Federated Transfer-Ordered-Personalized Learning for Driver Monitoring Application
Federated learning (FL) shines through in the internet of things (IoT) with its ability to realize collaborative learning and improve learning efficiency by sharing client model parameters trained on local data. Although FL has been successfully applied to various domains, including driver monitorin...
Saved in:
Published in | IEEE internet of things journal Vol. 10; no. 20; p. 1 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
15.10.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Federated learning (FL) shines through in the internet of things (IoT) with its ability to realize collaborative learning and improve learning efficiency by sharing client model parameters trained on local data. Although FL has been successfully applied to various domains, including driver monitoring applications (DMAs) on the internet of vehicles (IoV), its usages still face some open issues, such as data and system heterogeneity, large-scale parallelism communication resources, malicious attacks, and data poisoning. This paper proposes a federated transfer-ordered-personalized learning (FedTOP) framework to address the above problems and test on two real-world datasets with and without system heterogeneity. The performance of the three extensions, transfer, ordered, and personalized, is compared by an ablation study and achieves 92.32% and 95.96% accuracy on the test clients of two datasets, respectively. Compared to the baseline, there is a 462% improvement in accuracy and a 37.46% reduction in communication resource consumption. The results demonstrate that the proposed FedTOP can be used as a highly accurate, streamlined, privacy-preserving, cybersecurity-oriented, and personalized framework for DMA. |
---|---|
AbstractList | Federated learning (FL) shines through in the Internet of Things (IoT) with its ability to realize collaborative learning and improve learning efficiency by sharing client model parameters trained on local data. Although FL has been successfully applied to various domains, including driver monitoring applications (DMAs) on the Internet of Vehicles (IoV), its usages still face some open issues, such as data and system heterogeneity, large-scale parallelism communication resources, malicious attacks, and data poisoning. This article proposes a federated transfer–ordered–personalized learning (FedTOP) framework to address the above problems and test on two real-world data sets with and without system heterogeneity. The performance of the three extensions, transfer, ordered, and personalized, is compared by an ablation study and achieves 92.32% and 95.96% accuracy on the test clients of two data sets, respectively. Compared to the baseline, there is a 462% improvement in accuracy and a 37.46% reduction in communication resource consumption. The results demonstrate that the proposed FedTOP can be used as a highly accurate, streamlined, privacy-preserving, cybersecurity-oriented, and personalized framework for DMA. Federated learning (FL) shines through in the internet of things (IoT) with its ability to realize collaborative learning and improve learning efficiency by sharing client model parameters trained on local data. Although FL has been successfully applied to various domains, including driver monitoring applications (DMAs) on the internet of vehicles (IoV), its usages still face some open issues, such as data and system heterogeneity, large-scale parallelism communication resources, malicious attacks, and data poisoning. This paper proposes a federated transfer-ordered-personalized learning (FedTOP) framework to address the above problems and test on two real-world datasets with and without system heterogeneity. The performance of the three extensions, transfer, ordered, and personalized, is compared by an ablation study and achieves 92.32% and 95.96% accuracy on the test clients of two datasets, respectively. Compared to the baseline, there is a 462% improvement in accuracy and a 37.46% reduction in communication resource consumption. The results demonstrate that the proposed FedTOP can be used as a highly accurate, streamlined, privacy-preserving, cybersecurity-oriented, and personalized framework for DMA. |
Author | Su, Lu Yuan, Liangqi Wang, Ziran |
Author_xml | – sequence: 1 givenname: Liangqi orcidid: 0000-0002-9994-6773 surname: Yuan fullname: Yuan, Liangqi organization: College of Engineering, Purdue University, West Lafayette, IN, USA – sequence: 2 givenname: Lu orcidid: 0000-0001-7223-543X surname: Su fullname: Su, Lu organization: College of Engineering, Purdue University, West Lafayette, IN, USA – sequence: 3 givenname: Ziran orcidid: 0000-0003-2702-7150 surname: Wang fullname: Wang, Ziran organization: College of Engineering, Purdue University, West Lafayette, IN, USA |
BookMark | eNp9kE1LAzEQhoNUsNb-AMHDguet-diP5Fiq1UqlIvUc4u5EUtZNnWwF_fVmrYfiwdMMM-8zH-8pGbS-BULOGZ0wRtXV_WK1nnDKxUTwUvFSHJEhj2maFQUfHOQnZBzChlIasZypYkie5lADmg7qZI2mDRYwXWEsQZ0-AgbfmsZ9xe4SDLaufU2sx-Qa3Qdg8uBb13nsq9PttnGV6Zxvz8ixNU2A8W8ckef5zXp2ly5Xt4vZdJlWnKoulZZmwE1tjcplxvIXxfJcKltaYZWQeWaprFUhS0Fr4EIZWhpj6ioXhZJVlIzI5X7uFv37DkKnN36H8d6guSx5VmSFolHF9qoKfQgIVm_RvRn81Izq3j3du6d79_Sve5Ep_zCV635-69C45l_yYk86ADjYxARTuRLfXBB-xw |
CODEN | IITJAU |
CitedBy_id | crossref_primary_10_1109_JIOT_2024_3435994 crossref_primary_10_3390_su152115333 crossref_primary_10_1109_JIOT_2024_3407584 crossref_primary_10_1007_s12243_025_01075_3 crossref_primary_10_1109_MIC_2024_3370408 crossref_primary_10_1109_TIV_2023_3332675 crossref_primary_10_1109_TITS_2024_3442861 crossref_primary_10_1109_TIV_2024_3353253 crossref_primary_10_1108_INTR_01_2023_0029 crossref_primary_10_1109_JSAS_2024_3501213 |
Cites_doi | 10.1109/MCOM.001.1900461 10.1109/TKDE.2021.3124599 10.1109/TITS.2019.2962338 10.1109/ICCV.2019.00289 10.1109/JIOT.2018.2812300 10.1038/s41591-021-01506-3 10.1109/JIOT.2022.3150363 10.1109/JIOT.2022.3156028 10.1109/TMC.2020.3045266 10.1109/TNNLS.2019.2944481 10.1109/TITS.2019.2918328 10.1109/TNNLS.2022.3160699 10.1561/2200000083 10.1109/JIOT.2020.3023126 10.1109/TPAMI.2021.3076733 10.1109/JIOT.2021.3128646 10.1109/COMST.2020.3012961 10.1109/TII.2021.3067324 10.1109/CVPRW56347.2022.00377 10.1109/CVPR.2016.90 10.1145/3388790 10.1109/OJCS.2020.2992630 10.1109/TII.2019.2942190 10.1109/MSP.2020.2975749 10.1109/JIOT.2017.2694844 10.1038/s41746-020-00323-1 10.1109/CVPR52688.2022.00985 10.1109/TII.2019.2945367 10.1109/TVT.2019.2903299 10.1109/ACCESS.2022.3192454 10.1109/TII.2021.3095506 10.1109/ACCESS.2019.2914373 10.1109/TNSE.2022.3144699 10.1016/j.future.2022.08.009 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/JIOT.2023.3279273 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2327-4662 |
EndPage | 1 |
ExternalDocumentID | 10_1109_JIOT_2023_3279273 10131959 |
Genre | orig-research |
GroupedDBID | 0R~ 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS IFIPE IPLJI JAVBF M43 OCL PQQKQ RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c209t-8f04e2adfa958415b915589f7f3f93854f08d968730de239a07aaadc53698cf93 |
IEDL.DBID | RIE |
ISSN | 2327-4662 |
IngestDate | Mon Jun 30 05:56:58 EDT 2025 Thu Apr 24 23:03:08 EDT 2025 Tue Jul 01 04:08:31 EDT 2025 Mon Aug 04 05:48:51 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 20 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c209t-8f04e2adfa958415b915589f7f3f93854f08d968730de239a07aaadc53698cf93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9994-6773 0000-0003-2702-7150 0000-0001-7223-543X |
PQID | 2872464690 |
PQPubID | 2040421 |
PageCount | 1 |
ParticipantIDs | crossref_primary_10_1109_JIOT_2023_3279273 ieee_primary_10131959 proquest_journals_2872464690 crossref_citationtrail_10_1109_JIOT_2023_3279273 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-10-15 |
PublicationDateYYYYMMDD | 2023-10-15 |
PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE internet of things journal |
PublicationTitleAbbrev | JIoT |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref34 ref37 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 mcmahan (ref16) 2017 ref39 ref38 ref19 ref18 (ref41) 2016 hard (ref5) 2018 li (ref17) 2020; 2 ref24 ref23 horvath (ref15) 2021; 34 ref26 fallah (ref29) 2020 ref25 ref20 ref42 lyu (ref21) 2020 ref22 karimireddy (ref14) 2020 omeiza (ref43) 2019 ref28 ref27 ref8 ref7 ref9 ref4 ref3 ref6 ref40 |
References_xml | – volume: 2 start-page: 429 year: 2020 ident: ref17 article-title: Federated optimization in heterogeneous networks publication-title: Proc Mach Learn Syst – ident: ref20 doi: 10.1109/MCOM.001.1900461 – ident: ref23 doi: 10.1109/TKDE.2021.3124599 – ident: ref36 doi: 10.1109/TITS.2019.2962338 – ident: ref42 doi: 10.1109/ICCV.2019.00289 – ident: ref3 doi: 10.1109/JIOT.2018.2812300 – ident: ref7 doi: 10.1038/s41591-021-01506-3 – year: 2020 ident: ref21 article-title: Threats to federated learning: A survey publication-title: arXiv 2003 02133 – start-page: 1273 year: 2017 ident: ref16 article-title: Communication-efficient learning of deep networks from decentralized data publication-title: Proc Artif Intell Stat – year: 2020 ident: ref29 article-title: Personalized federated learning: A meta-learning approach publication-title: arXiv 2002 07948 – ident: ref18 doi: 10.1109/JIOT.2022.3150363 – ident: ref4 doi: 10.1109/JIOT.2022.3156028 – ident: ref30 doi: 10.1109/TMC.2020.3045266 – ident: ref13 doi: 10.1109/TNNLS.2019.2944481 – ident: ref32 doi: 10.1109/TITS.2019.2918328 – ident: ref28 doi: 10.1109/TNNLS.2022.3160699 – ident: ref22 doi: 10.1561/2200000083 – ident: ref27 doi: 10.1109/JIOT.2020.3023126 – ident: ref2 doi: 10.1109/TPAMI.2021.3076733 – year: 2019 ident: ref43 article-title: Smooth Grad-CAM: An enhanced inference level visualization technique for deep convolutional neural network models publication-title: arXiv 1908 01224 – ident: ref26 doi: 10.1109/JIOT.2021.3128646 – year: 2018 ident: ref5 article-title: Federated learning for mobile keyboard prediction publication-title: arXiv 1811 03604 – ident: ref35 doi: 10.1109/COMST.2020.3012961 – ident: ref12 doi: 10.1109/TII.2021.3067324 – ident: ref38 doi: 10.1109/CVPRW56347.2022.00377 – ident: ref40 doi: 10.1109/CVPR.2016.90 – ident: ref33 doi: 10.1145/3388790 – ident: ref11 doi: 10.1109/OJCS.2020.2992630 – ident: ref10 doi: 10.1109/TII.2019.2942190 – ident: ref19 doi: 10.1109/MSP.2020.2975749 – start-page: 5132 year: 2020 ident: ref14 article-title: SCAFFOLD: Stochastic controlled averaging for federated learning publication-title: Proc Int Conf Mach Learn – ident: ref1 doi: 10.1109/JIOT.2017.2694844 – year: 2016 ident: ref41 publication-title: State farm distracted driver detection – ident: ref8 doi: 10.1038/s41746-020-00323-1 – ident: ref31 doi: 10.1109/CVPR52688.2022.00985 – ident: ref9 doi: 10.1109/TII.2019.2945367 – ident: ref34 doi: 10.1109/TVT.2019.2903299 – ident: ref24 doi: 10.1109/ACCESS.2022.3192454 – ident: ref25 doi: 10.1109/TII.2021.3095506 – ident: ref37 doi: 10.1109/ACCESS.2019.2914373 – ident: ref6 doi: 10.1109/TNSE.2022.3144699 – ident: ref39 doi: 10.1016/j.future.2022.08.009 – volume: 34 start-page: 12876 year: 2021 ident: ref15 article-title: FjORD: Fair and accurate federated learning under heterogeneous targets with ordered dropout publication-title: Proc Adv Neural Inf Process Syst |
SSID | ssj0001105196 |
Score | 2.3917902 |
Snippet | Federated learning (FL) shines through in the internet of things (IoT) with its ability to realize collaborative learning and improve learning efficiency by... Federated learning (FL) shines through in the Internet of Things (IoT) with its ability to realize collaborative learning and improve learning efficiency by... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Ablation Customization Cybersecurity Data models Datasets driver monitoring Federated learning Heterogeneity Internet of Things internet of things (IoT) Internet of Vehicles Monitoring personalization Personalized learning Privacy privacy protection Servers Training Vehicles |
Title | Federated Transfer-Ordered-Personalized Learning for Driver Monitoring Application |
URI | https://ieeexplore.ieee.org/document/10131959 https://www.proquest.com/docview/2872464690 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8MgFCduJy_Ojxmn0_TgyYRKS0vLcVGXucNmzJbs1kALHjSbqd1lf708Sp0f0XhrUiCEB_zeF7-H0GWuNZcG2HAoSYQjnhLMQy2xASvGtMG8UNtsiwkbzaPxIl64x-r2LYxSyiafKR8-bSy_WOVrcJWZEx5QIENpoZax3OrHWluHSgDaCHORy4Dw6_H9dOZDeXCfAk1eQr9gjy2m8uMGtrAy7KBJM6E6m-TZX1fSzzffuBr_PeN9tOcUTG9Q74gDtKOWh6jTFG_w3Fk-Qo9DoJEwmmbhWbzSqsTT0pbuxA-Nhr4xfx0D65Nn1FvvtoQ8Dq--CcAl6A22EfAumg_vZjcj7Aos4DwkvMKpJpEKRaEFN-IKYglk8SnXiaaa0zSONEkLzlJzCxQqpFyQRAhR5DFlPM1Nk2PUXq6W6gR5LDfGroxkwoSOqE45E4kMYkEDyYHypYdIs_RZ7tjHoQjGS2atEMIzkFYG0sqctHro6qPLa0298VfjLqz-p4b1wvdQvxFw5k7nW2asxDBi4Bg4_aXbGdqF0QGkgriP2lW5VudG-6jkhd117yVK1ho |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED5BGWDhjSjPDExIDk6cOPFYAVV5FYSKxBbZic0AalFpF349PsfhKRBbpNiy5fPddz6fvwM4KI0RygIbiRVNSCJySkRsFLFgxbmxmBcbl23R57275Pw-vfeP1d1bGK21Sz7TIX66u_xqVE4xVGY1PGJIhjILcxb406h-rvURUonQH-H-7jKi4uj87HoQYoHwkCFRXsa-oI8rp_LDBjtg6S5Bv5lSnU_yGE4nKixfv7E1_nvOy7DoXcygU--JFZjRw1VYaso3BF6b1-C2i0QS1tesAodYRo_J9dgV7yQ3jY_-av96DtaHwDq4wckYMzmC2hZgUDDofNyBr8Nd93Rw3CO-xAIpYyomJDc00bGsjBRWYFGqkC4-FyYzzAiWp4mheSV4bu1ApWMmJM2klFWZMi7y0jbZgNZwNNSbEPDSHndVojIuTcJMLrjMVJRKFimBpC9toM3SF6XnH8cyGE-FO4dQUaC0CpRW4aXVhsP3Ls81-cZfjddx9T81rBe-DTuNgAuvny-FPSfGCcfQwNYv3fZhvje4uiwuz_oX27CAIyFkRekOtCbjqd61vshE7bkd-AZ5odlj |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Federated+Transfer%E2%80%93Ordered%E2%80%93Personalized+Learning+for+Driver+Monitoring+Application&rft.jtitle=IEEE+internet+of+things+journal&rft.au=Yuan%2C+Liangqi&rft.au=Lu%2C+Su&rft.au=Wang%2C+Ziran&rft.date=2023-10-15&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2327-4662&rft.volume=10&rft.issue=20&rft.spage=18292&rft_id=info:doi/10.1109%2FJIOT.2023.3279273&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4662&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4662&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4662&client=summon |