economics – volume: 2 start-page: 63 year: 1985 end-page: 76 ident: b16 article-title: Statistical theory in clustering publication-title: Journal of Classification – volume: 28 start-page: 781 year: 1995 end-page: 793 ident: b4 article-title: Gaussian parsimonious clustering models publication-title: Pattern Recognition – volume: 215 year: 2023 ident: b34 article-title: WMTDBC: An unsupervised multivariate analysis model for fraud detection in health insurance claims publication-title: Expert Systems with Applications – year: 2018 ident: b23 publication-title: Multivariate stochastic prioritization of dependent actuarial risks under uncertainty graduate school of science and engineering – year: 2023 ident: b32 article-title: Model-based clustering, classification, and density estimation using mclust in R – reference: , – volume: 10 start-page: 339 year: 2000 end-page: 348 ident: b30 article-title: Robust mixture modelling using the t distribution publication-title: Statistics and Computing – volume: 27 start-page: 1231 year: 2007 end-page: 1242 ident: b27 article-title: Objective air temperature mapping for the Iberian Peninsula using spatial interpolation and GIS publication-title: International Journal Climatology – volume: 21 start-page: 107 year: 2017 end-page: 146 ident: b28 article-title: Model-based and nonparametric approaches to clustering for data compression in actuarial applications publication-title: North American Actuarial Journal – volume: 82 start-page: 468 year: 2011 end-page: 476 ident: b40 article-title: Spatial distribution of soil heavy metal pollution estimated by different interpolation methods: Accuracy and uncertainty analysis publication-title: Chemosphere – year: 2019 ident: b2 article-title: Model-based clustering and classification for data science: With applications in R – volume: 93 start-page: 294 year: 1998 end-page: 302 ident: b6 article-title: Detecting features in spatial point processes with clutter via model-based clustering publication-title: Journal of the American Statistical Association – volume: 136 start-page: 160 year: 2010 end-page: 171 ident: b22 article-title: Comparison of spatial interpolation methods for water quality evaluation in the Chesapeake Bay publication-title: Journal of Environmental Engineering – volume: 24 start-page: 168 year: 2020 end-page: 186 ident: b14 article-title: Data clustering with actuarial applications publication-title: North American Actuarial Journal – volume: 36 start-page: 1116 year: 2022 end-page: 1137 ident: b5 article-title: Ordering results for smallest claim amounts from two portfolios of risks with dependent heterogeneous exponentiated location-scale claims publication-title: Probability in the Engineering and Informational Sciences – volume: 12 start-page: 14 year: 2022 end-page: 25 ident: b24 article-title: Actuaries climate index: An application for Turkey publication-title: Journal of Statistical Research – volume: 50 start-page: 2080 year: 2021 end-page: 2095 ident: b39 article-title: Modelling the aggregate loss for insurance claims with dependence publication-title: Communications in Statistics. Theory and Methods – start-page: 561 year: 2012 end-page: 598 ident: b38 article-title: Majorization theory and applications publication-title: Mathematical foundations for signal processing, communications, and networking – year: 1997 ident: b20 publication-title: The EM algorithm and extensions – volume: 11 start-page: 341 year: 1997 end-page: 359 ident: b35 article-title: Differential evolution-A simple and efficient heuristic for global optimization over continuous spaces publication-title: Journal