3D-printed, ceramic porous metasurface wick: Hexagonal-prism unit-cell capillary evaporator
A hexagonal-prism unit-cell based alumina evaporator wick with 150μm struts and 375μm wick thickness is designed and fabricated with 3D-printing using projection micro stereolithography and post debinding and sintering. The evaporator wick capillary pressure, permeability, effective thermal conducti...
Saved in:
Published in | International journal of heat and mass transfer Vol. 246; p. 127041 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
15.08.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A hexagonal-prism unit-cell based alumina evaporator wick with 150μm struts and 375μm wick thickness is designed and fabricated with 3D-printing using projection micro stereolithography and post debinding and sintering. The evaporator wick capillary pressure, permeability, effective thermal conductivity, and specific thermal conductance are calculated using static surface-energy minimization for the liquid meniscus-capillary pressure and 3-D CFD simulations. In comparison to a close-packed, sintered copper particle (average diameter of 78μm) monolayer wick used in a similar, previous experiment, the ceramic wick has a much larger capillary-viscous critical heat flux qCHF,c−v. However, the specific thermal conductance of the ceramic wick is about 1/10, due to its larger thickness and lower effective thermal conductivity, such that the wick superheat critical heat flux qCHF,sh controls the upper limit of its performance. The ceramic hexagonal-prism unit-cell wick outperforms this monolayer sintered-copper wick, when used for open-system evaporation. The experiment uses water and a 10 mm × 20 mm partially submerged alumina wick with contact heating area of 8 mm × 8 mm, under incremental increase in the heating rate up to the wick superheat limit. Infrared thermometry (with an estimate of the wet-wick surface emissivity) is used for the wick surface temperature. The 3-D numerical simulations show the fin effect in the lower, unheated wick section and the predictions, including the average wick-surface temperature, are in good agreement with the measurements.
[Display omitted]
•A 3D-printed ceramic evaporation wick metasurface is fabricated, tested, and simulated.•IR thermometery measurements of the wick surface temperature agree with predictions.•Ceramic, hexagonal-prism unit-cell wick is capable of high evaporation dryout limits.•The ceramic wick superheat limit is lower (and reached) than its capillary-viscous limit.•The wick’s thermal properties are optimized subject to fabrication dimension limitations. |
---|---|
AbstractList | A hexagonal-prism unit-cell based alumina evaporator wick with 150μm struts and 375μm wick thickness is designed and fabricated with 3D-printing using projection micro stereolithography and post debinding and sintering. The evaporator wick capillary pressure, permeability, effective thermal conductivity, and specific thermal conductance are calculated using static surface-energy minimization for the liquid meniscus-capillary pressure and 3-D CFD simulations. In comparison to a close-packed, sintered copper particle (average diameter of 78μm) monolayer wick used in a similar, previous experiment, the ceramic wick has a much larger capillary-viscous critical heat flux qCHF,c−v. However, the specific thermal conductance of the ceramic wick is about 1/10, due to its larger thickness and lower effective thermal conductivity, such that the wick superheat critical heat flux qCHF,sh controls the upper limit of its performance. The ceramic hexagonal-prism unit-cell wick outperforms this monolayer sintered-copper wick, when used for open-system evaporation. The experiment uses water and a 10 mm × 20 mm partially submerged alumina wick with contact heating area of 8 mm × 8 mm, under incremental increase in the heating rate up to the wick superheat limit. Infrared thermometry (with an estimate of the wet-wick surface emissivity) is used for the wick surface temperature. The 3-D numerical simulations show the fin effect in the lower, unheated wick section and the predictions, including the average wick-surface temperature, are in good agreement with the measurements.
