3D-printed, ceramic porous metasurface wick: Hexagonal-prism unit-cell capillary evaporator

A hexagonal-prism unit-cell based alumina evaporator wick with 150μm struts and 375μm wick thickness is designed and fabricated with 3D-printing using projection micro stereolithography and post debinding and sintering. The evaporator wick capillary pressure, permeability, effective thermal conducti...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of heat and mass transfer Vol. 246; p. 127041
Main Authors Franceschetti, Lorenzo, Kameya, Yuki, Kaviany, Massoud
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.08.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A hexagonal-prism unit-cell based alumina evaporator wick with 150μm struts and 375μm wick thickness is designed and fabricated with 3D-printing using projection micro stereolithography and post debinding and sintering. The evaporator wick capillary pressure, permeability, effective thermal conductivity, and specific thermal conductance are calculated using static surface-energy minimization for the liquid meniscus-capillary pressure and 3-D CFD simulations. In comparison to a close-packed, sintered copper particle (average diameter of 78μm) monolayer wick used in a similar, previous experiment, the ceramic wick has a much larger capillary-viscous critical heat flux qCHF,c−v. However, the specific thermal conductance of the ceramic wick is about 1/10, due to its larger thickness and lower effective thermal conductivity, such that the wick superheat critical heat flux qCHF,sh controls the upper limit of its performance. The ceramic hexagonal-prism unit-cell wick outperforms this monolayer sintered-copper wick, when used for open-system evaporation. The experiment uses water and a 10 mm × 20 mm partially submerged alumina wick with contact heating area of 8 mm × 8 mm, under incremental increase in the heating rate up to the wick superheat limit. Infrared thermometry (with an estimate of the wet-wick surface emissivity) is used for the wick surface temperature. The 3-D numerical simulations show the fin effect in the lower, unheated wick section and the predictions, including the average wick-surface temperature, are in good agreement with the measurements. [Display omitted] •A 3D-printed ceramic evaporation wick metasurface is fabricated, tested, and simulated.•IR thermometery measurements of the wick surface temperature agree with predictions.•Ceramic, hexagonal-prism unit-cell wick is capable of high evaporation dryout limits.•The ceramic wick superheat limit is lower (and reached) than its capillary-viscous limit.•The wick’s thermal properties are optimized subject to fabrication dimension limitations.
AbstractList A hexagonal-prism unit-cell based alumina evaporator wick with 150μm struts and 375μm wick thickness is designed and fabricated with 3D-printing using projection micro stereolithography and post debinding and sintering. The evaporator wick capillary pressure, permeability, effective thermal conductivity, and specific thermal conductance are calculated using static surface-energy minimization for the liquid meniscus-capillary pressure and 3-D CFD simulations. In comparison to a close-packed, sintered copper particle (average diameter of 78μm) monolayer wick used in a similar, previous experiment, the ceramic wick has a much larger capillary-viscous critical heat flux qCHF,c−v. However, the specific thermal conductance of the ceramic wick is about 1/10, due to its larger thickness and lower effective thermal conductivity, such that the wick superheat critical heat flux qCHF,sh controls the upper limit of its performance. The ceramic hexagonal-prism unit-cell wick outperforms this monolayer sintered-copper wick, when used for open-system evaporation. The experiment uses water and a 10 mm × 20 mm partially submerged alumina wick with contact heating area of 8 mm × 8 mm, under incremental increase in the heating rate up to the wick superheat limit. Infrared thermometry (with an estimate of the wet-wick surface emissivity) is used for the wick surface temperature. The 3-D numerical simulations show the fin effect in the lower, unheated wick section and the predictions, including the average wick-surface temperature, are in good agreement with the measurements. [Display omitted] •A 3D-printed ceramic evaporation wick metasurface is fabricated, tested, and simulated.•IR thermometery measurements of the wick surface temperature agree with predictions.•Ceramic, hexagonal-prism unit-cell wick is capable of high evaporation dryout limits.•The ceramic wick superheat limit is lower (and reached) than its capillary-viscous limit.•The wick’s thermal properties are optimized subject to fabrication dimension limitations.
