Majorization ordering of dependent aggregate claims clustered by statistical machine learning

The primary driver of decision-making is prioritization or ordering of risks, which plays a vital role in optimizing risk management strategies. This paper focuses on ordering aggregate claim vectors across various risk clusters utilizing agricultural insurance data. The data was sourced from the Tu...

Full description

Saved in:
Bibliographic Details
Published inExpert systems with applications Vol. 277; p. 127279
Main Authors Nevruz, Ezgi, Yildirak, Kasirga, SenGupta, Ashis
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 05.06.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The primary driver of decision-making is prioritization or ordering of risks, which plays a vital role in optimizing risk management strategies. This paper focuses on ordering aggregate claim vectors across various risk clusters utilizing agricultural insurance data. The data was sourced from the Turkish Agricultural Insurance Pool (TARSİM), the sole entity responsible for compiling agricultural insurance claim datasets. We consider the spatial and temporal features of claims, supposing that individual claims subject to similar environmental risks are dependent. We cluster risks based on meteorological values related to the location and time of the reported crop-hail insurance claims, estimated using an extended spatiotemporal interpolation method that we proposed. Bayesian regularization enhanced the performance of the statistical machine learning approach. Having clustered the risk regions, we order the aggregate claim vectors by using majorization relation and Schur-convex risk measures, which are more flexible for multivariate actuarial risks. Moreover, as a contribution to the literature, we modify the definition of majorization to fulfill the criteria for continuous random variables. The findings of this study indicate that the risk clusters, when ordered according to both the modified majorization conditions and the Schur-convex risk measure, exhibit consistency. These results further demonstrate the compatibility of the climate-based, probabilistic clustering method with the modified majorization relation. •Actuarial risks are ordered to improve risk assessment and management strategies.•The majorization relation eliminates ambiguity in ordering aggregate claim vectors.•The proposed multivariate framework is highly effective for majorization relation.•The majorization conditions are modified based on the continuous aggregate claims.•Bayesian statistical machine learning performed better at clustering risks.
AbstractList The primary driver of decision-making is prioritization or ordering of risks, which plays a vital role in optimizing risk management strategies. This paper focuses on ordering aggregate claim vectors across various risk clusters utilizing agricultural insurance data. The data was sourced from the Turkish Agricultural Insurance Pool (TARSİM), the sole entity responsible for compiling agricultural insurance claim datasets. We consider the spatial and temporal features of claims, supposing that individual claims subject to similar environmental risks are dependent. We cluster risks based on meteorological values related to the location and time of the reported crop-hail insurance claims, estimated using an extended spatiotemporal interpolation method that we proposed. Bayesian regularization enhanced the performance of the statistical machine learning approach. Having clustered the risk regions, we order the aggregate claim vectors by using majorization relation and Schur-convex risk measures, which are more flexible for multivariate actuarial risks. Moreover, as a contribution to the literature, we modify the definition of majorization to fulfill the criteria for continuous random variables. The findings of this study indicate that the risk clusters, when ordered according to both the modified majorization conditions and the Schur-convex risk measure, exhibit consistency. These results further demonstrate the compatibility of the climate-based, probabilistic clustering method with the modified majorization relation. •Actuarial risks are ordered to improve risk assessment and management strategies.•The majorization relation eliminates ambiguity in ordering aggregate claim vectors.•The proposed multivariate framework is highly effective for majorization relation.•The majorization conditions are modified based on the continuous aggregate claims.•Bayesian statistical machine learning performed better at clustering risks.