of Global Optimization – volume: 41 start-page: 578 year: 1998 end-page: 588 ident: b11 article-title: How many clusters? Which clustering method? Answers via model-based cluster analysis publication-title: The Computer Journal – reference: (2nd ed.). New York, Dordrecht, Heidelberg, London. – year: 2005 ident: b8 article-title: Actuarial theory for dependent risks: measures, orders and models – volume: 431 year: 2023 ident: b42 article-title: Stochastic comparisons of largest claim amount from heterogeneous and dependent insurance portfolios publication-title: Journal of Computational and Applied Mathematics – volume: 23 start-page: 15 year: 1998 end-page: 19 ident: b1 article-title: On the distribution of a sum of correlated aggregate claims publication-title: Insurance: Mathematics & Economics – start-page: 1 year: 2017 end-page: 11 ident: b26 article-title: Multivariate stochastic prioritization of dependent actuarial risks in agricultural insurance publication-title: Proceedings of the ASTIN and AFIR/ERM colloquia – start-page: 1 year: 2023 end-page: 19 ident: b10 article-title: Stochastic comparisons of the largest and smallest claim amounts with heterogeneous survival exponentiated location-scale distributed claim severities publication-title: Communications in Statistics. Theory and Methods – reference: Marshall, A. W., Olkin, I., & Arnold, B. C. (2009). – start-page: 611 year: 2002 end-page: 631 ident: b12 article-title: Model-based clustering, discriminant analysis, and density estimation publication-title: Journal of the American Statistical Association – year: 1952 ident: b15 article-title: Inequalities – reference: SenGupta, A., & Roy, M. (2023). Clustering on the cylinder, sphere and torus - Statistical machine learning approaches. In – volume: 23 start-page: 3 year: 2006 end-page: 30 ident: b17 article-title: The practice of cluster analysis publication-title: Journal of Classification – volume: 19 start-page: 354 year: 2010 end-page: 376 ident: b18 article-title: Simulating data to study performance of finite mixture modeling and clustering algorithms publication-title: Journal of Computational and Graphical Statistics – volume: 9 start-page: 1 year: 2021 end-page: 19 ident: b41 article-title: Applications of clustering with mixed type data in life insurance publication-title: Risks – reference: . – volume: 8 start-page: 1107 year: 2005 end-page: 1133 ident: b29 article-title: The proper use of risk measures in portfolio theory publication-title: International Journal of Theoretical and Applied Finance – volume: 22 start-page: 37 year: 2016 end-page: 47 ident: b31 article-title: Türkiye’de buğday bitkisel ürün sigortası için aktüeryal prim hesabı [actuarial premium calculation for wheat crop insurance in turkey] publication-title: Turkish Journal Agricultural Economics – year: 2023 ident: b37 article-title: The annual report – volume: 508 start-page: 314 year: 1998 end-page: 327 ident: b21 article-title: Three types of gamma-ray bursts publication-title: Astrophysical Journal – volume: 16 start-page: 1 year: 2016 end-page: 20 ident: b36 article-title: Spatiotemporal interpolation for environmental modelling publication-title: Sensors (Basel) – volume: 39 start-page: 1 year: 1977 end-page: 38 ident: b7 article-title: Maximum likelihood for incomplete data via the EM algorithm publication-title: Journal of the Royal Statistical Society. Series B. Statistical Methodology – year: 2011 ident: b3 article-title: Ranking and prioritization for multi-indicator systems – volume: 352 start-page: 278 year: 2019 end-page: 292 ident: b25 article-title: Spatiotemporal interpolation through