ArticleNumber 127041
Author Kaviany, Massoud
Kameya, Yuki
Franceschetti, Lorenzo
Author_xml – sequence: 1
  givenname: Lorenzo
  orcidid: 0009-0005-2657-9510
  surname: Franceschetti
  fullname: Franceschetti, Lorenzo
  organization: Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, United States
– sequence: 2
  givenname: Yuki
  orcidid: 0000-0002-7811-9971
  surname: Kameya
  fullname: Kameya, Yuki
  organization: Department of Mechanical Engineering, Chiba Institute of Technology, Narashino, Japan
– sequence: 3
  givenname: Massoud
  orcidid: 0000-0002-3183-6877
  surname: Kaviany
  fullname: Kaviany, Massoud
  email: kaviany@umich.edu
  organization: Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, United States
BookMark eNqNkLtOAzEQRV0EiSTwDy4p2MWPfYUKFB4BRaKBisKa9Y7Byz4i2wnw9-xq6WgoRqPR6B5dnQWZdX2HhJxxFnPGs4s6tvU7QmjB--Cg8wZdLJhIYy5ylvAZmTPG82glOTsmC-_r8WRJNiev8ibaOdsFrM6pRget1XTXu37vaYsB_N4Z0Eg_rf64pBv8gre-g2bM-JbuOxsijU1DNexs04D7pniAIQ-hdyfkyEDj8fR3L8nL3e3zehNtn-4f1tfbSAu2ClGRoyyhMqYwskhzoVlRiipjScFllUAuM2PKNE0F5CxnxqAQsqhKzXAYnhi5JFcTV7vee4dGDe3aoYviTI2CVK3-ClKjIDUJGhCPEwKHngc7fL222GmsrEMdVNXb_8N-AFp-gXM
Cites_doi 10.1016/j.applthermaleng.2018.07.111
10.1016/j.colsurfa.2012.12.010
10.1016/j.applthermaleng.2010.12.001
10.1115/1.3160538
10.3390/app9132727
10.1016/j.ijheatmasstransfer.2010.09.037
10.1016/j.ijheatmasstransfer.2020.120258
10.1016/j.ijheatmasstransfer.2017.10.079
10.1080/10407782.2019.1627829
10.1016/j.applthermaleng.2023.120750
10.1016/j.jmst.2022.06.039
10.1016/j.jeurceramsoc.2022.02.039
10.1016/j.ijheatmasstransfer.2024.125609
10.1016/j.ijheatmasstransfer.2023.124605
10.1016/j.ijheatmasstransfer.2011.10.053
10.1016/j.applthermaleng.2024.123076
10.1002/adem.202001037
10.1038/s41560-018-0260-7
10.1080/10586458.1992.10504253
10.1115/1.4031503
10.1016/j.ijheatmasstransfer.2021.121999
10.1016/0017-9310(92)90258-T
10.1016/S0017-9310(01)00084-9
10.1016/j.ijheatmasstransfer.2017.04.131
10.1016/0010-2180(91)90055-G
10.1016/j.ijheatmasstransfer.2006.09.019
10.1016/j.ijheatmasstransfer.2010.02.046
10.3390/ma14216484
10.1016/j.ijheatmasstransfer.2021.122019
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.ijheatmasstransfer.2025.127041
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
ExternalDocumentID 10_1016_j_ijheatmasstransfer_2025_127041
S0017931025003825
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AAEDT
AAEDW
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABJNI
ABMAC
ABNUV
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEWK
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AFXIZ
AGCQF
AGHFR
AGRNS
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AHPOS
AIEXJ
AIIUN
AIKHN
AITUG
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSG
SSH
SSR
SST
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29J
6TJ
AAQXK
AAYXX
ABDMP
ABDPE
ABWVN
ABXDB
ACKIV