ArticleNumber 127279
Author Yildirak, Kasirga
SenGupta, Ashis
Nevruz, Ezgi
Author_xml – sequence: 1
  givenname: Ezgi
  orcidid: 0000-0002-1756-7906
  surname: Nevruz
  fullname: Nevruz, Ezgi
  email: ezginevruz@hacettepe.edu.tr
  organization: Department of Actuarial Sciences, Hacettepe University, Ankara, Türkiye
– sequence: 2
  givenname: Kasirga
  surname: Yildirak
  fullname: Yildirak, Kasirga
  email: kasirga@hacettepe.edu.tr
  organization: Department of Actuarial Sciences, Hacettepe University, Ankara, Türkiye
– sequence: 3
  givenname: Ashis
  surname: SenGupta
  fullname: SenGupta, Ashis
  email: ashis@isical.ac.in
  organization: Department of Population Health Sciences, MCG Augusta University, Augusta, GA, USA
BookMark eNp9kLtOwzAYRj0UibbwAkx-gQTbdepGYkEVN6mIBUZk-fI7OErtyjag8vQkKjPTmc6nT2eBZiEGQOiKkpoSur7ua8jfqmaENTVlgol2huakbUTFqeDnaJFzTwgVhIg5en9WfUz-RxUfA47JQvKhw9FhCwcIFkLBqusSdKoANoPy-zziMxdIYLE-4lxGNxdv1ID3ynz4AHgAlcK4c4HOnBoyXP5xid7u7163j9Xu5eFpe7urDCNtqVoHbM04EWAVOKs3whlDLNfWCqrYxjlmtdFccyZ00zRUEcMbJ1aGtbqlbrVE7LRrUsw5gZOH5PcqHSUlcooiezlFkVMUeYoySjcnCcZnXx6SzMZDMGB9AlOkjf4__Rc4pXJI
Cites_doi 10.1142/S0219024905003402
10.1017/S0269964821000280
10.1061/(ASCE)EE.1943-7870.0000121
10.3390/s16081245
10.1007/978-0-387-68276-1_8
10.1080/10920277.2016.1234398
10.1007/s00357-006-0002-6
10.1086/306386
10.1016/j.cam.2018.11.022
10.1016/j.eswa.2022.119259
10.1198/016214502760047131
10.1080/03610926.2019.1659368
10.1023/A:1008981510081
10.1080/10920277.2019.1575242
10.1016/j.chemosphere.2010.09.053
10.1007/s00357-007-0004-5
10.1063/5.0141859
10.1002/joc.1462
10.1016/0031-3203(94)00125-6
10.1023/A:1008202821328
10.3390/risks9030047
10.1080/01621459.1998.10474110
10.1093/comjnl/41.8.578
10.1007/BF01908064
10.1111/j.2517-6161.1977.tb01600.x
10.1198/jcgs.2009.08054
10.1016/j.cam.2023.115265
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.eswa.2025.127279
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_eswa_2025_127279
S0957417425009017
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMVD
ABUCO
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AFXIZ
AGCQF
AGHFR
AGRNS
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIIUN
AIKHN
AITUG
AKRWK
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APLSM
APXCP
AXJTR
BJAXD
BKOJK
BLXMC
BNPGV
BNSAS
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SSH
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
AAAKG
AAQXK
AAYXX
ABKBG
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEUPX
AFPUW
AGQPQ
AIGII
AKBMS
AKYEP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
RIG
SBC
SET
WUQ
XPP
ZMT
ID FETCH-LOGICAL-c209t-9fe262407edaefdb87fcc0d4bdd71a28ff2dbcb4b427b5551a0c45f73c29b91f3
IEDL.DBID .~1
ISSN 0957-4174
IngestDate Thu Aug 14 05:53:55 EDT 2025
Sat Jun 07 17:01:21 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Schur-convexity
Multivariate actuarial risk
Expectation-maximization algorithm
Agricultural insurance
Partial order theory
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c209t-9fe262407edaefdb87fcc0d4bdd71a28ff2dbcb4b427b5551a0c45f73c29b91f3
ORCID 0000-0002-1756-7906
ParticipantIDs crossref_primary_10_1016_j_eswa_2025_127279
elsevier_sciencedirect_doi_10_1016_j_eswa_2025_127279
PublicationCentury 2000
PublicationDate 2025-06-05
PublicationDateYYYYMMDD 2025-06-05
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-05
  day: 05
PublicationDecade 2020
PublicationTitle Expert systems with applications
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Kettenring (b17) 2006; 23
O’Hagan, Ferrari (b28) 2017; 21
Bouveyron, Celeux, Murphy, Raftery (b2) 2019
Dempster, Laird, Rubin (b7) 1977; 39
Hardy, Littlewood, Pólya (b15) 1952
Celeux, Govaert (b4) 1995; 28
Zhang, Yan, Zhang (b42) 2023; 431
Ninyerola, Pons, Roure (b27) 2007; 27
Peel, McLachlan (b30) 2000; 10
Fraley, Raftery (b11) 1998; 41
Susanto, de Souza, He (b36) 2016; 16
Denuit, Dhaene, Goovaerts, Kaas (b8) 2005
Marshall, A. W., Olkin, I., & Arnold, B. C. (2009).
SenGupta, A., & Roy, M. (2023). Clustering on the cylinder, sphere and torus - Statistical machine learning approaches. In
Wang, Palomar (b38) 2012
Nevruz, Yildirak, SenGupta (b26) 2017
Storn, Price (b35) 1997; 11
Maitra, Melnykov (b18) 2010; 19
Dasgupta, Raftery (b6) 1998; 93
(2nd ed.). New York, Dordrecht, Heidelberg, London.
Settipalli, Gangadharan (b34) 2023; 215
Nevruz, Yıldırak (b25) 2019; 352
Nevruz, Atıcı, Yildirak (b24) 2022; 12
Mukerjee, Feigelson, Babu, Murtagh, Fraley, Raftery (b21) 1998; 508
Fraley, Raftery (b13) 2007; 24
Gan, Valdez (b14) 2020; 24
Murphy, Curriero, Ball (b22) 2010; 136
Sahin, Karabey, Bulut Karageyik, Nevruz, Yıldırak (b31) 2016; 22
Fang, Zheng, Ding (b10) 2023
Ortobelli, Rachev, Stoyanov, Fabozzi, Biglova (b29) 2005; 8
Xie, Chen, Lei, Yang, Guo, Song, Zhou (b40) 2011; 82
TARSIM (b37) 2023
,
.
Ambagaspitiya (b1) 1998; 23
Hartigan (b16) 1985; 2
Wang, Qian, Zhang, Liu (b39) 2021; 50
Yin, Gan, Valdez, Vadiveloo (b41) 2021; 9
Fraley, Raftery (b12) 2002
Nevruz (b23) 2018
Scrucca, Fraley, Murphy, Raftery (b32) 2023
(b20) 1997
Das, Kayal, Balakrishnan (b5) 2022; 36
Dhaene, Denuit, Goovaerts, Kaas, Vyncke (b9) 2002; 31
Brüggemann, Patil (b3) 2011
Brüggemann (10.1016/j.eswa.2025.127279_b3) 2011
Wang (10.1016/j.eswa.2025.127279_b38) 2012
Ambagaspitiya (10.1016/j.eswa.2025.127279_b1) 1998; 23
Nevruz (10.1016/j.eswa.2025.127279_b26) 2017
Storn (10.1016/j.eswa.2025.127279_b35) 1997; 11
Settipalli (10.1016/j.eswa.2025.127279_b34) 2023; 215
Dhaene (10.1016/j.eswa.2025.127279_b9) 2002; 31
Celeux (10.1016/j.eswa.2025.127279_b4) 1995; 28
Fraley (10.1016/j.eswa.2025.127279_b11) 1998; 41
Nevruz (10.1016/j.eswa.2025.127279_b23) 2018
Ninyerola (10.1016/j.eswa.2025.127279_b27) 2007; 27
Gan (10.1016/j.eswa.2025.127279_b14) 2020; 24
Murphy (10.1016/j.eswa.2025.127279_b22) 2010; 136
Dasgupta (10.1016/j.eswa.2025.127279_b6) 1998; 93
Denuit (10.1016/j.eswa.2025.127279_b8) 2005
TARSIM (10.1016/j.eswa.2025.127279_b37) 2023
Maitra (10.1016/j.eswa.2025.127279_b18) 2010; 19
Peel (10.1016/j.eswa.2025.127279_b30) 2000; 10
10.1016/j.eswa.2025.127279_b33
Fang (10.1016/j.eswa.2025.127279_b10) 2023
Susanto (10.1016/j.eswa.2025.127279_b36) 2016; 16
Hartigan (10.1016/j.eswa.2025.127279_b16) 1985; 2
O’Hagan (10.1016/j.eswa.2025.127279_b28) 2017; 21
10.1016/j.eswa.2025.127279_b19
Bouveyron (10.1016/j.eswa.2025.127279_b2) 2019
Dempster (10.1016/j.eswa.2025.127279_b7) 1977; 39
Hardy (10.1016/j.eswa.2025.127279_b15) 1952
Ortobelli (10.1016/j.eswa.2025.127279_b29) 2005; 8
Zhang (10.1016/j.eswa.2025.127279_b42) 2023; 431
Mukerjee (10.1016/j.eswa.2025.127279_b21) 1998; 508
Sahin (10.1016/j.eswa.2025.127279_b31) 2016; 22
Nevruz (10.1016/j.eswa.2025.127279_b24) 2022; 12
Wang (10.1016/j.eswa.2025.127279_b39) 2021; 50
Fraley (10.1016/j.eswa.2025.127279_b12) 2002
Yin (10.1016/j.eswa.2025.127279_b41) 2021; 9
Nevruz (10.1016/j.eswa.2025.127279_b25) 2019; 352
Scrucca (10.1016/j.eswa.2025.127279_b32) 2023
Xie (10.1016/j.eswa.2025.127279_b40) 2011; 82
Fraley (10.1016/j.eswa.2025.127279_b13) 2007; 24
(10.1016/j.eswa.2025.127279_b20) 1997
Kettenring (10.1016/j.eswa.2025.127279_b17) 2006; 23
Das (10.1016/j.eswa.2025.127279_b5) 2022; 36
References_xml – volume: 31
  start-page: 3
  year: 2002
  end-page: 33
  ident: b9
  article-title: The concept of comonotonicity in actuarial science and finance: Theory
  publication-title: Insurance: Mathematics & Economics
– volume: 2
  start-page: 63
  year: 1985
  end-page: 76
  ident: b16
  article-title: Statistical theory in clustering
  publication-title: Journal of Classification
– volume: 28
  start-page: 781
  year: 1995
  end-page: 793
  ident: b4
  article-title: Gaussian parsimonious clustering models
  publication-title: Pattern Recognition
– volume: 215
  year: 2023
  ident: b34