[Display omitted]
•A 3D-printed ceramic evaporation wick metasurface is fabricated, tested, and simulated.•IR thermometery measurements of the wick surface temperature agree with predictions.•Ceramic, hexagonal-prism unit-cell wick is capable of high evaporation dryout limits.•The ceramic wick superheat limit is lower (and reached) than its capillary-viscous limit.•The wick’s thermal properties are optimized subject to fabrication dimension limitations. |
ArticleNumber | 127041 |
Author | Kaviany, Massoud Kameya, Yuki Franceschetti, Lorenzo |
Author_xml | – sequence: 1 givenname: Lorenzo orcidid: 0009-0005-2657-9510 surname: Franceschetti fullname: Franceschetti, Lorenzo organization: Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, United States – sequence: 2 givenname: Yuki orcidid: 0000-0002-7811-9971 surname: Kameya fullname: Kameya, Yuki organization: Department of Mechanical Engineering, Chiba Institute of Technology, Narashino, Japan – sequence: 3 givenname: Massoud orcidid: 0000-0002-3183-6877 surname: Kaviany fullname: Kaviany, Massoud email: kaviany@umich.edu organization: Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, United States |
BookMark | eNqNkLtOAzEQRV0EiSTwDy4p2MWPfYUKFB4BRaKBisKa9Y7Byz4i2wnw9-xq6WgoRqPR6B5dnQWZdX2HhJxxFnPGs4s6tvU7QmjB--Cg8wZdLJhIYy5ylvAZmTPG82glOTsmC-_r8WRJNiev8ibaOdsFrM6pRget1XTXu37vaYsB_N4Z0Eg_rf64pBv8gre-g2bM-JbuOxsijU1DNexs04D7pniAIQ-hdyfkyEDj8fR3L8nL3e3zehNtn-4f1tfbSAu2ClGRoyyhMqYwskhzoVlRiipjScFllUAuM2PKNE0F5CxnxqAQsqhKzXAYnhi5JFcTV7vee4dGDe3aoYviTI2CVK3-ClKjIDUJGhCPEwKHngc7fL222GmsrEMdVNXb_8N-AFp-gXM |
Cites_doi | 10.1016/j.applthermaleng.2018.07.111 10.1016/j.colsurfa.2012.12.010 10.1016/j.applthermaleng.2010.12.001 10.1115/1.3160538 10.3390/app9132727 10.1016/j.ijheatmasstransfer.2010.09.037 10.1016/j.ijheatmasstransfer.2020.120258 10.1016/j.ijheatmasstransfer.2017.10.079 10.1080/10407782.2019.1627829 10.1016/j.applthermaleng.2023.120750 10.1016/j.jmst.2022.06.039 10.1016/j.jeurceramsoc.2022.02.039 10.1016/j.ijheatmasstransfer.2024.125609 10.1016/j.ijheatmasstransfer.2023.124605 10.1016/j.ijheatmasstransfer.2011.10.053 10.1016/j.applthermaleng.2024.123076 10.1002/adem.202001037 10.1038/s41560-018-0260-7 10.1080/10586458.1992.10504253 10.1115/1.4031503 10.1016/j.ijheatmasstransfer.2021.121999 10.1016/0017-9310(92)90258-T 10.1016/S0017-9310(01)00084-9 10.1016/j.ijheatmasstransfer.2017.04.131 10.1016/0010-2180(91)90055-G 10.1016/j.ijheatmasstransfer.2006.09.019 10.1016/j.ijheatmasstransfer.2010.02.046 10.3390/ma14216484 10.1016/j.ijheatmasstransfer.2021.122019 |
ContentType | Journal Article |
Copyright | 2025 Elsevier Ltd |
Copyright_xml | – notice: 2025 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ijheatmasstransfer.2025.127041 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
ExternalDocumentID | 10_1016_j_ijheatmasstransfer_2025_127041 S0017931025003825 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AAEDT AAEDW AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AATTM AAXKI AAXUO AAYWO ABFNM ABJNI ABMAC ABNUV ACDAQ ACGFS ACIWK ACRLP ADBBV ADEWK ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AFJKZ AFTJW AFXIZ AGCQF AGHFR AGRNS AGUBO AGYEJ AHHHB AHIDL AHJVU AHPOS AIEXJ AIIUN AIKHN AITUG AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BELTK BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA K-O KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSG SSH SSR SST SSZ T5K TN5 XPP ZMT ~02 ~G- 29J 6TJ AAQXK AAYXX ABDMP ABDPE ABWVN ABXDB ACKIV ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEUPX AFPUW AGQPQ AIGII AKBMS AKYEP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- RIG SAC SET T9H VOH WUQ ZY4 |