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEUPX
AFPUW
AGQPQ
AIGII
AKBMS
AKYEP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RIG
SAC
SET
T9H
VOH
WUQ
ZY4
ID FETCH-LOGICAL-c209t-87e3badff8f38572c08b2d604813d4a736ffb5552a7070ffe2238dbc0ebc014f3
IEDL.DBID .~1
ISSN 0017-9310
IngestDate Tue Aug 05 12:01:15 EDT 2025
Sat May 24 17:06:03 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Open-system evaporator
Surface Evolver
Receding meniscus
Alumina (ceramic) wick
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c209t-87e3badff8f38572c08b2d604813d4a736ffb5552a7070ffe2238dbc0ebc014f3
ORCID 0000-0002-7811-9971
0000-0002-3183-6877
0009-0005-2657-9510
ParticipantIDs crossref_primary_10_1016_j_ijheatmasstransfer_2025_127041
elsevier_sciencedirect_doi_10_1016_j_ijheatmasstransfer_2025_127041
PublicationCentury 2000
PublicationDate 2025-08-15
PublicationDateYYYYMMDD 2025-08-15
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-15
  day: 15
PublicationDecade 2020
PublicationTitle International journal of heat and mass transfer
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Boubaker, Lorgouilloux, Ouenzerfi, Harmand (b17) 2024; 228
Kittel (b22) 2004
(b28) 2024
Kim, Kaviany (b9) 2018; 117
Hu, Wang, Xu, Zhang (b12) 2020; 161
Jafari, Wits, Geurts (b11) 2018; 143
Ranjan, Patel, Garimella, Murthy (b26) 2012; 55
Ranjan, Murthy, Garimella (b24) 2009; 131
Carman (b33) 1956
Specht, Berwind, Eberl (b2) 2021; 23
Zhang, Li, Xu, Wang, Li, Yang (b15) 2022; 42
Sahraoui, Kaviany (b34) 1992; 35
Tao, Ni, Song, Shang, Wu, Zhu, Chen, Deng (b10) 2018; 3
Tao, Kaviany (b20) 1991; 86
Hwang, Nam, Fleming, Dussinger, Ju, Kaviany (b7) 2010; 53
Sun, Ye, Zou, Chen, Wang, Yuan, Liang, Qu, Binner, Bai (b16) 2023; 138
Gu, Yang, Liu, Zhou, Xu, Zhang (b21) 2024; 247
Leese, Bhurtun, Lee, Mattia (b29) 2013; 420
(b32) 2024
Modak, Kaviany, Hoenig, Bonner (b30) 1992; 76
Kim, Kaviany (b8) 2017; 112
Ranjan, Murthy, Garimella (b25) 2011; 54
Hwang, Kaviany, Anderson, Zuo (b6) 2007; 50
Peng, Hang, Chen, Duan, Huang (b14) 2025; 99
Ferreira, Furst, Daimaru, Sunada, Kaviany (b4) 2022; 183
Yang, Yang, Gao, Zhao, Liu, Zhang (b19) 2023; 230
Zhang, Shi, Han (b13) 2021; 14
Bukhari, Vardaxoglou, Whittow (b1) 2019; 9
Berti, Santos, Bazzo, Janssen, Hotza, Rambo (b18) 2011; 31
Kameya, Takahashi, Kaviany (b3) 2023; 216
Liter, Kaviany (b5) 2001; 44
Brakke (b23) 1992; 1
Forrest, Don, Hu, Buongiorno, McKrell (b27) 2016; 2
Kim, Ferreira, Jo, Kaviany (b31) 2021; 181
Yang (10.1016/j.ijheatmasstransfer.2025.127041_b19) 2023; 230
Kim (10.1016/j.ijheatmasstransfer.2025.127041_b31) 2021; 181
Boubaker (10.1016/j.ijheatmasstransfer.2025.127041_b17) 2024; 228
Forrest (10.1016/j.ijheatmasstransfer.2025.127041_b27) 2016; 2
Leese (10.1016/j.ijheatmasstransfer.2025.127041_b29) 2013; 420
Zhang (10.1016/j.ijheatmasstransfer.2025.127041_b13) 2021; 14
Jafari (10.1016/j.ijheatmasstransfer.2025.127041_b11) 2018; 143