  article-title: WMTDBC: An unsupervised multivariate analysis model for fraud detection in health insurance claims
  publication-title: Expert Systems with Applications
– year: 2018
  ident: b23
  publication-title: Multivariate stochastic prioritization of dependent actuarial risks under uncertainty graduate school of science and engineering
– year: 2023
  ident: b32
  article-title: Model-based clustering, classification, and density estimation using mclust in R
– reference: ,
– volume: 10
  start-page: 339
  year: 2000
  end-page: 348
  ident: b30
  article-title: Robust mixture modelling using the t distribution
  publication-title: Statistics and Computing
– volume: 27
  start-page: 1231
  year: 2007
  end-page: 1242
  ident: b27
  article-title: Objective air temperature mapping for the Iberian Peninsula using spatial interpolation and GIS
  publication-title: International Journal Climatology
– volume: 21
  start-page: 107
  year: 2017
  end-page: 146
  ident: b28
  article-title: Model-based and nonparametric approaches to clustering for data compression in actuarial applications
  publication-title: North American Actuarial Journal
– volume: 82
  start-page: 468
  year: 2011
  end-page: 476
  ident: b40
  article-title: Spatial distribution of soil heavy metal pollution estimated by different interpolation methods: Accuracy and uncertainty analysis
  publication-title: Chemosphere
– year: 2019
  ident: b2
  article-title: Model-based clustering and classification for data science: With applications in R
– volume: 93
  start-page: 294
  year: 1998
  end-page: 302
  ident: b6
  article-title: Detecting features in spatial point processes with clutter via model-based clustering
  publication-title: Journal of the American Statistical Association
– volume: 136
  start-page: 160
  year: 2010
  end-page: 171
  ident: b22
  article-title: Comparison of spatial interpolation methods for water quality evaluation in the Chesapeake Bay
  publication-title: Journal of Environmental Engineering
– volume: 24
  start-page: 168
  year: 2020
  end-page: 186
  ident: b14
  article-title: Data clustering with actuarial applications
  publication-title: North American Actuarial Journal
– volume: 36
  start-page: 1116
  year: 2022
  end-page: 1137
  ident: b5
  article-title: Ordering results for smallest claim amounts from two portfolios of risks with dependent heterogeneous exponentiated location-scale claims
  publication-title: Probability in the Engineering and Informational Sciences
– volume: 12
  start-page: 14
  year: 2022
  end-page: 25
  ident: b24
  article-title: Actuaries climate index: An application for Turkey
  publication-title: Journal of Statistical Research
– volume: 50
  start-page: 2080
  year: 2021
  end-page: 2095
  ident: b39
  article-title: Modelling the aggregate loss for insurance claims with dependence
  publication-title: Communications in Statistics. Theory and Methods
– start-page: 561
  year: 2012
  end-page: 598
  ident: b38
  article-title: Majorization theory and applications
  publication-title: Mathematical foundations for signal processing, communications, and networking
– year: 1997
  ident: b20
  publication-title: The EM algorithm and extensions
– volume: 11
  start-page: 341
  year: 1997
  end-page: 359
  ident: b35
  article-title: Differential evolution-A simple and efficient heuristic for global optimization over continuous spaces
  publication-title: Journal of Global Optimization
– volume: 41
  start-page: 578
  year: 1998
  end-page: 588
  ident: b11
  article-title: How many clusters? Which clustering method? Answers via model-based cluster analysis
  publication-title: The Computer Journal
– reference: (2nd ed.). New York, Dordrecht, Heidelberg, London.
– year: 2005
  ident: b8
  article-title: Actuarial theory for dependent risks: measures, orders and models
– volume: 431
  year: 2023
  ident: b42
  article-title: Stochastic comparisons of largest claim amount from heterogeneous and dependent insurance portfolios
  publication-title: Journal of Computational and Applied Mathematics
– volume: 23
  start-page: 15
  year: 1998
  end-page: 19
  ident: b1
  article-title: On the distribution of a sum of correlated aggregate claims
  publication-title: Insurance: Mathematics & Economics
– start-page: 1
  year: 2017
  end-page: 11
  ident: b26
  article-title: Multivariate stochastic prioritization of dependent actuarial risks in agricultural insurance
  publication-title: Proceedings of the ASTIN and AFIR/ERM colloquia
– start-page: 1
  year: 2023
  end-page: 19
  ident: b10
  article-title: Stochastic comparisons of the largest and smallest claim amounts with heterogeneous survival exponentiated location-scale distributed claim severities
  publication-title: Communications in Statistics. Theory and Methods
– reference: Marshall, A. W., Olkin, I., & Arnold, B. C. (2009).
– start-page: 611
  year: 2002
  end-page: 631
  ident: b12
  article-title: Model-based clustering, discriminant analysis, and density estimation
  publication-title: Journal of the American Statistical Association
– year: 1952
  ident: b15
  article-title: Inequalities
– reference: SenGupta, A., & Roy, M. (2023). Clustering on the cylinder, sphere and torus - Statistical machine learning approaches. In
– volume: 23
  start-page: 3
  year: 2006
  end-page: 30
  ident: b17
  article-title: The practice of cluster analysis
  publication-title: Journal of Classification
– volume: 19
  start-page: 354
  year: 2010
  end-page: 376
  ident: b18
  article-title: Simulating data to study performance of finite mixture modeling and clustering algorithms
  publication-title: Journal of Computational and Graphical Statistics
– volume: 9
  start-page: 1
  year: 2021
  end-page: 19
  ident: b41
  article-title: Applications of clustering with mixed type data in life insurance
  publication-title: Risks
– reference: .
– volume: 8
  start-page: 1107
  year: 2005
  end-page: 1133
  ident: b29
  article-title: The proper use of risk measures in portfolio theory
  publication-title: International Journal of Theoretical and Applied Finance
– volume: 22
  start-page: 37
  year: 2016
  end-page: 47
  ident: b31
  article-title: Türkiye’de buğday bitkisel ürün sigortası için aktüeryal prim hesabı [actuarial premium calculation for wheat crop insurance in turkey]
  publication-title: Turkish Journal Agricultural Economics
– year: 2023
  ident: b37
  article-title: The annual report
– volume: 508
  start-page: 314
  year: 1998
  end-page: 327
  ident: b21
  article-title: Three types of gamma-ray bursts
  publication-title: Astrophysical Journal
– volume: 16
  start-page: 1
  year: 2016
  end-page: 20
  ident: b36
  article-title: Spatiotemporal interpolation for environmental modelling
  publication-title: Sensors (Basel)
– volume: 39
  start-page: 1
  year: 1977
  end-page: 38
  ident: b7
  article-title: Maximum likelihood for incomplete data via the EM algorithm
  publication-title: Journal of the Royal Statistical Society. Series B. Statistical Methodology
– year: 2011
  ident: b3
  article-title: Ranking and prioritization for multi-indicator systems
– volume: 352
  start-page: 278
  year: 2019
  end-page: 292
  ident: b25
  article-title: Spatiotemporal interpolation through an extension of differential evolution algorithm for agricultural insurance claims
  publication-title: Journal of Computational and Applied Mathematics
– volume: 24