ID | FETCH-LOGICAL-c209t-87e3badff8f38572c08b2d604813d4a736ffb5552a7070ffe2238dbc0ebc014f3 |
IEDL.DBID | .~1 |
ISSN | 0017-9310 |
IngestDate | Tue Aug 05 12:01:15 EDT 2025 Sat May 24 17:06:03 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Open-system evaporator Surface Evolver Receding meniscus Alumina (ceramic) wick |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c209t-87e3badff8f38572c08b2d604813d4a736ffb5552a7070ffe2238dbc0ebc014f3 |
ORCID | 0000-0002-7811-9971 0000-0002-3183-6877 0009-0005-2657-9510 |
ParticipantIDs | crossref_primary_10_1016_j_ijheatmasstransfer_2025_127041 elsevier_sciencedirect_doi_10_1016_j_ijheatmasstransfer_2025_127041 |
PublicationCentury | 2000 |
PublicationDate | 2025-08-15 |
PublicationDateYYYYMMDD | 2025-08-15 |
PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | International journal of heat and mass transfer |
PublicationYear | 2025 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Boubaker, Lorgouilloux, Ouenzerfi, Harmand (b17) 2024; 228 Kittel (b22) 2004 (b28) 2024 Kim, Kaviany (b9) 2018; 117 Hu, Wang, Xu, Zhang (b12) 2020; 161 Jafari, Wits, Geurts (b11) 2018; 143 Ranjan, Patel, Garimella, Murthy (b26) 2012; 55 Ranjan, Murthy, Garimella (b24) 2009; 131 Carman (b33) 1956 Specht, Berwind, Eberl (b2) 2021; 23 Zhang, Li, Xu, Wang, Li, Yang (b15) 2022; 42 Sahraoui, Kaviany (b34) 1992; 35 Tao, Ni, Song, Shang, Wu, Zhu, Chen, Deng (b10) 2018; 3 Tao, Kaviany (b20) 1991; 86 Hwang, Nam, Fleming, Dussinger, Ju, Kaviany (b7) 2010; 53 Sun, Ye, Zou, Chen, Wang, Yuan, Liang, Qu, Binner, Bai (b16) 2023; 138 Gu, Yang, Liu, Zhou, Xu, Zhang (b21) 2024; 247 Leese, Bhurtun, Lee, Mattia (b29) 2013; 420 (b32) 2024 Modak, Kaviany, Hoenig, Bonner (b30) 1992; 76 Kim, Kaviany (b8) 2017; 112 Ranjan, Murthy, Garimella (b25) 2011; 54 Hwang, Kaviany, Anderson, Zuo (b6) 2007; 50 Peng, Hang, Chen, Duan, Huang (b14) 2025; 99 Ferreira, Furst, Daimaru, Sunada, Kaviany (b4) 2022; 183 Yang, Yang, Gao, Zhao, Liu, Zhang (b19) 2023; 230 Zhang, Shi, Han (b13) 2021; 14 Bukhari, Vardaxoglou, Whittow (b1) 2019; 9 Berti, Santos, Bazzo, Janssen, Hotza, Rambo (b18) 2011; 31 Kameya, Takahashi, Kaviany (b3) 2023; 216 Liter, Kaviany (b5) 2001; 44 Brakke (b23) 1992; 1 Forrest, Don, Hu, Buongiorno, McKrell (b27) 2016; 2 Kim, Ferreira, Jo, Kaviany (b31) 2021; 181 Yang (10.1016/j.ijheatmasstransfer.2025.127041_b19) 2023; 230 Kim (10.1016/j.ijheatmasstransfer.2025.127041_b31) 2021; 181 Boubaker (10.1016/j.ijheatmasstransfer.2025.127041_b17) 2024; 228 Forrest (10.1016/j.ijheatmasstransfer.2025.127041_b27) 2016; 2 Leese (10.1016/j.ijheatmasstransfer.2025.127041_b29) 2013; 420 Zhang (10.1016/j.ijheatmasstransfer.2025.127041_b13) 2021; 14 Jafari (10.1016/j.ijheatmasstransfer.2025.127041_b11) 2018; 143 Bukhari (10.1016/j.ijheatmasstransfer.2025.127041_b1) 2019; 9 Kim (10.1016/j.ijheatmasstransfer.2025.127041_b8) 2017; 112 Ranjan (10.1016/j.ijheatmasstransfer.2025.127041_b25) 2011; 54 Peng (10.1016/j.ijheatmasstransfer.2025.127041_b14) 2025; 99 Sahraoui (10.1016/j.ijheatmasstransfer.2025.127041_b34) 1992; 35 Kittel (10.1016/j.ijheatmasstransfer.2025.127041_b22) 2004 Modak (10.1016/j.ijheatmasstransfer.2025.127041_b30) 1992; 76 Zhang (10.1016/j.ijheatmasstransfer.2025.127041_b15) 2022; 42 Hwang (10.1016/j.ijheatmasstransfer.2025.127041_b7) 2010; 53 Ferreira (10.1016/j.ijheatmasstransfer.2025.127041_b4) 2022; 183 Specht (10.1016/j.ijheatmasstransfer.2025.127041_b2) 2021; 23 (10.1016/j.ijheatmasstransfer.2025.127041_b28) 2024 Carman (10.1016/j.ijheatmasstransfer.2025.127041_b33) 1956 Berti (10.1016/j.ijheatmasstransfer.2025.127041_b18) 2011; 31 Kim (10.1016/j.ijheatmasstransfer.2025.127041_b9) 2018; 117 (10.1016/j.ijheatmasstransfer.2025.127041_b32) 2024 Gu (10.1016/j.ijheatmasstransfer.2025.127041_b21) 2024; 247 Tao (10.1016/j.ijheatmasstransfer.2025.127041_b10) 2018; 3 Liter (10.1016/j.ijheatmasstransfer.2025.127041_b5) 2001; 44 Hu (10.1016/j.ijheatmasstransfer.2025.127041_b12) 2020; 161 Kameya (10.1016/j.ijheatmasstransfer.2025.127041_b3) 2023; 216 Ranjan (10.1016/j.ijheatmasstransfer.2025.127041_b26) 2012; 55 Tao (10.1016/j.ijheatmasstransfer.2025.127041_b20) 1991; 86 Sun (10.1016/j.ijheatmasstransfer.2025.127041_b16) 2023; 138 Hwang (10.1016/j.ijheatmasstransfer.2025.127041_b6) 2007; 50 Brakke (10.1016/j.ijheatmasstransfer.2025.127041_b23) 1992; 1 Ranjan (10.1016/j.ijheatmasstransfer.2025.127041_b24) 2009; 131 |
References_xml | – volume: 86 start-page: 47 year: 1991 end-page: 61 ident: b20 article-title: Burning rate of liquid supplied through a wick publication-title: Combust. Flame – volume: 35 start-page: 927 year: 1992 end-page: 943 ident: b34 article-title: Slip and no-slip boundary conditions at interface of porous, plain media publication-title: Int. J. Heat Mass Transfer – year: 2024 ident: b28 article-title: microArch 3D Printers – volume: 216 year: 2023 ident: b3 article-title: Surface evaporation enhancement using porous metasurfaces: 3-D multiscale, open-system wick evaporators publication-title: Int. J. Heat Mass Transfer – volume: 228 year: 2024 ident: b17 article-title: Experimental study of a bilayer cermaic wick for the evaporator of a two-phase heat transfer device publication-title: Int. J. Heat Mass Transfer – volume: 1 start-page: 2 year: 1992 ident: b23 article-title: The surface evolver publication-title: Exp. Math. – volume: 143 start-page: 403 year: 2018 end-page: 414 ident: b11 article-title: Metal 3D-printed wick structures for heat pipe application: Capillary performance analysis publication-title: Appl. Therm. Eng. – volume: 44 start-page: 4287 year: 2001 end-page: 4311 ident: b5 article-title: Pool-boiling CHF enhancement by modulated porous-layer coating: theory and experiment publication-title: Int. J. Heat Mass Transfer – year: 2004 ident: b22 article-title: Introduction to Solid State Physics – volume: 112 start-page: 343 year: 2017 end-page: 353 ident: b8 article-title: Multi-artery heat-pipe spreader: monolayer-wick receding meniscus transitions and optimal performance publication-title: Int. J. Heat Mass Transfer – volume: 14 start-page: 6484 year: 2021 ident: b13 article-title: Compressive and energy absorption properties of pyramidal lattice structures by various preparation methods publication-title: Materials – volume: 183 year: 2022 ident: b4 article-title: Analytic characterization and operational limits of a hybrid two-phase mechanically pumped fluid loop based on the capillary pumped loop publication-title: Int. J. Heat Mass Transfer – volume: 117 start-page: 1158 year: 2018 end-page: 1168 ident: b9 article-title: Flow-boiling canopy wick for extreme heat transfer publication-title: Int. J. Heat Mass Transfer – volume: 55 start-page: 586 year: 2012 end-page: 596 ident: b26 article-title: Wicking and thermal characteristics of micropillared structures for use in passive heat spreaders publication-title: Int. J. Heat Mass Transfer – volume: 138 start-page: 1 year: 2023 end-page: 16 ident: b16 article-title: A review on additive manufacturing of ceramic matrix composites publication-title: J. Mater. Sci. Technol. – year: 2024 ident: b32 article-title: AL (Alumina) Ceramic Data Sheet – volume: 99 year: 2025 ident: b14 article-title: Super capillary performance of hybrid-structured wicks additively manufactured via laser powder bed fusion publication-title: Addit. Manuf. – volume: 42 start-page: 3351 year: 2022 end-page: 3373 ident: b15 article-title: A review of 3D printed porous ceramics publication-title: J. Eur. Ceram. Soc. – volume: 50 start-page: 1420 year: 2007 end-page: 1434 ident: b6 article-title: Modulated wick heat pipe publication-title: Int. J. Heat Mass Transfer – volume: 161 year: 2020 ident: b12 article-title: Development of a loop heat pipe with the 3D printed stainless stell wick in the application of thermal management publication-title: Int. J. Heat Mass Transfer – volume: 131 year: 2009 ident: b24 article-title: Analysis of the wicking and thin-film evaporation characteristics of microstructures publication-title: ASME J. Heat Transf. – volume: 54 start-page: 169 year: 2011 end-page: 179 ident: b25 article-title: A microscale model for thin-film evaporation in capillary wick structures publication-title: Int. J. Heat Mass Transfer – volume: 181 year: 2021 ident: b31 article-title: Flow-boiling canopy wick capillary-viscous limit publication-title: Int. J. Heat Mass Transfer – volume: 9 start-page: 2727 year: 2019 ident: b1 article-title: A metasurfaces review: Definitions and applications publication-title: Appl. Sci. – volume: 420 start-page: 53 year: 2013 end-page: 58 ident: b29 article-title: Wetting behaviour of hydrophilic and hydrophobic nanostructured porous anodic alumina publication-title: Colloids Surfaces A: Physicochem. Eng. Asp. – year: 1956 ident: b33 article-title: Flow of Gases Through Porous Media – volume: 31 start-page: 1076 year: 2011 end-page: 1081 ident: b18 article-title: Evaluation of permeability of ceramic wick structures for two phase heat transfer devices publication-title: Appl. Therm. Eng. – volume: 230 year: 2023 ident: b19 article-title: Experimental study on a dual compensation chamber loop heat pipe with a ceramic wick publication-title: Appl. Therm. Eng. – volume: 3 start-page: 1031 year: 2018 end-page: 1041 ident: b10 article-title: Solar-driven interfacial evaporation publication-title: Nat. Energy – volume: 247 year: 2024 ident: b21 article-title: Enhancing heat transfer performance of aluminum-based vapor chamber with a novel bionic wick structure fabricated using additive manufacturing publication-title: Appl. Therm. Eng. – volume: 2 year: 2016 ident: b27 article-title: Effect of surface oxidation on the onset of nucleate boiling in a materials test reactor coolant channel publication-title: J. Nucl. Eng. Radiat. Sci. – volume: 76 start-page: 301 year: 1992 end-page: 322 ident: b30 article-title: Numerical analysis of meniscus dynamics in monolayer-wick dropwise condensation publication-title: Numer. Heat Transf. A: Appl. – volume: 23 year: 2021 ident: b2 article-title: Adaptive wettability of a programmable metasurface publication-title: Adv. Eng. Mater. – volume: 53 start-page: 2662 year: 2010 end-page: 2669 ident: b7 article-title: Multi-artery heat pipe spreader: Experiment publication-title: Int. J. Heat Mass Transfer – volume: 143 start-page: 403 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2025.127041_b11 article-title: Metal 3D-printed wick structures for heat pipe application: Capillary performance analysis publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2018.07.111 – year: 1956 ident: 10.1016/j.ijheatmasstransfer.2025.127041_b33 – volume: 420 start-page: 53 year: 2013 ident: 10.1016/j.ijheatmasstransfer.2025.127041_b29 article-title: Wetting behaviour of hydrophilic and hydrophobic nanostructured porous anodic alumina publication-title: Colloids Surfaces A: Physicochem. Eng. Asp. doi: 10.1016/j.colsurfa.2012.12.010 – year: 2024 ident: 10.1016/j.ijheatmasstransfer.2025.127041_b32 – volume: 31 start-page: 1076 year: 2011 ident: 10.1016/j.ijheatmasstransfer.2025.127041_b18 article-title: Evaluation of permeability of ceramic wick structures for two phase heat transfer devices publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2010.12.001 – volume: 131 issue: 10 year: 2009 ident: 10.1016/j.ijheatmasstransfer.2025.127041_b24 article-title: Analysis of the wicking and thin-film evaporation characteristics of microstructures publication-title: ASME J. Heat Transf. doi: 10.1115/1.3160538 – volume: 9 start-page: 2727 issue: 13 year: 2019 ident: 10.1016/j.ijheatmasstransfer.2025.127041_b1 article-title: A metasurfaces review: Definitions and applications publication-title: Appl. Sci. doi: 10.3390/app9132727 – volume: 54 start-page: 169 year: 2011 ident: 10.1016/j.ijheatmasstransfer.2025.127041_b25 article-title: A microscale model for thin-film evaporation in capillary wick structures publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2010.09.037 – volume: 161 year: 2020 ident: 10.1016/j.ijheatmasstransfer.2025.127041_b12 article-title: Development of a loop heat pipe with the 3D printed stainless stell wick in the application of thermal management publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2020.120258 – volume: 117 start-page: 1158 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2025.127041_b9 article-title: Flow-boiling canopy wick for extreme heat transfer publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2017.10.079 – volume: 76 start-page: 301 issue: 5 year: 1992 ident: 10.1016/j.ijheatmasstransfer.2025.127041_b30 article-title: Numerical analysis of meniscus dynamics in monolayer-wick dropwise condensation publication-title: Numer. Heat Transf. A: Appl. doi: 10.1080/10407782.2019.1627829 – volume: 230 year: 2023 ident: 10.1016/j.ijheatmasstransfer.2025.127041_b19 article-title: Experimental study on a dual compensation chamber loop heat pipe with a ceramic wick publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2023.120750 – volume: 138 start-page: 1 year: 2023 ident: 10.1016/j.ijheatmasstransfer.2025.127041_b16 article-title: A review on additive manufacturing of ceramic matrix composites publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2022.06.039 – volume: 42 start-page: 3351 year: 2022 ident: 10.1016/j.ijheatmasstransfer.2025.127041_b15 article-title: A review of 3D printed porous ceramics publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2022.02.039 – volume: 228 year: 2024 ident: 10.1016/j.ijheatmasstransfer.2025.127041_b17 article-title: Experimental study of a bilayer cermaic wick for the evaporator of a two-phase heat transfer device publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2024.125609 – volume: 216 year: 2023 ident: 10.1016/j.ijheatmasstransfer.2025.127041_b3 article-title: Surface evaporation enhancement using porous metasurfaces: 3-D multiscale, open-system wick evaporators publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2023.124605 – volume: 55 start-page: 586 year: 2012 ident: 10.1016/j.ijheatmasstransfer.2025.127041_b26 article-title: Wicking and thermal characteristics of micropillared structures for use in passive heat spreaders publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2011.10.053 – volume: 247 year: 2024 ident: 10.1016/j.ijheatmasstransfer.2025.127041_b21 article-title: Enhancing heat transfer performance of aluminum-based vapor chamber with a novel bionic wick structure fabricated using additive manufacturing publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2024.123076 – volume: 23 year: 2021 ident: 10.1016/j.ijheatmasstransfer.2025.127041_b2 article-title: Adaptive wettability of a programmable metasurface publication-title: Adv. Eng. Mater. doi: 10.1002/adem.202001037 – volume: 3 start-page: 1031 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2025.127041_b10 article-title: Solar-driven interfacial evaporation publication-title: Nat. Energy doi: 10.1038/s41560-018-0260-7 – volume: 1 start-page: 2 year: 1992 ident: 10.1016/j.ijheatmasstransfer.2025.127041_b23 article-title: The surface evolver publication-title: Exp. Math. doi: 10.1080/10586458.1992.10504253 – volume: 2 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2025.127041_b27 article-title: Effect of surface oxidation on the onset of nucleate boiling in a materials test reactor coolant channel publication-title: J. Nucl. Eng. Radiat. Sci. doi: 10.1115/1.4031503 – volume: 181 year: 2021 ident: 10.1016/j.ijheatmasstransfer.2025.127041_b31 article-title: Flow-boiling canopy wick capillary-viscous limit publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2021.121999 – volume: 35 start-page: 927 year: 1992 ident: 10.1016/j.ijheatmasstransfer.2025.127041_b34 article-title: Slip and no-slip boundary conditions at interface of porous, plain media publication-title: Int. J. Heat Mass Transfer doi: 10.1016/0017-9310(92)90258-T – volume: 44 start-page: 4287 year: 2001 ident: 10.1016/j.ijheatmasstransfer.2025.127041_b5 article-title: Pool-boiling CHF enhancement by modulated porous-layer coating: theory and experiment publication-title: Int. J. Heat Mass Transfer doi: 10.1016/S0017-9310(01)00084-9 – volume: 112 start-page: 343 year: 2017 ident: 10.1016/j.ijheatmasstransfer.2025.127041_b8 article-title: Multi-artery heat-pipe spreader: monolayer-wick receding meniscus transitions and optimal performance publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2017.04.131 – volume: 86 start-page: 47 year: 1991 ident: 10.1016/j.ijheatmasstransfer.2025.127041_b20 article-title: Burning rate of liquid supplied through a wick publication-title: Combust. Flame doi: 10.1016/0010-2180(91)90055-G – year: 2004 ident: 10.1016/j.ijheatmasstransfer.2025.127041_b22 – volume: 50 start-page: 1420 year: 2007 ident: 10.1016/j.ijheatmasstransfer.2025.127041_b6 article-title: Modulated wick heat pipe publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2006.09.019 – volume: 53 start-page: 2662 year: 2010 ident: 10.1016/j.ijheatmasstransfer.2025.127041_b7 article-title: Multi-artery heat pipe spreader: Experiment publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2010.02.046 – year: 2024 ident: 10.1016/j.ijheatmasstransfer.2025.127041_b28 – volume: 14 start-page: 6484 issue: 21 year: 2021 ident: 10.1016/j.ijheatmasstransfer.2025.127041_b13 article-title: Compressive and energy absorption properties of pyramidal lattice structures by various preparation methods publication-title: Materials doi: 10.3390/ma14216484 – volume: 99 year: 2025 ident: 10.1016/j.ijheatmasstransfer.2025.127041_b14 article-title: Super capillary performance of hybrid-structured wicks additively manufactured via laser powder bed fusion publication-title: Addit. Manuf. – volume: 183 year: 2022 ident: 10.1016/j.ijheatmasstransfer.2025.127041_b4 article-title: Analytic characterization and operational limits of a hybrid two-phase mechanically pumped fluid loop based on the capillary pumped loop publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2021.122019 |
SSID | ssj0017046 |
Score | 2.4741125 |
Snippet | A hexagonal-prism unit-cell based alumina evaporator wick with 150μm struts and 375μm wick thickness is designed and fabricated with 3D-printing using... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 127041 |
SubjectTerms | Alumina (ceramic) wick Open-system evaporator Receding meniscus Surface Evolver |
Title | 3D-printed, ceramic porous metasurface wick: Hexagonal-prism unit-cell capillary evaporator |
URI | https://dx.doi.org/10.1016/j.ijheatmasstransfer.2025.127041 |
Volume | 246 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6yongRn7i-yMGDB-O2TdKm3mR1qS7uQRQFDyVJE9mFXZdaRS_-djN9-EAPHjyU0tKGMpl882U6D4T2Mk19LoUhGY1DwlSgSex4MWHONksRSOmVWa4XgzC5Zue3_HYGdZtcGAirrLG_wvQSres7nVqanelwCDm-oFw-GHGPuo0OZLCzCLT88O0jzMOPvCpZB9AYnp5H-58xXsMRIN7Y0dSipIkGKoQG_BB-xzL_d1P1xfz0ltBizRvxcfVpy2jGTFbQXBm_qR9X0R09IeCic_zxAGuTQ5d57Ki129fjsSnAD2ilNhgapx_hxLzIe6DgpKyCiJ_cuibgwsdaTqENUf6KzbMsSxw_5Gvound61U1I3TeB6MCLCwdwhiqZWSssFTwKtCdUkIVQGYZmTEY0tFZxzgMZuQVvrXEUQWRKe8YdPrN0HbUmDxOzgbCbQK1FZlmoJGNKxoFmJlRcWPdeTEUbxY2I0mlVHiNt4sZG6U_xpiDetBJvG3Ubmabfpjx1aP7nUTb_ZZQttABX4Cz2-TZqFfmT2XFso1C7pTrtotnjs34ygHP_8qb_Dln12ys |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV05T8MwFH6CVhwL4hQ3HhgYMCSxnTpsqIBSjk4gITFEtmOjVqJUJSD49_glKYdgYGDwEstW9Gx_7_PzOwB2c8NCoaSlOUtiynVkaOJ5MeVeNysZKRWUUa5X3Ti94ee34nYC2uNYGHSrrLG_wvQSresvh7U0D4e9Hsb44uYKUYkHzF90JqGJ2alEA5rHnYu0-_GY0AqqeB0EZBwwDXufbl69PoLeg2eqRckULSYJjcQBvsjy8Hdt9UUDnc3DXE0dyXH1dwswYQeLMFW6cJqnJbhjJxStdJ5C7hNjR1honnh27a_25MEWaAp0yliCtdOPSGpf1T2ycFomQiTP_mhTtOITo4ZYiWj0RuyLKrMcP46W4ebs9Lqd0rp0AjVRkBQe4yzTKndOOiZFKzKB1FEeY3IYlnPVYrFzWggRqZY_885ZzxJkrk1gfQu5YyvQGDwO7CoQv4bGyNzxWCvOtUoiw22shXR-XMLkGiRjEWXDKkNGNnYd62c_xZuheLNKvGvQHss0-7bqmQf0P8-y_i-z7MBMen11mV12uhcbMIs9aDsOxSY0itGz3fLko9Db9eZ6B_qi3Dk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D-printed%2C+ceramic+porous+metasurface+wick%3A+Hexagonal-prism+unit-cell+capillary+evaporator&rft.jtitle=International+journal+of+heat+and+mass+transfer&rft.au=Franceschetti%2C+Lorenzo&rft.au=Kameya%2C+Yuki&rft.au=Kaviany%2C+Massoud&rft.date=2025-08-15&rft.pub=Elsevier+Ltd&rft.issn=0017-9310&rft.volume=246&rft_id=info:doi/10.1016%2Fj.ijheatmasstransfer.2025.127041&rft.externalDocID=S0017931025003825 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0017-9310&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0017-9310&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0017-9310&client=summon |