Bukhari (10.1016/j.ijheatmasstransfer.2025.127041_b1) 2019; 9
Kim (10.1016/j.ijheatmasstransfer.2025.127041_b8) 2017; 112
Ranjan (10.1016/j.ijheatmasstransfer.2025.127041_b25) 2011; 54
Peng (10.1016/j.ijheatmasstransfer.2025.127041_b14) 2025; 99
Sahraoui (10.1016/j.ijheatmasstransfer.2025.127041_b34) 1992; 35
Kittel (10.1016/j.ijheatmasstransfer.2025.127041_b22) 2004
Modak (10.1016/j.ijheatmasstransfer.2025.127041_b30) 1992; 76
Zhang (10.1016/j.ijheatmasstransfer.2025.127041_b15) 2022; 42
Hwang (10.1016/j.ijheatmasstransfer.2025.127041_b7) 2010; 53
Ferreira (10.1016/j.ijheatmasstransfer.2025.127041_b4) 2022; 183
Specht (10.1016/j.ijheatmasstransfer.2025.127041_b2) 2021; 23
(10.1016/j.ijheatmasstransfer.2025.127041_b28) 2024
Carman (10.1016/j.ijheatmasstransfer.2025.127041_b33) 1956
Berti (10.1016/j.ijheatmasstransfer.2025.127041_b18) 2011; 31
Kim (10.1016/j.ijheatmasstransfer.2025.127041_b9) 2018; 117
(10.1016/j.ijheatmasstransfer.2025.127041_b32) 2024
Gu (10.1016/j.ijheatmasstransfer.2025.127041_b21) 2024; 247
Tao (10.1016/j.ijheatmasstransfer.2025.127041_b10) 2018; 3
Liter (10.1016/j.ijheatmasstransfer.2025.127041_b5) 2001; 44
Hu (10.1016/j.ijheatmasstransfer.2025.127041_b12) 2020; 161
Kameya (10.1016/j.ijheatmasstransfer.2025.127041_b3) 2023; 216
Ranjan (10.1016/j.ijheatmasstransfer.2025.127041_b26) 2012; 55
Tao (10.1016/j.ijheatmasstransfer.2025.127041_b20) 1991; 86
Sun (10.1016/j.ijheatmasstransfer.2025.127041_b16) 2023; 138
Hwang (10.1016/j.ijheatmasstransfer.2025.127041_b6) 2007; 50
Brakke (10.1016/j.ijheatmasstransfer.2025.127041_b23) 1992; 1
Ranjan (10.1016/j.ijheatmasstransfer.2025.127041_b24) 2009; 131
References_xml – volume: 86
  start-page: 47
  year: 1991
  end-page: 61
  ident: b20
  article-title: Burning rate of liquid supplied through a wick
  publication-title: Combust. Flame
– volume: 35
  start-page: 927
  year: 1992
  end-page: 943
  ident: b34
  article-title: Slip and no-slip boundary conditions at interface of porous, plain media
  publication-title: Int. J. Heat Mass Transfer
– year: 2024
  ident: b28
  article-title: microArch 3D Printers
– volume: 216
  year: 2023
  ident: b3
  article-title: Surface evaporation enhancement using porous metasurfaces: 3-D multiscale, open-system wick evaporators
  publication-title: Int. J. Heat Mass Transfer
– volume: 228
  year: 2024
  ident: b17
  article-title: Experimental study of a bilayer cermaic wick for the evaporator of a two-phase heat transfer device
  publication-title: Int. J. Heat Mass Transfer
– volume: 1
  start-page: 2
  year: 1992
  ident: b23
  article-title: The surface evolver
  publication-title: Exp. Math.
– volume: 143
  start-page: 403
  year: 2018
  end-page: 414
  ident: b11
  article-title: Metal 3D-printed wick structures for heat pipe application: Capillary performance analysis
  publication-title: Appl. Therm. Eng.
– volume: 44
  start-page: 4287
  year: 2001
  end-page: 4311
  ident: b5
  article-title: Pool-boiling CHF enhancement by modulated porous-layer coating: theory and experiment
  publication-title: Int. J. Heat Mass Transfer
– year: 2004
  ident: b22
  article-title: Introduction to Solid State Physics
– volume: 112
  start-page: 343
  year: 2017
  end-page: 353
  ident: b8
  article-title: Multi-artery heat-pipe spreader: monolayer-wick receding meniscus transitions and optimal performance
  publication-title: Int. J. Heat Mass Transfer
– volume: 14
  start-page: 6484
  year: 2021
  ident: b13
  article-title: Compressive and energy absorption properties of pyramidal lattice structures by various preparation methods
  publication-title: Materials
– volume: 183
  year: 2022
  ident: b4
  article-title: Analytic characterization and operational limits of a hybrid two-phase mechanically pumped fluid loop based on the capillary pumped loop
  publication-title: Int. J. Heat Mass Transfer
– volume: 117
  start-page: 1158
  year: 2018
  end-page: 1168
  ident: b9
  article-title: Flow-boiling canopy wick for extreme heat transfer
  publication-title: Int. J. Heat Mass Transfer
– volume: 55
  start-page: 586
  year: 2012
  end-page: 596
  ident: b26
  article-title: Wicking and thermal characteristics of micropillared structures for use in passive heat spreaders
  publication-title: Int. J. Heat Mass Transfer
– volume: 138
  start-page: 1
  year: 2023
  end-page: 16
  ident: b16
  article-title: A review on additive manufacturing of ceramic matrix composites
  publication-title: J. Mater. Sci. Technol.
– year: 2024
  ident: b32
  article-title: AL (Alumina) Ceramic Data Sheet
– volume: 99
  year: 2025
  ident: b14
  article-title: Super capillary performance of hybrid-structured wicks additively manufactured via laser powder bed fusion
  publication-title: Addit. Manuf.
– volume: 42
  start-page: 3351
  year: 2022
  end-page: 3373
  ident: b15
  article-title: A review of 3D printed porous ceramics
  publication-title: J. Eur. Ceram. Soc.
– volume: 50
  start-page: 1420
  year: 2007
  end-page: 1434
  ident: b6
  article-title: Modulated wick heat pipe
  publication-title: Int. J. Heat Mass Transfer
– volume: 161
  year: 2020
  ident: b12
  article-title: Development of a loop heat pipe with the 3D printed stainless stell wick in the application of thermal management
  publication-title: Int. J. Heat Mass Transfer
– volume: 131
  year: 2009
  ident: b24
  article-title: Analysis of the wicking and thin-film evaporation characteristics of microstructures
  publication-title: ASME J. Heat Transf.
– volume: 54
  start-page: 169
  year: 2011
  end-page: 179
  ident: b25
  article-title: A microscale model for thin-film evaporation in capillary wick structures
  publication-title: Int. J. Heat Mass Transfer
– volume: 181
  year: 2021
  ident: b31
  article-title: Flow-boiling canopy wick capillary-viscous limit
  publication-title: Int. J. Heat Mass Transfer
– volume: 9
  start-page: 2727
  year: 2019
  ident: b1
  article-title: A metasurfaces review: Definitions and applications
  publication-title: Appl. Sci.
– volume: 420
  start-page: 53
  year: 2013
  end-page: 58
  ident: b29
  article-title: Wetting behaviour of hydrophilic and hydrophobic nanostructured porous anodic alumina
  publication-title: Colloids Surfaces A: Physicochem. Eng. Asp.
– year: 1956
  ident: b33
  article-title: Flow of Gases Through Porous Media
– volume: 31
  start-page: 1076
  year: 2011
  end-page: 1081
  ident: b18
  article-title: Evaluation of permeability of ceramic wick structures for two phase heat transfer devices
  publication-title: Appl. Therm. Eng.
– volume: 230
  year: 2023
  ident: b19
  article-title: Experimental study on a dual compensation chamber loop heat pipe with a ceramic wick
  publication-title: Appl. Therm. Eng.
– volume: 3
  start-page: 1031
  year: 2018
  end-page: 1041
  ident: b10
  article-title: Solar-driven interfacial evaporation
  publication-title: Nat. Energy
– volume: 247
  year: 2024
  ident: b21
  article-title: Enhancing heat transfer performance of aluminum-based vapor chamber with a novel bionic wick structure fabricated using additive manufacturing
  publication-title: Appl. Therm. Eng.
– volume: 2
  year: 2016
  ident: b27
  article-title: Effect of surface oxidation on the onset of nucleate boiling in a materials test reactor coolant channel
  publication-title: J. Nucl. Eng. Radiat. Sci.
– volume: 76
  start-page: 301
  year: 1992
  end-page: 322
  ident: b30
  article-title: Numerical analysis of meniscus dynamics in monolayer-wick dropwise condensation
  publication-title: Numer. Heat Transf. A: Appl.
– volume: 23
  year: 2021
  ident: b2
  article-title: Adaptive wettability of a programmable metasurface
  publication-title: Adv. Eng. Mater.
– volume: 53
  start-page: 2662
  year: 2010
  end-page: 2669
  ident: b7
  article-title: Multi-artery heat pipe spreader: Experiment
  publication-title: Int. J. Heat Mass Transfer
– volume: 143
  start-page: 403
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2025.127041_b11
  article-title: Metal 3D-printed wick structures for heat pipe application: Capillary performance analysis
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2018.07.111
– year: 1956
  ident: 10.1016/j.ijheatmasstransfer.2025.127041_b33
– volume: 420
  start-page: 53
  year: 2013
  ident: 10.1016/j.ijheatmasstransfer.2025.127041_b29
  article-title: Wetting behaviour of hydrophilic and hydrophobic nanostructured porous anodic alumina
  publication-title: Colloids Surfaces A: Physicochem. Eng. Asp.
  doi: 10.1016/j.colsurfa.2012.12.010
– year: 2024
  ident: 10.1016/j.ijheatmasstransfer.2025.127041_b32
– volume: 31
  start-page: 1076
  year: 2011
  ident: 10.1016/j.ijheatmasstransfer.2025.127041_b18
  article-title: Evaluation of permeability of ceramic wick structures for two phase heat transfer devices
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2010.12.001
– volume: 131
  issue: 10
  year: 2009
  ident: 10.1016/j.ijheatmasstransfer.2025.127041_b24
  article-title: Analysis of the wicking and thin-film evaporation characteristics of microstructures
  publication-title: ASME J. Heat Transf.
  doi: 10.1115/1.3160538
– volume: 9
  start-page: 2727
  issue: 13
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2025.127041_b1
  article-title: A metasurfaces review: Definitions and applications
  publication-title: Appl. Sci.
  doi: 10.3390/app9132727
– volume: 54
  start-page: 169
  year: 2011
  ident: 10.1016/j.ijheatmasstransfer.2025.127041_b25
  article-title: A microscale model for thin-film evaporation in capillary wick structures
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2010.09.037
– volume: 161
  year: 2020
  ident: 10.1016/j.ijheatmasstransfer.2025.127041_b12
  article-title: Development of a loop heat pipe with the 3D printed stainless stell wick in the application of thermal management
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2020.120258
– volume: 117
  start-page: 1158
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2025.127041_b9
  article-title: Flow-boiling canopy wick for extreme heat transfer
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2017.10.079
– volume: 76
  start-page: 301
  issue: 5
  year: 1992
  ident: 10.1016/j.ijheatmasstransfer.2025.127041_b30
  article-title: Numerical analysis of meniscus dynamics in monolayer-wick dropwise condensation
  publication-title: Numer. Heat Transf. A: Appl.
  doi: 10.1080/10407782.2019.1627829
– volume: 230
  year: 2023
  ident: 10.1016/j.ijheatmasstransfer.2025.127041_b19
  article-title: Experimental study on a dual compensation chamber loop heat pipe with a ceramic wick
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2023.120750
– volume: 138
  start-page: 1
  year: 2023
  ident: 10.1016/j.ijheatmasstransfer.2025.127041_b16
  article-title: A review on additive manufacturing of ceramic matrix composites
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2022.06.039
– volume: 42
  start-page: 3351
  year: 2022
  ident: 10.1016/j.ijheatmasstransfer.2025.127041_b15
  article-title: A review of 3D printed porous ceramics
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2022.02.039
– volume: 228
  year: 2024
  ident: 10.1016/j.ijheatmasstransfer.2025.127041_b17
  article-title: Experimental study of a bilayer cermaic wick for the evaporator of a two-phase heat transfer device
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2024.125609
– volume: 216
  year: 2023
  ident: 10.1016/j.ijheatmasstransfer.2025.127041_b3
  article-title: Surface evaporation enhancement using porous metasurfaces: 3-D multiscale, open-system wick evaporators
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2023.124605
– volume: 55
  start-page: 586
  year: 2012
  ident: 10.1016/j.ijheatmasstransfer.2025.127041_b26
  article-title: Wicking and thermal characteristics of micropillared structures for use in passive heat spreaders
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2011.10.053
– volume: 247
  year: 2024
  ident: 10.1016/j.ijheatmasstransfer.2025.127041_b21
  article-title: Enhancing heat transfer performance of aluminum-based vapor chamber with a novel bionic wick structure fabricated using additive manufacturing
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2024.123076
– volume: 23
  year: 2021
  ident: 10.1016/j.ijheatmasstransfer.2025.127041_b2
  article-title: Adaptive wettability of a programmable metasurface
  publication-title: Adv. Eng. Mater.
  doi: 10.1002/adem.202001037
– volume: 3
  start-page: 1031
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2025.127041_b10
  article-title: Solar-driven interfacial evaporation
  publication-title: Nat. Energy
  doi: 10.1038/s41560-018-0260-7
– volume: 1
  start-page: 2
  year: 1992
  ident: 10.1016/j.ijheatmasstransfer.2025.127041_b23
  article-title: The surface evolver
  publication-title: Exp. Math.
  doi: 10.1080/10586458.1992.10504253
– volume: 2
  year: 2016
  ident: 10.1016/j.ijheatmasstransfer.2025.127041_b27
  article-title: Effect of surface oxidation on the onset of nucleate boiling in a materials test reactor coolant channel
  publication-title: J. Nucl. Eng. Radiat. Sci.
  doi: 10.1115/1.4031503
– volume: 181
  year: 2021
  ident: 10.1016/j.ijheatmasstransfer.2025.127041_b31
  article-title: Flow-boiling canopy wick capillary-viscous limit
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2021.121999
– volume: 35
  start-page: 927
  year: 1992
  ident: 10.1016/j.ijheatmasstransfer.2025.127041_b34
  article-title: Slip and no-slip boundary conditions at interface of porous, plain media
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/0017-9310(92)90258-T
– volume: 44
  start-page: 4287
  year: 2001
  ident: 10.1016/j.ijheatmasstransfer.2025.127041_b5
  article-title: Pool-boiling CHF enhancement by modulated porous-layer coating: theory and experiment
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/S0017-9310(01)00084-9
– volume: 112
  start-page: 343
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2025.127041_b8
  article-title: Multi-artery heat-pipe spreader: monolayer-wick receding meniscus transitions and optimal performance
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2017.04.131
– volume: 86
  start-page: 47
  year: 1991
  ident: 10.1016/j.ijheatmasstransfer.2025.127041_b20
  article-title: Burning rate of liquid supplied through a wick
  publication-title: Combust. Flame
  doi: 10.1016/0010-2180(91)90055-G
– year: 2004
  ident: 10.1016/j.ijheatmasstransfer.2025.127041_b22
– volume: 50
  start-page: 1420
  year: 2007
  ident: 10.1016/j.ijheatmasstransfer.2025.127041_b6
  article-title: Modulated wick heat pipe
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2006.09.019
– volume: 53
  start-page: 2662
  year: 2010
  ident: 10.1016/j.ijheatmasstransfer.2025.127041_b7
  article-title: Multi-artery heat pipe spreader: Experiment
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2010.02.046
– year: 2024
  ident: 10.1016/j.ijheatmasstransfer.2025.127041_b28
– volume: 14
  start-page: 6484
  issue: 21
  year: 2021
  ident: 10.1016/j.ijheatmasstransfer.2025.127041_b13
  article-title: Compressive and energy absorption properties of pyramidal lattice structures by various preparation methods
  publication-title: Materials
  doi: 10.3390/ma14216484
– volume: 99
  year: 2025
  ident: 10.1016/j.ijheatmasstransfer.2025.127041_b14
  article-title: Super capillary performance of hybrid-structured wicks additively manufactured via laser powder bed fusion
  publication-title: Addit. Manuf.
– volume: 183
  year: 2022
  ident: 10.1016/j.ijheatmasstransfer.2025.127041_b4
  article-title: Analytic characterization and operational limits of a hybrid two-phase mechanically pumped fluid loop based on the capillary pumped loop
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2021.122019
SSID ssj0017046
Score 2.4741125
Snippet A hexagonal-prism unit-cell based alumina evaporator wick with 150μm struts and 375μm wick thickness is designed and fabricated with 3D-printing using...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 127041
SubjectTerms Alumina (ceramic) wick
Open-system evaporator
Receding meniscus
Surface Evolver
Title 3D-printed, ceramic porous metasurface wick: Hexagonal-prism unit-cell capillary evaporator
URI https://dx.doi.org/10.1016/j.ijheatmasstransfer.2025.127041
Volume 246
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6yongRn7i-yMGDB-O2TdKm3mR1qS7uQRQFDyVJE9mFXZdaRS_-djN9-EAPHjyU0tKGMpl882U6D4T2Mk19LoUhGY1DwlSgSex4MWHONksRSOmVWa4XgzC5Zue3_HYGdZtcGAirrLG_wvQSres7nVqanelwCDm-oFw-GHGPuo0OZLCzCLT88O0jzMOPvCpZB9AYnp5H-58xXsMRIN7Y0dSipIkGKoQG_BB-xzL_d1P1xfz0ltBizRvxcfVpy2jGTFbQXBm_qR9X0R09IeCic_zxAGuTQ5d57Ki129fjsSnAD2ilNhgapx_hxLzIe6DgpKyCiJ_cuibgwsdaTqENUf6KzbMsSxw_5Gvound61U1I3TeB6MCLCwdwhiqZWSssFTwKtCdUkIVQGYZmTEY0tFZxzgMZuQVvrXEUQWRKe8YdPrN0HbUmDxOzgbCbQK1FZlmoJGNKxoFmJlRcWPdeTEUbxY2I0mlVHiNt4sZG6U_xpiDetBJvG3Ubmabfpjx1aP7nUTb_ZZQttABX4Cz2-TZqFfmT2XFso1C7pTrtotnjs34ygHP_8qb_Dln12ys
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV05T8MwFH6CVhwL4hQ3HhgYMCSxnTpsqIBSjk4gITFEtmOjVqJUJSD49_glKYdgYGDwEstW9Gx_7_PzOwB2c8NCoaSlOUtiynVkaOJ5MeVeNysZKRWUUa5X3Ti94ee34nYC2uNYGHSrrLG_wvQSresvh7U0D4e9Hsb44uYKUYkHzF90JqGJ2alEA5rHnYu0-_GY0AqqeB0EZBwwDXufbl69PoLeg2eqRckULSYJjcQBvsjy8Hdt9UUDnc3DXE0dyXH1dwswYQeLMFW6cJqnJbhjJxStdJ5C7hNjR1honnh27a_25MEWaAp0yliCtdOPSGpf1T2ycFomQiTP_mhTtOITo4ZYiWj0RuyLKrMcP46W4ebs9Lqd0rp0AjVRkBQe4yzTKndOOiZFKzKB1FEeY3IYlnPVYrFzWggRqZY_885ZzxJkrk1gfQu5YyvQGDwO7CoQv4bGyNzxWCvOtUoiw22shXR-XMLkGiRjEWXDKkNGNnYd62c_xZuheLNKvGvQHss0-7bqmQf0P8-y_i-z7MBMen11mV12uhcbMIs9aDsOxSY0itGz3fLko9Db9eZ6B_qi3Dk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D-printed%2C+ceramic+porous+metasurface+wick%3A+Hexagonal-prism+unit-cell+capillary+evaporator&rft.jtitle=International+journal+of+heat+and+mass+transfer&rft.au=Franceschetti%2C+Lorenzo&rft.au=Kameya%2C+Yuki&rft.au=Kaviany%2C+Massoud&rft.date=2025-08-15&rft.pub=Elsevier+Ltd&rft.issn=0017-9310&rft.volume=246&rft_id=info:doi/10.1016%2Fj.ijheatmasstransfer.2025.127041&rft.externalDocID=S0017931025003825
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0017-9310&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0017-9310&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0017-9310&client=summon