an extension of differential evolution algorithm for agricultural insurance claims publication-title: Journal of Computational and Applied Mathematics – volume: 24 start-page: 155 year: 2007 end-page: 181 ident: b13 article-title: Bayesian regularization for normal mixture estimation and model-based clustering publication-title: Journal of Classification – year: 2011 ident: 10.1016/j.eswa.2025.127279_b3 – volume: 8 start-page: 1107 year: 2005 ident: 10.1016/j.eswa.2025.127279_b29 article-title: The proper use of risk measures in portfolio theory publication-title: International Journal of Theoretical and Applied Finance doi: 10.1142/S0219024905003402 – volume: 36 start-page: 1116 year: 2022 ident: 10.1016/j.eswa.2025.127279_b5 article-title: Ordering results for smallest claim amounts from two portfolios of risks with dependent heterogeneous exponentiated location-scale claims publication-title: Probability in the Engineering and Informational Sciences doi: 10.1017/S0269964821000280 – volume: 136 start-page: 160 year: 2010 ident: 10.1016/j.eswa.2025.127279_b22 article-title: Comparison of spatial interpolation methods for water quality evaluation in the Chesapeake Bay publication-title: Journal of Environmental Engineering doi: 10.1061/(ASCE)EE.1943-7870.0000121 – volume: 16 start-page: 1 year: 2016 ident: 10.1016/j.eswa.2025.127279_b36 article-title: Spatiotemporal interpolation for environmental modelling publication-title: Sensors (Basel) doi: 10.3390/s16081245 – year: 2019 ident: 10.1016/j.eswa.2025.127279_b2 – start-page: 1 year: 2023 ident: 10.1016/j.eswa.2025.127279_b10 article-title: Stochastic comparisons of the largest and smallest claim amounts with heterogeneous survival exponentiated location-scale distributed claim severities publication-title: Communications in Statistics. Theory and Methods – year: 2005 ident: 10.1016/j.eswa.2025.127279_b8 – ident: 10.1016/j.eswa.2025.127279_b19 doi: 10.1007/978-0-387-68276-1_8 – year: 1952 ident: 10.1016/j.eswa.2025.127279_b15 – volume: 21 start-page: 107 year: 2017 ident: 10.1016/j.eswa.2025.127279_b28 article-title: Model-based and nonparametric approaches to clustering for data compression in actuarial applications publication-title: North American Actuarial Journal doi: 10.1080/10920277.2016.1234398 – volume: 23 start-page: 3 year: 2006 ident: 10.1016/j.eswa.2025.127279_b17 article-title: The practice of cluster analysis publication-title: Journal of Classification doi: 10.1007/s00357-006-0002-6 – volume: 508 start-page: 314 year: 1998 ident: 10.1016/j.eswa.2025.127279_b21 article-title: Three types of gamma-ray bursts publication-title: Astrophysical Journal doi: 10.1086/306386 – start-page: 1 year: 2017 ident: 10.1016/j.eswa.2025.127279_b26 article-title: Multivariate stochastic prioritization of dependent actuarial risks in agricultural insurance – volume: 31 start-page: 3 year: 2002 ident: 10.1016/j.eswa.2025.127279_b9 article-title: The concept of comonotonicity in actuarial science and finance: Theory publication-title: Insurance: Mathematics & Economics – volume: 352 start-page: 278 year: 2019 ident: 10.1016/j.eswa.2025.127279_b25 article-title: Spatiotemporal interpolation through an extension of differential evolution algorithm for agricultural insurance claims publication-title: Journal of Computational and Applied Mathematics doi: 10.1016/j.cam.2018.11.022 – year: 2023 ident: 10.1016/j.eswa.2025.127279_b32 – volume: 215 year: 2023 ident: 10.1016/j.eswa.2025.127279_b34 article-title: WMTDBC: An unsupervised multivariate analysis model for fraud detection in health insurance claims publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2022.119259 – start-page: 611 year: 2002 ident: 10.1016/j.eswa.2025.127279_b12 article-title: Model-based clustering, discriminant analysis, and density estimation publication-title: Journal of the American Statistical Association doi: 10.1198/016214502760047131 – volume: 50 start-page: 2080 year: 2021 ident: 10.1016/j.eswa.2025.127279_b39 article-title: Modelling the aggregate loss for insurance claims with dependence publication-title: Communications in Statistics. Theory and Methods doi: 10.1080/03610926.2019.1659368 – start-page: 561 year: 2012 ident: 10.1016/j.eswa.2025.127279_b38 article-title: Majorization theory and applications – volume: 10 start-page: 339 year: 2000 ident: 10.1016/j.eswa.2025.127279_b30 article-title: Robust mixture modelling using the t distribution publication-title: Statistics and Computing doi: 10.1023/A:1008981510081 – volume: 24 start-page: 168 year: 2020 ident: 10.1016/j.eswa.2025.127279_b14 article-title: Data clustering with actuarial applications publication-title: North American Actuarial Journal doi: 10.1080/10920277.2019.1575242 – year: 1997 ident: 10.1016/j.eswa.2025.127279_b20 – volume: 82 start-page: 468 year: 2011 ident: 10.1016/j.eswa.2025.127279_b40 article-title: Spatial distribution of soil heavy metal pollution estimated by different interpolation methods: Accuracy and uncertainty analysis publication-title: Chemosphere doi: 10.1016/j.chemosphere.2010.09.053 – volume: 24 start-page: 155 year: 2007 ident: 10.1016/j.eswa.2025.127279_b13 article-title: Bayesian regularization for normal mixture estimation and model-based clustering publication-title: Journal of Classification doi: 10.1007/s00357-007-0004-5 – ident: 10.1016/j.eswa.2025.127279_b33 doi: 10.1063/5.0141859 – year: 2018 ident: 10.1016/j.eswa.2025.127279_b23 – volume: 27 start-page: 1231 year: 2007 ident: 10.1016/j.eswa.2025.127279_b27 article-title: Objective air temperature mapping for the Iberian Peninsula using spatial interpolation and GIS publication-title: International Journal Climatology doi: 10.1002/joc.1462 – volume: 28 start-page: 781 year: 1995 ident: 10.1016/j.eswa.2025.127279_b4 article-title: Gaussian parsimonious clustering models publication-title: Pattern Recognition doi: 10.1016/0031-3203(94)00125-6 – volume: 11 start-page: 341 year: 1997 ident: 10.1016/j.eswa.2025.127279_b35 article-title: Differential evolution-A simple and efficient heuristic for global optimization over continuous spaces publication-title: Journal of Global Optimization doi: 10.1023/A:1008202821328 – volume: 23 start-page: 15 year: 1998 ident: 10.1016/j.eswa.2025.127279_b1 article-title: On the distribution of a sum of correlated aggregate claims publication-title: Insurance: Mathematics & Economics – volume: 9 start-page: 1 year: 2021 ident: 10.1016/j.eswa.2025.127279_b41 article-title: Applications of clustering with mixed type data in life insurance publication-title: Risks doi: 10.3390/risks9030047 – volume: 93 start-page: 294 year: 1998 ident: 10.1016/j.eswa.2025.127279_b6 article-title: Detecting features in spatial point processes with clutter via model-based clustering publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.1998.10474110 – volume: 22 start-page: 37 year: 2016 ident: 10.1016/j.eswa.2025.127279_b31 article-title: Türkiye’de buğday bitkisel ürün sigortası için aktüeryal prim hesabı [actuarial premium calculation for wheat crop insurance in turkey] publication-title: Turkish Journal Agricultural Economics – volume: 41 start-page: 578 year: 1998 ident: 10.1016/j.eswa.2025.127279_b11 article-title: How many clusters? Which clustering method? Answers via model-based cluster analysis publication-title: The Computer Journal doi: 10.1093/comjnl/41.8.578 – volume: 2 start-page: 63 year: 1985 ident: 10.1016/j.eswa.2025.127279_b16 article-title: Statistical theory in clustering publication-title: Journal of Classification doi: 10.1007/BF01908064 – volume: 39 start-page: 1 year: 1977 ident: 10.1016/j.eswa.2025.127279_b7 article-title: Maximum likelihood for incomplete data via the EM algorithm publication-title: Journal of the Royal Statistical Society. Series B. Statistical Methodology doi: 10.1111/j.2517-6161.1977.tb01600.x – year: 2023 ident: 10.1016/j.eswa.2025.127279_b37 – volume: 19 start-page: 354 year: 2010 ident: 10.1016/j.eswa.2025.127279_b18 article-title: Simulating data to study performance of finite mixture modeling and clustering algorithms publication-title: Journal of Computational and Graphical Statistics doi: 10.1198/jcgs.2009.08054 – volume: 431 year: 2023 ident: 10.1016/j.eswa.2025.127279_b42 article-title: Stochastic comparisons of largest claim amount from heterogeneous and dependent insurance portfolios publication-title: Journal of Computational and Applied Mathematics doi: 10.1016/j.cam.2023.115265 – volume: 12 start-page: 14 year: 2022 ident: 10.1016/j.eswa.2025.127279_b24 article-title: Actuaries climate index: An application for Turkey publication-title: Journal of Statistical Research |
SSID | ssj0017007 |
Score | 2.4622447 |
Snippet | The primary driver of decision-making is prioritization or ordering of risks, which plays a vital role in optimizing risk management strategies. This paper... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 127279 |
SubjectTerms | Agricultural insurance Expectation-maximization algorithm Multivariate actuarial risk Partial order theory Schur-convexity |
Title | Majorization ordering of dependent aggregate claims clustered by statistical machine learning |
URI | https://dx.doi.org/10.1016/j.eswa.2025.127279 |
Volume | 277 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8NAFB5KvXhxF1u1zMGbpE1myXIsxVKV9qKFXiTkzVJa7EKbIl787c4kE1EQD55CwgwJ30zeMnzvewjdBCImjErpEcmoSVBC8EBx6QEPk0SCon5x3jEchYMxe5jwSQ31qloYS6t0tr-06YW1dk86Ds3OejbrPJngwLhDk9pxEyeYjWUr2Flkd3n744vmYeXnolJvL_LsaFc4U3K81PbNag8R3g6IceTJ787pm8PpH6EDFynibvkxx6imlifosOrCgN1PeYpehtl8tXHllLiQ0jTuCK80rhrc5jibmrTaHphh8ZrNFltz2VmFBCUxvGNbVFToNZvXLQpypcKum8T0DI37d8-9geeaJniC-EnuJVqR0KZpSmZKS4gjLYQvGUgZBRmJtSYSBDBgJAJu4qXMF4zriAqSQBJoeo7qy9VSXSCcMeora_8CACYoBypkTEOmQINZY95AtxVa6brUxkgr0tg8tdimFtu0xLaBeAVo-mOFU2O8_5jX_Oe8S7Rv7wpaF79C9XyzU9cmgMihVeyQFtrr3j8ORp_E5cii |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8NAFH5oPejFXazrHLxJbDJL0hyLKHVpL7bgRULeLNJiF7og_ntnkokoiAdPgWQeCd9M3jLz3vcALiLZpJwpFVDFmQ1QYgxQCxWgiNNUoWZhsd_R6cbtPr9_Fs8rcF3Vwri0Sq_7S51eaGt_p-HRbEwHg8aTdQ6sObShnbB-gl1Yq7Dm2KlEDdZadw_t7tdhQhKWVdN2fOAEfO1Mmeal5--OfoiKq4haW57-bp--2Zzbbdj0ziJpld-zAyt6vAtbVSMG4v_LPXjp5MPJzFdUkoJN01okMjGk6nG7IPmrjazdnhmRb_lgNLeXpSNJ0IrgB3F1RQVls33dqMiv1MQ3lHjdh_7tTe-6Hfi-CYGkYboIUqNp7CI1rXJtFDYTI2WoOCqVRDltGkMVSuTIaYLCukx5KLkwCZM0xTQy7ABq48lYHwLJOQu1U4ERIpdMIJOqyWKu0aCdZlGHywqtbFrSY2RV3tgwc9hmDtusxLYOogI0-zHJmdXff8gd_VPuHNbbvc5j9njXfTiGDfekyPISJ1BbzJb61PoTCzzz6-UTsQzLUw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Majorization+ordering+of+dependent+aggregate+claims+clustered+by+statistical+machine+learning&rft.jtitle=Expert+systems+with+applications&rft.au=Nevruz%2C+Ezgi&rft.au=Yildirak%2C+Kasirga&rft.au=SenGupta%2C+Ashis&rft.date=2025-06-05&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.volume=277&rft_id=info:doi/10.1016%2Fj.eswa.2025.127279&rft.externalDocID=S0957417425009017 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |