Federated Transfer-Ordered-Personalized Learning for Driver Monitoring Application

Federated learning (FL) shines through in the internet of things (IoT) with its ability to realize collaborative learning and improve learning efficiency by sharing client model parameters trained on local data. Although FL has been successfully applied to various domains, including driver monitorin...

Full description

Saved in:
Bibliographic Details
Published inIEEE internet of things journal Vol. 10; no. 20; p. 1
Main Authors Yuan, Liangqi, Su, Lu, Wang, Ziran
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 15.10.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Federated learning (FL) shines through in the internet of things (IoT) with its ability to realize collaborative learning and improve learning efficiency by sharing client model parameters trained on local data. Although FL has been successfully applied to various domains, including driver monitoring applications (DMAs) on the internet of vehicles (IoV), its usages still face some open issues, such as data and system heterogeneity, large-scale parallelism communication resources, malicious attacks, and data poisoning. This paper proposes a federated transfer-ordered-personalized learning (FedTOP) framework to address the above problems and test on two real-world datasets with and without system heterogeneity. The performance of the three extensions, transfer, ordered, and personalized, is compared by an ablation study and achieves 92.32% and 95.96% accuracy on the test clients of two datasets, respectively. Compared to the baseline, there is a 462% improvement in accuracy and a 37.46% reduction in communication resource consumption. The results demonstrate that the proposed FedTOP can be used as a highly accurate, streamlined, privacy-preserving, cybersecurity-oriented, and personalized framework for DMA.
AbstractList Federated learning (FL) shines through in the Internet of Things (IoT) with its ability to realize collaborative learning and improve learning efficiency by sharing client model parameters trained on local data. Although FL has been successfully applied to various domains, including driver monitoring applications (DMAs) on the Internet of Vehicles (IoV), its usages still face some open issues, such as data and system heterogeneity, large-scale parallelism communication resources, malicious attacks, and data poisoning. This article proposes a federated transfer–ordered–personalized learning (FedTOP) framework to address the above problems and test on two real-world data sets with and without system heterogeneity. The performance of the three extensions, transfer, ordered, and personalized, is compared by an ablation study and achieves 92.32% and 95.96% accuracy on the test clients of two data sets, respectively. Compared to the baseline, there is a 462% improvement in accuracy and a 37.46% reduction in communication resource consumption. The results demonstrate that the proposed FedTOP can be used as a highly accurate, streamlined, privacy-preserving, cybersecurity-oriented, and personalized framework for DMA.
Federated learning (FL) shines through in the internet of things (IoT) with its ability to realize collaborative learning and improve learning efficiency by sharing client model parameters trained on local data. Although FL has been successfully applied to various domains, including driver monitoring applications (DMAs) on the internet of vehicles (IoV), its usages still face some open issues, such as data and system heterogeneity, large-scale parallelism communication resources, malicious attacks, and data poisoning. This paper proposes a federated transfer-ordered-personalized learning (FedTOP) framework to address the above problems and test on two real-world datasets with and without system heterogeneity. The performance of the three extensions, transfer, ordered, and personalized, is compared by an ablation study and achieves 92.32% and 95.96% accuracy on the test clients of two datasets, respectively. Compared to the baseline, there is a 462% improvement in accuracy and a 37.46% reduction in communication resource consumption. The results demonstrate that the proposed FedTOP can be used as a highly accurate, streamlined, privacy-preserving, cybersecurity-oriented, and personalized framework for DMA.
Author Su, Lu
Yuan, Liangqi
Wang, Ziran
Author_xml – sequence: 1
  givenname: Liangqi
  orcidid: 0000-0002-9994-6773
  surname: Yuan
  fullname: Yuan, Liangqi
  organization: College of Engineering, Purdue University, West Lafayette, IN, USA
– sequence: 2
  givenname: Lu
  orcidid: 0000-0001-7223-543X
  surname: Su
  fullname: Su, Lu
  organization: College of Engineering, Purdue University, West Lafayette, IN, USA
– sequence: 3
  givenname: Ziran
  orcidid: 0000-0003-2702-7150
  surname: Wang
  fullname: Wang, Ziran
  organization: College of Engineering, Purdue University, West Lafayette, IN, USA
BookMark eNp9kE1LAzEQhoNUsNb-AMHDguet-diP5Fiq1UqlIvUc4u5EUtZNnWwF_fVmrYfiwdMMM-8zH-8pGbS-BULOGZ0wRtXV_WK1nnDKxUTwUvFSHJEhj2maFQUfHOQnZBzChlIasZypYkie5lADmg7qZI2mDRYwXWEsQZ0-AgbfmsZ9xe4SDLaufU2sx-Qa3Qdg8uBb13nsq9PttnGV6Zxvz8ixNU2A8W8ckef5zXp2ly5Xt4vZdJlWnKoulZZmwE1tjcplxvIXxfJcKltaYZWQeWaprFUhS0Fr4EIZWhpj6ioXhZJVlIzI5X7uFv37DkKnN36H8d6guSx5VmSFolHF9qoKfQgIVm_RvRn81Izq3j3du6d79_Sve5Ep_zCV635-69C45l_yYk86ADjYxARTuRLfXBB-xw
CODEN IITJAU
CitedBy_id crossref_primary_10_1109_JIOT_2024_3435994
crossref_primary_10_3390_su152115333
crossref_primary_10_1109_JIOT_2024_3407584
crossref_primary_10_1007_s12243_025_01075_3
crossref_primary_10_1109_MIC_2024_3370408
crossref_primary_10_1109_TIV_2023_3332675
crossref_primary_10_1109_TITS_2024_3442861
crossref_primary_10_1109_TIV_2024_3353253
crossref_primary_10_1108_INTR_01_2023_0029
crossref_primary_10_1109_JSAS_2024_3501213
Cites_doi 10.1109/MCOM.001.1900461
10.1109/TKDE.2021.3124599
10.1109/TITS.2019.2962338
10.1109/ICCV.2019.00289
10.1109/JIOT.2018.2812300
10.1038/s41591-021-01506-3
10.1109/JIOT.2022.3150363
10.1109/JIOT.2022.3156028
10.1109/TMC.2020.3045266
10.1109/TNNLS.2019.2944481
10.1109/TITS.2019.2918328
10.1109/TNNLS.2022.3160699
10.1561/2200000083
10.1109/JIOT.2020.3023126
10.1109/TPAMI.2021.3076733
10.1109/JIOT.2021.3128646
10.1109/COMST.2020.3012961
10.1109/TII.2021.3067324
10.1109/CVPRW56347.2022.00377
10.1109/CVPR.2016.90
10.1145/3388790
10.1109/OJCS.2020.2992630
10.1109/TII.2019.2942190
10.1109/MSP.2020.2975749
10.1109/JIOT.2017.2694844
10.1038/s41746-020-00323-1
10.1109/CVPR52688.2022.00985
10.1109/TII.2019.2945367
10.1109/TVT.2019.2903299
10.1109/ACCESS.2022.3192454
10.1109/TII.2021.3095506
10.1109/ACCESS.2019.2914373
10.1109/TNSE.2022.3144699
10.1016/j.future.2022.08.009
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/JIOT.2023.3279273
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2327-4662
EndPage 1
ExternalDocumentID 10_1109_JIOT_2023_3279273
10131959
Genre orig-research
GroupedDBID 0R~
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
IFIPE
IPLJI
JAVBF
M43
OCL
PQQKQ
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c209t-8f04e2adfa958415b915589f7f3f93854f08d968730de239a07aaadc53698cf93
IEDL.DBID RIE
ISSN 2327-4662
IngestDate Mon Jun 30 05:56:58 EDT 2025
Thu Apr 24 23:03:08 EDT 2025
Tue Jul 01 04:08:31 EDT 2025
Mon Aug 04 05:48:51 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 20
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c209t-8f04e2adfa958415b915589f7f3f93854f08d968730de239a07aaadc53698cf93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9994-6773
0000-0003-2702-7150
0000-0001-7223-543X
PQID 2872464690
PQPubID 2040421
PageCount 1
ParticipantIDs crossref_primary_10_1109_JIOT_2023_3279273
ieee_primary_10131959
proquest_journals_2872464690
crossref_citationtrail_10_1109_JIOT_2023_3279273
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-10-15
PublicationDateYYYYMMDD 2023-10-15
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-15
  day: 15
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE internet of things journal
PublicationTitleAbbrev JIoT
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref37
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
mcmahan (ref16) 2017
ref39
ref38
ref19
ref18
(ref41) 2016
hard (ref5) 2018
li (ref17) 2020; 2
ref24
ref23
horvath (ref15) 2021; 34
ref26
fallah (ref29) 2020
ref25
ref20
ref42
lyu (ref21) 2020
ref22
karimireddy (ref14) 2020
omeiza (ref43) 2019
ref28
ref27
ref8
ref7
ref9
ref4
ref3
ref6
ref40
References_xml – volume: 2
  start-page: 429
  year: 2020
  ident: ref17
  article-title: Federated optimization in heterogeneous networks
  publication-title: Proc Mach Learn Syst
– ident: ref20
  doi: 10.1109/MCOM.001.1900461
– ident: ref23
  doi: 10.1109/TKDE.2021.3124599
– ident: ref36
  doi: 10.1109/TITS.2019.2962338
– ident: ref42
  doi: 10.1109/ICCV.2019.00289
– ident: ref3
  doi: 10.1109/JIOT.2018.2812300
– ident: ref7
  doi: 10.1038/s41591-021-01506-3
– year: 2020
  ident: ref21
  article-title: Threats to federated learning: A survey
  publication-title: arXiv 2003 02133
– start-page: 1273
  year: 2017
  ident: ref16
  article-title: Communication-efficient learning of deep networks from decentralized data
  publication-title: Proc Artif Intell Stat
– year: 2020
  ident: ref29
  article-title: Personalized federated learning: A meta-learning approach
  publication-title: arXiv 2002 07948
– ident: ref18
  doi: 10.1109/JIOT.2022.3150363
– ident: ref4
  doi: 10.1109/JIOT.2022.3156028
– ident: ref30
  doi: 10.1109/TMC.2020.3045266
– ident: ref13
  doi: 10.1109/TNNLS.2019.2944481
– ident: ref32
  doi: 10.1109/TITS.2019.2918328
– ident: ref28
  doi: 10.1109/TNNLS.2022.3160699
– ident: ref22
  doi: 10.1561/2200000083
– ident: ref27
  doi: 10.1109/JIOT.2020.3023126
– ident: ref2
  doi: 10.1109/TPAMI.2021.3076733
– year: 2019
  ident: ref43
  article-title: Smooth Grad-CAM: An enhanced inference level visualization technique for deep convolutional neural network models
  publication-title: arXiv 1908 01224
– ident: ref26
  doi: 10.1109/JIOT.2021.3128646
– year: 2018
  ident: ref5
  article-title: Federated learning for mobile keyboard prediction
  publication-title: arXiv 1811 03604
– ident: ref35
  doi: 10.1109/COMST.2020.3012961
– ident: ref12
  doi: 10.1109/TII.2021.3067324
– ident: ref38
  doi: 10.1109/CVPRW56347.2022.00377
– ident: ref40
  doi: 10.1109/CVPR.2016.90
– ident: ref33
  doi: 10.1145/3388790
– ident: ref11
  doi: 10.1109/OJCS.2020.2992630
– ident: ref10
  doi: 10.1109/TII.2019.2942190
– ident: ref19
  doi: 10.1109/MSP.2020.2975749
– start-page: 5132
  year: 2020
  ident: ref14
  article-title: SCAFFOLD: Stochastic controlled averaging for federated learning
  publication-title: Proc Int Conf Mach Learn
– ident: ref1
  doi: 10.1109/JIOT.2017.2694844
– year: 2016
  ident: ref41
  publication-title: State farm distracted driver detection
– ident: ref8
  doi: 10.1038/s41746-020-00323-1
– ident: ref31
  doi: 10.1109/CVPR52688.2022.00985
– ident: ref9
  doi: 10.1109/TII.2019.2945367
– ident: ref34
  doi: 10.1109/TVT.2019.2903299
– ident: ref24
  doi: 10.1109/ACCESS.2022.3192454
– ident: ref25
  doi: 10.1109/TII.2021.3095506
– ident: ref37
  doi: 10.1109/ACCESS.2019.2914373
– ident: ref6
  doi: 10.1109/TNSE.2022.3144699
– ident: ref39
  doi: 10.1016/j.future.2022.08.009
– volume: 34
  start-page: 12876
  year: 2021
  ident: ref15
  article-title: FjORD: Fair and accurate federated learning under heterogeneous targets with ordered dropout
  publication-title: Proc Adv Neural Inf Process Syst
SSID ssj0001105196
Score 2.3917902
Snippet Federated learning (FL) shines through in the internet of things (IoT) with its ability to realize collaborative learning and improve learning efficiency by...
Federated learning (FL) shines through in the Internet of Things (IoT) with its ability to realize collaborative learning and improve learning efficiency by...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Ablation
Customization
Cybersecurity
Data models
Datasets
driver monitoring
Federated learning
Heterogeneity
Internet of Things
internet of things (IoT)
Internet of Vehicles
Monitoring
personalization
Personalized learning
Privacy
privacy protection
Servers
Training
Vehicles
Title Federated Transfer-Ordered-Personalized Learning for Driver Monitoring Application
URI https://ieeexplore.ieee.org/document/10131959
https://www.proquest.com/docview/2872464690
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8MgFCduJy_Ojxmn0_TgyYRKS0vLcVGXucNmzJbs1kALHjSbqd1lf708Sp0f0XhrUiCEB_zeF7-H0GWuNZcG2HAoSYQjnhLMQy2xASvGtMG8UNtsiwkbzaPxIl64x-r2LYxSyiafKR8-bSy_WOVrcJWZEx5QIENpoZax3OrHWluHSgDaCHORy4Dw6_H9dOZDeXCfAk1eQr9gjy2m8uMGtrAy7KBJM6E6m-TZX1fSzzffuBr_PeN9tOcUTG9Q74gDtKOWh6jTFG_w3Fk-Qo9DoJEwmmbhWbzSqsTT0pbuxA-Nhr4xfx0D65Nn1FvvtoQ8Dq--CcAl6A22EfAumg_vZjcj7Aos4DwkvMKpJpEKRaEFN-IKYglk8SnXiaaa0zSONEkLzlJzCxQqpFyQRAhR5DFlPM1Nk2PUXq6W6gR5LDfGroxkwoSOqE45E4kMYkEDyYHypYdIs_RZ7tjHoQjGS2atEMIzkFYG0sqctHro6qPLa0298VfjLqz-p4b1wvdQvxFw5k7nW2asxDBi4Bg4_aXbGdqF0QGkgriP2lW5VudG-6jkhd117yVK1ho
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED5BGWDhjSjPDExIDk6cOPFYAVV5FYSKxBbZic0AalFpF349PsfhKRBbpNiy5fPddz6fvwM4KI0RygIbiRVNSCJySkRsFLFgxbmxmBcbl23R57275Pw-vfeP1d1bGK21Sz7TIX66u_xqVE4xVGY1PGJIhjILcxb406h-rvURUonQH-H-7jKi4uj87HoQYoHwkCFRXsa-oI8rp_LDBjtg6S5Bv5lSnU_yGE4nKixfv7E1_nvOy7DoXcygU--JFZjRw1VYaso3BF6b1-C2i0QS1tesAodYRo_J9dgV7yQ3jY_-av96DtaHwDq4wckYMzmC2hZgUDDofNyBr8Nd93Rw3CO-xAIpYyomJDc00bGsjBRWYFGqkC4-FyYzzAiWp4mheSV4bu1ApWMmJM2klFWZMi7y0jbZgNZwNNSbEPDSHndVojIuTcJMLrjMVJRKFimBpC9toM3SF6XnH8cyGE-FO4dQUaC0CpRW4aXVhsP3Ls81-cZfjddx9T81rBe-DTuNgAuvny-FPSfGCcfQwNYv3fZhvje4uiwuz_oX27CAIyFkRekOtCbjqd61vshE7bkd-AZ5odlj
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Federated+Transfer%E2%80%93Ordered%E2%80%93Personalized+Learning+for+Driver+Monitoring+Application&rft.jtitle=IEEE+internet+of+things+journal&rft.au=Yuan%2C+Liangqi&rft.au=Lu%2C+Su&rft.au=Wang%2C+Ziran&rft.date=2023-10-15&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2327-4662&rft.volume=10&rft.issue=20&rft.spage=18292&rft_id=info:doi/10.1109%2FJIOT.2023.3279273&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4662&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4662&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4662&client=summon