  start-page: 155
  year: 2007
  end-page: 181
  ident: b13
  article-title: Bayesian regularization for normal mixture estimation and model-based clustering
  publication-title: Journal of Classification
– year: 2011
  ident: 10.1016/j.eswa.2025.127279_b3
– volume: 8
  start-page: 1107
  year: 2005
  ident: 10.1016/j.eswa.2025.127279_b29
  article-title: The proper use of risk measures in portfolio theory
  publication-title: International Journal of Theoretical and Applied Finance
  doi: 10.1142/S0219024905003402
– volume: 36
  start-page: 1116
  year: 2022
  ident: 10.1016/j.eswa.2025.127279_b5
  article-title: Ordering results for smallest claim amounts from two portfolios of risks with dependent heterogeneous exponentiated location-scale claims
  publication-title: Probability in the Engineering and Informational Sciences
  doi: 10.1017/S0269964821000280
– volume: 136
  start-page: 160
  year: 2010
  ident: 10.1016/j.eswa.2025.127279_b22
  article-title: Comparison of spatial interpolation methods for water quality evaluation in the Chesapeake Bay
  publication-title: Journal of Environmental Engineering
  doi: 10.1061/(ASCE)EE.1943-7870.0000121
– volume: 16
  start-page: 1
  year: 2016
  ident: 10.1016/j.eswa.2025.127279_b36
  article-title: Spatiotemporal interpolation for environmental modelling
  publication-title: Sensors (Basel)
  doi: 10.3390/s16081245
– year: 2019
  ident: 10.1016/j.eswa.2025.127279_b2
– start-page: 1
  year: 2023
  ident: 10.1016/j.eswa.2025.127279_b10
  article-title: Stochastic comparisons of the largest and smallest claim amounts with heterogeneous survival exponentiated location-scale distributed claim severities
  publication-title: Communications in Statistics. Theory and Methods
– year: 2005
  ident: 10.1016/j.eswa.2025.127279_b8
– ident: 10.1016/j.eswa.2025.127279_b19
  doi: 10.1007/978-0-387-68276-1_8
– year: 1952
  ident: 10.1016/j.eswa.2025.127279_b15
– volume: 21
  start-page: 107
  year: 2017
  ident: 10.1016/j.eswa.2025.127279_b28
  article-title: Model-based and nonparametric approaches to clustering for data compression in actuarial applications
  publication-title: North American Actuarial Journal
  doi: 10.1080/10920277.2016.1234398
– volume: 23
  start-page: 3
  year: 2006
  ident: 10.1016/j.eswa.2025.127279_b17
  article-title: The practice of cluster analysis
  publication-title: Journal of Classification
  doi: 10.1007/s00357-006-0002-6
– volume: 508
  start-page: 314
  year: 1998
  ident: 10.1016/j.eswa.2025.127279_b21
  article-title: Three types of gamma-ray bursts
  publication-title: Astrophysical Journal
  doi: 10.1086/306386
– start-page: 1
  year: 2017
  ident: 10.1016/j.eswa.2025.127279_b26
  article-title: Multivariate stochastic prioritization of dependent actuarial risks in agricultural insurance
– volume: 31
  start-page: 3
  year: 2002
  ident: 10.1016/j.eswa.2025.127279_b9
  article-title: The concept of comonotonicity in actuarial science and finance: Theory
  publication-title: Insurance: Mathematics & Economics
– volume: 352
  start-page: 278
  year: 2019
  ident: 10.1016/j.eswa.2025.127279_b25
  article-title: Spatiotemporal interpolation through an extension of differential evolution algorithm for agricultural insurance claims
  publication-title: Journal of Computational and Applied Mathematics
  doi: 10.1016/j.cam.2018.11.022
– year: 2023
  ident: 10.1016/j.eswa.2025.127279_b32
– volume: 215
  year: 2023
  ident: 10.1016/j.eswa.2025.127279_b34
  article-title: WMTDBC: An unsupervised multivariate analysis model for fraud detection in health insurance claims
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2022.119259
– start-page: 611
  year: 2002
  ident: 10.1016/j.eswa.2025.127279_b12
  article-title: Model-based clustering, discriminant analysis, and density estimation
  publication-title: Journal of the American Statistical Association
  doi: 10.1198/016214502760047131
– volume: 50
  start-page: 2080
  year: 2021
  ident: 10.1016/j.eswa.2025.127279_b39
  article-title: Modelling the aggregate loss for insurance claims with dependence
  publication-title: Communications in Statistics. Theory and Methods
  doi: 10.1080/03610926.2019.1659368
– start-page: 561
  year: 2012
  ident: 10.1016/j.eswa.2025.127279_b38
  article-title: Majorization theory and applications
– volume: 10
  start-page: 339
  year: 2000
  ident: 10.1016/j.eswa.2025.127279_b30
  article-title: Robust mixture modelling using the t distribution
  publication-title: Statistics and Computing
  doi: 10.1023/A:1008981510081
– volume: 24
  start-page: 168
  year: 2020
  ident: 10.1016/j.eswa.2025.127279_b14
  article-title: Data clustering with actuarial applications
  publication-title: North American Actuarial Journal
  doi: 10.1080/10920277.2019.1575242
– year: 1997
  ident: 10.1016/j.eswa.2025.127279_b20
– volume: 82
  start-page: 468
  year: 2011
  ident: 10.1016/j.eswa.2025.127279_b40
  article-title: Spatial distribution of soil heavy metal pollution estimated by different interpolation methods: Accuracy and uncertainty analysis
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2010.09.053
– volume: 24
  start-page: 155
  year: 2007
  ident: 10.1016/j.eswa.2025.127279_b13
  article-title: Bayesian regularization for normal mixture estimation and model-based clustering
  publication-title: Journal of Classification
  doi: 10.1007/s00357-007-0004-5
– ident: 10.1016/j.eswa.2025.127279_b33
  doi: 10.1063/5.0141859
– year: 2018
  ident: 10.1016/j.eswa.2025.127279_b23
– volume: 27
  start-page: 1231
  year: 2007
  ident: 10.1016/j.eswa.2025.127279_b27
  article-title: Objective air temperature mapping for the Iberian Peninsula using spatial interpolation and GIS
  publication-title: International Journal Climatology
  doi: 10.1002/joc.1462
– volume: 28
  start-page: 781
  year: 1995
  ident: 10.1016/j.eswa.2025.127279_b4
  article-title: Gaussian parsimonious clustering models
  publication-title: Pattern Recognition
  doi: 10.1016/0031-3203(94)00125-6
– volume: 11
  start-page: 341
  year: 1997
  ident: 10.1016/j.eswa.2025.127279_b35
  article-title: Differential evolution-A simple and efficient heuristic for global optimization over continuous spaces
  publication-title: Journal of Global Optimization
  doi: 10.1023/A:1008202821328
– volume: 23
  start-page: 15
  year: 1998
  ident: 10.1016/j.eswa.2025.127279_b1
  article-title: On the distribution of a sum of correlated aggregate claims
  publication-title: Insurance: Mathematics & Economics
– volume: 9
  start-page: 1
  year: 2021
  ident: 10.1016/j.eswa.2025.127279_b41
  article-title: Applications of clustering with mixed type data in life insurance
  publication-title: Risks
  doi: 10.3390/risks9030047
– volume: 93
  start-page: 294
  year: 1998
  ident: 10.1016/j.eswa.2025.127279_b6
  article-title: Detecting features in spatial point processes with clutter via model-based clustering
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.1998.10474110
– volume: 22
  start-page: 37
  year: 2016
  ident: 10.1016/j.eswa.2025.127279_b31
  article-title: Türkiye’de buğday bitkisel ürün sigortası için aktüeryal prim hesabı [actuarial premium calculation for wheat crop insurance in turkey]
  publication-title: Turkish Journal Agricultural Economics
– volume: 41
  start-page: 578
  year: 1998
  ident: 10.1016/j.eswa.2025.127279_b11
  article-title: How many clusters? Which clustering method? Answers via model-based cluster analysis
  publication-title: The Computer Journal
  doi: 10.1093/comjnl/41.8.578
– volume: 2
  start-page: 63
  year: 1985
  ident: 10.1016/j.eswa.2025.127279_b16
  article-title: Statistical theory in clustering
  publication-title: Journal of Classification
  doi: 10.1007/BF01908064
– volume: 39
  start-page: 1
  year: 1977
  ident: 10.1016/j.eswa.2025.127279_b7
  article-title: Maximum likelihood for incomplete data via the EM algorithm
  publication-title: Journal of the Royal Statistical Society. Series B. Statistical Methodology
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– year: 2023
  ident: 10.1016/j.eswa.2025.127279_b37
– volume: 19
  start-page: 354
  year: 2010
  ident: 10.1016/j.eswa.2025.127279_b18
  article-title: Simulating data to study performance of finite mixture modeling and clustering algorithms
  publication-title: Journal of Computational and Graphical Statistics
  doi: 10.1198/jcgs.2009.08054
– volume: 431
  year: 2023
  ident: 10.1016/j.eswa.2025.127279_b42
  article-title: Stochastic comparisons of largest claim amount from heterogeneous and dependent insurance portfolios
  publication-title: Journal of Computational and Applied Mathematics
  doi: 10.1016/j.cam.2023.115265
– volume: 12
  start-page: 14
  year: 2022
  ident: 10.1016/j.eswa.2025.127279_b24
  article-title: Actuaries climate index: An application for Turkey
  publication-title: Journal of Statistical Research
SSID ssj0017007
Score 2.4622447
Snippet The primary driver of decision-making is prioritization or ordering of risks, which plays a vital role in optimizing risk management strategies. This paper...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 127279
SubjectTerms Agricultural insurance
Expectation-maximization algorithm
Multivariate actuarial risk
Partial order theory
Schur-convexity
Title Majorization ordering of dependent aggregate claims clustered by statistical machine learning
URI https://dx.doi.org/10.1016/j.eswa.2025.127279
Volume 277
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8NAFB5KvXhxF1u1zMGbpE1myXIsxVKV9qKFXiTkzVJa7EKbIl787c4kE1EQD55CwgwJ30zeMnzvewjdBCImjErpEcmoSVBC8EBx6QEPk0SCon5x3jEchYMxe5jwSQ31qloYS6t0tr-06YW1dk86Ds3OejbrPJngwLhDk9pxEyeYjWUr2Flkd3n744vmYeXnolJvL_LsaFc4U3K81PbNag8R3g6IceTJ787pm8PpH6EDFynibvkxx6imlifosOrCgN1PeYpehtl8tXHllLiQ0jTuCK80rhrc5jibmrTaHphh8ZrNFltz2VmFBCUxvGNbVFToNZvXLQpypcKum8T0DI37d8-9geeaJniC-EnuJVqR0KZpSmZKS4gjLYQvGUgZBRmJtSYSBDBgJAJu4qXMF4zriAqSQBJoeo7qy9VSXSCcMeora_8CACYoBypkTEOmQINZY95AtxVa6brUxkgr0tg8tdimFtu0xLaBeAVo-mOFU2O8_5jX_Oe8S7Rv7wpaF79C9XyzU9cmgMihVeyQFtrr3j8ORp_E5cii
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8NAFH5oPejFXazrHLxJbDJL0hyLKHVpL7bgRULeLNJiF7og_ntnkokoiAdPgWQeCd9M3jLz3vcALiLZpJwpFVDFmQ1QYgxQCxWgiNNUoWZhsd_R6cbtPr9_Fs8rcF3Vwri0Sq_7S51eaGt_p-HRbEwHg8aTdQ6sObShnbB-gl1Yq7Dm2KlEDdZadw_t7tdhQhKWVdN2fOAEfO1Mmeal5--OfoiKq4haW57-bp--2Zzbbdj0ziJpld-zAyt6vAtbVSMG4v_LPXjp5MPJzFdUkoJN01okMjGk6nG7IPmrjazdnhmRb_lgNLeXpSNJ0IrgB3F1RQVls33dqMiv1MQ3lHjdh_7tTe-6Hfi-CYGkYboIUqNp7CI1rXJtFDYTI2WoOCqVRDltGkMVSuTIaYLCukx5KLkwCZM0xTQy7ABq48lYHwLJOQu1U4ERIpdMIJOqyWKu0aCdZlGHywqtbFrSY2RV3tgwc9hmDtusxLYOogI0-zHJmdXff8gd_VPuHNbbvc5j9njXfTiGDfekyPISJ1BbzJb61PoTCzzz6-UTsQzLUw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Majorization+ordering+of+dependent+aggregate+claims+clustered+by+statistical+machine+learning&rft.jtitle=Expert+systems+with+applications&rft.au=Nevruz%2C+Ezgi&rft.au=Yildirak%2C+Kasirga&rft.au=SenGupta%2C+Ashis&rft.date=2025-06-05&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.volume=277&rft_id=info:doi/10.1016%2Fj.eswa.2025.127279&rft.externalDocID=S0957417425009017
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon