Texture-embedded Generative Adversarial Nets for the synthesis of 3D pulmonary nodules computed tomography images
Lung cancer is the second most common cancer and the leading cause of cancer-related death worldwide. Screening with low-dose computed tomography is crucial to detect early-stage lung cancer. Computer-aided diagnosis (CAD) can help clinicians to make diagnosis more quickly and more accurately. CAD b...
Saved in:
Published in | Expert systems with applications Vol. 274; p. 126860 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
15.05.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Lung cancer is the second most common cancer and the leading cause of cancer-related death worldwide. Screening with low-dose computed tomography is crucial to detect early-stage lung cancer. Computer-aided diagnosis (CAD) can help clinicians to make diagnosis more quickly and more accurately. CAD based on deep learning algorithms is gaining attention. These algorithms rely on large amount of training data, which are barely available in the field of medical imaging, therefore data augmentation becomes essential. Generative Adversarial Nets (GAN) is an emerging solution for data augmentation and has been successfully used to generate realistic pulmonary nodules. In this study, we developed Texture-embedded GAN, which took the texture of nodule into consideration by introducing a loss function based on Gabor filters. We trained Texture-embedded GAN with images of 1075 nodule from the LIDC-IDRI dataset. Visual Turing Test showed that Texture-embedded GAN could generate images realistic enough to deceive expert radiologists. Data augmentation with Texture-embedded GAN improved the performance of ResNet-based classifier, which could distinguish benign and malignant nodules with 0.883 accuracy and 0.950 AUC. It was concluded that Texture-embedded GAN could generate realistic pulmonary nodules with sufficient diversity and was useful for data augmentation. |
---|---|
AbstractList | Lung cancer is the second most common cancer and the leading cause of cancer-related death worldwide. Screening with low-dose computed tomography is crucial to detect early-stage lung cancer. Computer-aided diagnosis (CAD) can help clinicians to make diagnosis more quickly and more accurately. CAD based on deep learning algorithms is gaining attention. These algorithms rely on large amount of training data, which are barely available in the field of medical imaging, therefore data augmentation becomes essential. Generative Adversarial Nets (GAN) is an emerging solution for data augmentation and has been successfully used to generate realistic pulmonary nodules. In this study, we developed Texture-embedded GAN, which took the texture of nodule into consideration by introducing a loss function based on Gabor filters. We trained Texture-embedded GAN with images of 1075 nodule from the LIDC-IDRI dataset. Visual Turing Test showed that Texture-embedded GAN could generate images realistic enough to deceive expert radiologists. Data augmentation with Texture-embedded GAN improved the performance of ResNet-based classifier, which could distinguish benign and malignant nodules with 0.883 accuracy and 0.950 AUC. It was concluded that Texture-embedded GAN could generate realistic pulmonary nodules with sufficient diversity and was useful for data augmentation. |
ArticleNumber | 126860 |
Author | Ye, Ying-Zhen Chen, Chung-Ming Lin, Mong-Wei Huang, Wei-Chieh Chiu, Ling-Ying Chen, Yi-Chang Lee, Chi-En Yang, Ai-Su Ou, De-Xiang Chen, Li-Wei Chang, Yeun-Chung |
Author_xml | – sequence: 1 givenname: Yi-Chang orcidid: 0000-0003-1380-3737 surname: Chen fullname: Chen, Yi-Chang email: d06548013@ntu.edu.tw organization: Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan – sequence: 2 givenname: Ling-Ying orcidid: 0000-0001-7887-219X surname: Chiu fullname: Chiu, Ling-Ying email: f98546021@ntu.edu.tw organization: Institute of Medicine, Chung Shan Medical University, No. 110, Sec. 1, Jianguo N. Rd., Taichung, Taiwan – sequence: 3 givenname: Chi-En orcidid: 0000-0001-5963-2860 surname: Lee fullname: Lee, Chi-En email: d00548004@ntu.edu.tw organization: Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan – sequence: 4 givenname: Wei-Chieh surname: Huang fullname: Huang, Wei-Chieh email: r07528008@ntu.edu.tw organization: Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan – sequence: 5 givenname: Li-Wei orcidid: 0000-0002-3618-0256 surname: Chen fullname: Chen, Li-Wei email: f04548034@ntu.edu.tw organization: Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan – sequence: 6 givenname: Mong-Wei orcidid: 0000-0003-1268-3729 surname: Lin fullname: Lin, Mong-Wei email: mwlin@ntu.edu.tw organization: Department of Surgery, National Taiwan University Hospital, No. 1, Sec. 1, Jen-Ai Rd., Taipei, Taiwan – sequence: 7 givenname: Ai-Su orcidid: 0009-0003-0290-5874 surname: Yang fullname: Yang, Ai-Su email: f05548052@ntu.edu.tw organization: Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan – sequence: 8 givenname: Ying-Zhen surname: Ye fullname: Ye, Ying-Zhen email: f07528027@ntu.edu.tw organization: Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan – sequence: 9 givenname: De-Xiang orcidid: 0009-0002-3668-6609 surname: Ou fullname: Ou, De-Xiang email: d10528013@ntu.edu.tw organization: Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan – sequence: 10 givenname: Yeun-Chung orcidid: 0000-0001-9984-5713 surname: Chang fullname: Chang, Yeun-Chung email: ycc5566@ntu.edu.tw organization: Department of Medical Imaging, National Taiwan University Hospital, No. 1, Sec. 1, Jen-Ai Rd., Taipei, Taiwan – sequence: 11 givenname: Chung-Ming orcidid: 0000-0002-0023-5817 surname: Chen fullname: Chen, Chung-Ming email: chung@ntu.edu.tw organization: Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan |
BookMark | eNp9kLFOwzAURT0UibbwA0z-gQTbSWNHYqkKtEgVLGW2XPuldZXEwXYK-XtSlRnpSXc6V_edGZq0rgWEHihJKaHF4ymF8K1SRtgipawQBZmgKSkXPMkpz2_RLIQTIZQTwqfoawc_sfeQQLMHY8DgNbTgVbRnwEtzBh-Ut6rG7xADrpzH8Qg4DO0YwQbsKpw9466vG9cqP-DWmb6GgLVruj6OddE17uBVdxywbdQBwh26qVQd4P4v5-jz9WW32iTbj_XbarlNNCNlTJjRGSd7RgwrFyUVipVQ0EzwKqMqF6JkYnx2T4QWosqFVpxVZDyjS8ozpbI5Ytde7V0IHirZ-XGBHyQl8iJKnuRFlLyIkldRI_R0hWBcdrbgZdAWWg3GetBRGmf_w38B28p3Ig |
Cites_doi | 10.1007/BF00341922 10.1016/0031-3203(90)90135-8 10.7557/18.6803 10.1155/2019/6051939 10.1001/jama.2021.0377 10.1056/NEJMoa1102873 10.7326/M13-2771 10.1109/TMI.2021.3077089 10.1007/s12194-020-00564-5 10.1118/1.3528204 10.1016/j.procs.2015.03.149 10.1109/TSMC.1973.4309314 |
ContentType | Journal Article |
Copyright | 2025 Elsevier Ltd |
Copyright_xml | – notice: 2025 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.eswa.2025.126860 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
ExternalDocumentID | 10_1016_j_eswa_2025_126860 S0957417425004828 |
GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AATTM AAXKI AAXUO AAYFN ABBOA ABFNM ABJNI ABMAC ABMVD ABUCO ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AFJKZ AFTJW AFXIZ AGCQF AGHFR AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AKRWK ALEQD ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APLSM APXCP AXJTR BJAXD BKOJK BLXMC BNPGV BNSAS CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SSH SSL SST SSV SSZ T5K TN5 ~G- 29G AAAKG AAQXK AAYWO AAYXX ABKBG ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEUPX AFPUW AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- RIG SBC SET WUQ XPP ZMT |
ID | FETCH-LOGICAL-c209t-2dc370b20d295918a29e61387f31a488928016b08c88f48ca72f02f0dc9173aa3 |
IEDL.DBID | .~1 |
ISSN | 0957-4174 |
IngestDate | Tue Jul 01 05:10:41 EDT 2025 Sat May 03 15:57:28 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Data augmentation Computed tomography Generative adversarial nets Lung cancer Computer-aided diagnosis |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c209t-2dc370b20d295918a29e61387f31a488928016b08c88f48ca72f02f0dc9173aa3 |
ORCID | 0000-0002-3618-0256 0009-0003-0290-5874 0000-0002-0023-5817 0000-0001-9984-5713 0000-0003-1380-3737 0000-0001-5963-2860 0009-0002-3668-6609 0000-0001-7887-219X 0000-0003-1268-3729 |
ParticipantIDs | crossref_primary_10_1016_j_eswa_2025_126860 elsevier_sciencedirect_doi_10_1016_j_eswa_2025_126860 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-05-15 |
PublicationDateYYYYMMDD | 2025-05-15 |
PublicationDate_xml | – month: 05 year: 2025 text: 2025-05-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Expert systems with applications |
PublicationYear | 2025 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Sung, Ferlay, Siegel, Laversanne, Soerjomataram, Jemal, Bray (b0170) 2021; 71 Wang, Zhang, Zhang, Gao, Huang, Wang, Liu (b0195) 2021; 40 Lim, Guntoro (b0100) 2002 Heusel, Ramsauer, Unterthiner, Nessler, Hochreiter (b0070) 2017; 30 Hussain, Gimenez, Yi, Rubin (b0075) 2017 Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair (b0050) 2014 Niu, Li, Wang, Lin (b0125) 2020; 17 Surveillance, Program (b0175) 2024 Sermanet, Eigen, Zhang, Mathieu, Fergus, LeCun (b0145) 2013 Zhu, Park, Isola, Efros (b0215) 2017 Chuquicusma, Hussein, Burt, Bagci (b0035) 2018 Karras, T. (2017). Progressive Growing of GANs for Improved Quality, Stability, and Variation. arXiv preprint arXiv:1710.10196. Chen, Lu, Zhang (b0025) 2004 He, Zhang, Ren, Sun (b0065) 2016 Turner (b0180) 1986; 55 Jonas, Reuland, Reddy, Nagle, Clark, Weber (b0085) 2021; 325 Isola, Zhu, Zhou, Efros (b0080) 2017 Han, Kitamura, Kudo, Ichinose, Rundo, Furukawa (b0055) 2019 Haralick, Shanmugam, Dinstein (b0060) 1973; 6 Moyer, US Preventive Services Task Force (b0115) 2014; 160 Yu, Lin, Yang, Shen, Lu, Huang (b0200) 2019 Chollet (b0030) 2017 Simonyan, Zisserman (b0155) 2014 Armato, McLennan, Bidaut, McNitt-Gray, Meyer, Reeves, Clarke (b0020) 2011; 38 Sundgaard, J. V., Hannemose, M. R., Laugesen, S., Bray, P., Harte, J., Kamide, Y., ... & Christensen, A. N. (2022). Multi-modal data generation with a deep metric variational autoencoder. arXiv preprint arXiv:2202.03434. 395-409. Shi, Caballero, Huszár, Totz, Aitken, Bishop (b0150) 2016 Krizhevsky, Sutskever, Hinton (b0095) 2012 Onishi, Teramoto, Tsujimoto, Tsukamoto, Saito, Toyama (b0135) 2020; 13 Sun, J., Chen, Y., Dong, J., & Zhong, G. (2020). Progressively unfreezing perceptual GAN. arXiv preprint arXiv:2006.10250. Al-Rfou R, Alain G, Almahairi A, Angermueller C, Bahdanau D, Ballas N, Bengio Y (2016) Theano: a python framework for fastcomputation of mathematical expressions. Gabor (b0040) 1946; 93 Wang, He (b0190) 1990; 23 National Lung Screening Trial Research Team. (2011). Reduced lung-cancer mortality with low-dose computed tomographic screening. Zeiler, Fergus (b0210) 2013 Onishi, Teramoto, Tsujimoto, Tsukamoto, Saito, Toyama (b0130) 2019; 2019 Goodfellow, I. (2016). Nips 2016 tutorial: Generative adversarial networks. arXiv preprint arXiv:1701.00160. Metz, Ganter, Lorenzen, van Marwick, Holzapfel, Herrmann, Beer (b0105) 2015; 10 van der Maaten, Hinton (b0185) 2008; 9 Abhishree, Latha, Manikantan, Ramachandran (b0005) 2015; 45 Ronneberger, Fischer, Brox (b0140) 2015 Zareapoor, Celebi, Yang (b0205) 2019; 74 Alekseev, Bobe (b0010) 2019 Miyato, T., Kataoka, T., Koyama, M., & Yoshida, Y. (2018). Spectral normalization for generative adversarial networks. arXiv preprint arXiv:1802.05957. Wang (10.1016/j.eswa.2025.126860_b0195) 2021; 40 Zhu (10.1016/j.eswa.2025.126860_b0215) 2017 Hussain (10.1016/j.eswa.2025.126860_b0075) 2017 Zareapoor (10.1016/j.eswa.2025.126860_b0205) 2019; 74 Niu (10.1016/j.eswa.2025.126860_b0125) 2020; 17 Yu (10.1016/j.eswa.2025.126860_b0200) 2019 Heusel (10.1016/j.eswa.2025.126860_b0070) 2017; 30 Alekseev (10.1016/j.eswa.2025.126860_b0010) 2019 Zeiler (10.1016/j.eswa.2025.126860_b0210) 2013 Chuquicusma (10.1016/j.eswa.2025.126860_b0035) 2018 Haralick (10.1016/j.eswa.2025.126860_b0060) 1973; 6 Chollet (10.1016/j.eswa.2025.126860_b0030) 2017 Isola (10.1016/j.eswa.2025.126860_b0080) 2017 10.1016/j.eswa.2025.126860_b0160 Moyer (10.1016/j.eswa.2025.126860_b0115) 2014; 160 10.1016/j.eswa.2025.126860_b0120 Sermanet (10.1016/j.eswa.2025.126860_b0145) 2013 10.1016/j.eswa.2025.126860_b0165 Turner (10.1016/j.eswa.2025.126860_b0180) 1986; 55 10.1016/j.eswa.2025.126860_b0045 Sung (10.1016/j.eswa.2025.126860_b0170) 2021; 71 Armato (10.1016/j.eswa.2025.126860_b0020) 2011; 38 Gabor (10.1016/j.eswa.2025.126860_b0040) 1946; 93 Shi (10.1016/j.eswa.2025.126860_b0150) 2016 Ronneberger (10.1016/j.eswa.2025.126860_b0140) 2015 He (10.1016/j.eswa.2025.126860_b0065) 2016 Surveillance (10.1016/j.eswa.2025.126860_b0175) 2024 Onishi (10.1016/j.eswa.2025.126860_b0135) 2020; 13 Goodfellow (10.1016/j.eswa.2025.126860_b0050) 2014 Onishi (10.1016/j.eswa.2025.126860_b0130) 2019; 2019 van der Maaten (10.1016/j.eswa.2025.126860_b0185) 2008; 9 Lim (10.1016/j.eswa.2025.126860_b0100) 2002 Krizhevsky (10.1016/j.eswa.2025.126860_b0095) 2012 10.1016/j.eswa.2025.126860_b0090 Simonyan (10.1016/j.eswa.2025.126860_b0155) 2014 Han (10.1016/j.eswa.2025.126860_b0055) 2019 Wang (10.1016/j.eswa.2025.126860_b0190) 1990; 23 Abhishree (10.1016/j.eswa.2025.126860_b0005) 2015; 45 Chen (10.1016/j.eswa.2025.126860_b0025) 2004 Metz (10.1016/j.eswa.2025.126860_b0105) 2015; 10 10.1016/j.eswa.2025.126860_b0110 Jonas (10.1016/j.eswa.2025.126860_b0085) 2021; 325 10.1016/j.eswa.2025.126860_b0015 |
References_xml | – volume: 9 start-page: 2579 year: 2008 end-page: 2605 ident: b0185 article-title: Visualizing data using t-SNE – start-page: 1800 year: 2017 end-page: 1807 ident: b0030 publication-title: In: Proceedings of the IEEE conference on computer vision and pattern recognition – start-page: 770 year: 2016 end-page: 778 ident: b0065 publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition – start-page: 1 year: 2019 end-page: 4 ident: b0010 publication-title: 2019 International Conference on Engineering and Telecommunication (EnT) – start-page: 240 year: 2018 end-page: 244 ident: b0035 publication-title: 2018 IEEE 15th international symposium on biomedical imaging (ISBI 2018) – reference: National Lung Screening Trial Research Team. (2011). Reduced lung-cancer mortality with low-dose computed tomographic screening. – volume: 55 start-page: 71 year: 1986 end-page: 82 ident: b0180 article-title: Texture discrimination by Gabor functions – volume: 325 start-page: 971 year: 2021 end-page: 987 ident: b0085 article-title: Screening for lung cancer with low-dose computed tomography: updated evidence report and systematic review for the US preventive services task force – year: 2013 ident: b0145 publication-title: Computing Research Repository. – reference: Sun, J., Chen, Y., Dong, J., & Zhong, G. (2020). Progressively unfreezing perceptual GAN. arXiv preprint arXiv:2006.10250. – volume: 45 start-page: 312 year: 2015 end-page: 321 ident: b0005 article-title: Face recognition using Gabor filter based feature extraction with anisotropic diffusion as a pre-processing technique – reference: Al-Rfou R, Alain G, Almahairi A, Angermueller C, Bahdanau D, Ballas N, Bengio Y (2016) Theano: a python framework for fastcomputation of mathematical expressions. – volume: 10 year: 2015 ident: b0105 article-title: Multiparametric MR and PET imaging of intratumoral biological heterogeneity in patients with metastatic lung cancer using voxel-by-voxel analysis – reference: Goodfellow, I. (2016). Nips 2016 tutorial: Generative adversarial networks. arXiv preprint arXiv:1701.00160. – start-page: 27 year: 2014 ident: b0050 publication-title: Advances in neural information processing systems – volume: 17 start-page: 1611 year: 2020 end-page: 1622 ident: b0125 article-title: Defect image sample generation with GAN for improving defect recognition – volume: 38 start-page: 915 year: 2011 end-page: 931 ident: b0020 article-title: The lung image database consortium (LIDC) and image database resource initiative (IDRI): A completed reference database of lung nodules on CT scans – volume: 13 start-page: 160 year: 2020 end-page: 169 ident: b0135 article-title: Investigation of pulmonary nodule classification using multi-scale residual network enhanced with 3DGAN-synthesized volumes – volume: 40 start-page: 2343 year: 2021 end-page: 2353 ident: b0195 article-title: Realistic lung nodule synthesis with multi-target co-guided adversarial mechanism – start-page: 234 year: 2015 end-page: 241 ident: b0140 article-title: U-net: Convolutional networks for biomedical image segmentation publication-title: Medical image computing and computer-assisted intervention–MICCAI 2015: 18th international conference, Munich, Germany, October 5-9, 2015, proceedings, part III 18 – volume: 30 year: 2017 ident: b0070 article-title: Gans trained by a two time-scale update rule converge to a local nash equilibrium – year: 2014 ident: b0155 – volume: 74 start-page: 191 year: 2019 end-page: 200 ident: b0205 article-title: Diverse adversarial network for image super-resolution – volume: 71 start-page: 209 year: 2021 end-page: 249 ident: b0170 article-title: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries – volume: 93 start-page: 429 year: 1946 end-page: 457 ident: b0040 article-title: Theory of communication – start-page: 273 year: 2004 end-page: 278 ident: b0025 article-title: Eects of different Gabor filters parameters on image retrieval by texture publication-title: 10th International Multimedia Modelling Conference, 2004. Proceeding – start-page: 729 year: 2019 end-page: 737 ident: b0055 article-title: Synthesizing diverse lung nodules wherever massively: 3D multi-conditional GAN-based CT image augmentation for object detection – start-page: 1874 year: 2016 end-page: 1883 ident: b0150 publication-title: In Proceedings of the IEEE conference on computer vision and pattern recognition – start-page: 1106 year: 2012 end-page: 1114 ident: b0095 publication-title: Advances in neural information processing systems 25: proceedings of the 26th annual conference on neural information processing systems – volume: 2019 year: 2019 ident: b0130 article-title: Automated pulmonary nodule classification in computed tomography images using a deep convolutional neural network trained by generative adversarial networks publication-title: BioMed research international – volume: 23 start-page: 905 year: 1990 end-page: 910 ident: b0190 article-title: Texture classification using texture spectrum – start-page: 2223 year: 2017 end-page: 2232 ident: b0215 publication-title: In Proceedings of the IEEE international conference on computer vision – year: 2017 ident: b0075 publication-title: AMIA annual symposium proceedings – start-page: 1125 year: 2017 end-page: 1134 ident: b0080 publication-title: In Proceedings of the IEEE conference on computer vision and pattern recognition – reference: Miyato, T., Kataoka, T., Koyama, M., & Yoshida, Y. (2018). Spectral normalization for generative adversarial networks. arXiv preprint arXiv:1802.05957. – volume: 6 start-page: 610 year: 1973 end-page: 621 ident: b0060 article-title: Textural features for image classification – reference: Sundgaard, J. V., Hannemose, M. R., Laugesen, S., Bray, P., Harte, J., Kamide, Y., ... & Christensen, A. N. (2022). Multi-modal data generation with a deep metric variational autoencoder. arXiv preprint arXiv:2202.03434. – year: 2013 ident: b0210 publication-title: Computer Research Repository. – start-page: 4471 year: 2019 end-page: 4480 ident: b0200 publication-title: Proceedings of the IEEE/CVF international conference on computer vision – start-page: 451 year: 2002 end-page: 455 ident: b0100 article-title: Car recognition using Gabor filter feature extraction publication-title: Asia-Pacific Conference on Circuits and Systems – reference: Karras, T. (2017). Progressive Growing of GANs for Improved Quality, Stability, and Variation. arXiv preprint arXiv:1710.10196. – volume: 160 start-page: 330 year: 2014 end-page: 338 ident: b0115 article-title: Screening for lung cancer: US Preventive Services Task Force recommendation statement – reference: 395-409. – year: 2024 ident: b0175 article-title: U.S. Department of health and human services – ident: 10.1016/j.eswa.2025.126860_b0090 – volume: 9 start-page: 2579 issue: 11 year: 2008 ident: 10.1016/j.eswa.2025.126860_b0185 article-title: Visualizing data using t-SNE publication-title: Journal of machine learning research – ident: 10.1016/j.eswa.2025.126860_b0015 – volume: 10 issue: 7 year: 2015 ident: 10.1016/j.eswa.2025.126860_b0105 article-title: Multiparametric MR and PET imaging of intratumoral biological heterogeneity in patients with metastatic lung cancer using voxel-by-voxel analysis publication-title: PLoS One1 – volume: 30 year: 2017 ident: 10.1016/j.eswa.2025.126860_b0070 article-title: Gans trained by a two time-scale update rule converge to a local nash equilibrium publication-title: Advances in neural information processing systems – volume: 93 start-page: 429 issue: 26 year: 1946 ident: 10.1016/j.eswa.2025.126860_b0040 article-title: Theory of communication publication-title: Journal of the Institution of Electrical Engineers – start-page: 770 year: 2016 ident: 10.1016/j.eswa.2025.126860_b0065 article-title: Deep residual learning for image recognition – volume: 55 start-page: 71 issue: 2 year: 1986 ident: 10.1016/j.eswa.2025.126860_b0180 article-title: Texture discrimination by Gabor functions publication-title: Biological cybernetics doi: 10.1007/BF00341922 – volume: 23 start-page: 905 year: 1990 ident: 10.1016/j.eswa.2025.126860_b0190 article-title: Texture classification using texture spectrum publication-title: Pattern Recognition doi: 10.1016/0031-3203(90)90135-8 – year: 2014 ident: 10.1016/j.eswa.2025.126860_b0155 – ident: 10.1016/j.eswa.2025.126860_b0165 doi: 10.7557/18.6803 – start-page: 27 year: 2014 ident: 10.1016/j.eswa.2025.126860_b0050 article-title: Generative adversarial nets publication-title: Advances in neural information processing systems – volume: 2019 year: 2019 ident: 10.1016/j.eswa.2025.126860_b0130 article-title: Automated pulmonary nodule classification in computed tomography images using a deep convolutional neural network trained by generative adversarial networks publication-title: BioMed research international doi: 10.1155/2019/6051939 – start-page: 234 year: 2015 ident: 10.1016/j.eswa.2025.126860_b0140 article-title: U-net: Convolutional networks for biomedical image segmentation – start-page: 1874 year: 2016 ident: 10.1016/j.eswa.2025.126860_b0150 article-title: Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network – ident: 10.1016/j.eswa.2025.126860_b0160 – volume: 325 start-page: 971 issue: 10 year: 2021 ident: 10.1016/j.eswa.2025.126860_b0085 article-title: Screening for lung cancer with low-dose computed tomography: updated evidence report and systematic review for the US preventive services task force publication-title: Journal of the American Medical Association doi: 10.1001/jama.2021.0377 – start-page: 1106 year: 2012 ident: 10.1016/j.eswa.2025.126860_b0095 article-title: Imagenet classification with deep convolutional neural networks – ident: 10.1016/j.eswa.2025.126860_b0110 – volume: 17 start-page: 1611 issue: 3 year: 2020 ident: 10.1016/j.eswa.2025.126860_b0125 article-title: Defect image sample generation with GAN for improving defect recognition publication-title: IEEE Transactions on Automation Science and Engineering – start-page: 273 year: 2004 ident: 10.1016/j.eswa.2025.126860_b0025 article-title: Eects of different Gabor filters parameters on image retrieval by texture – start-page: 240 year: 2018 ident: 10.1016/j.eswa.2025.126860_b0035 article-title: How to fool radiologists with generative adversarial networks? A visual turing test for lung cancer diagnosis – start-page: 451 year: 2002 ident: 10.1016/j.eswa.2025.126860_b0100 article-title: Car recognition using Gabor filter feature extraction – start-page: 1800 year: 2017 ident: 10.1016/j.eswa.2025.126860_b0030 article-title: Xception: Deep learning with depthwise separable convolutions – volume: 71 start-page: 209 issue: 3 year: 2021 ident: 10.1016/j.eswa.2025.126860_b0170 article-title: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries publication-title: CA: A Cancer Journal For Clinicians – start-page: 4471 year: 2019 ident: 10.1016/j.eswa.2025.126860_b0200 article-title: Free-form image inpainting with gated convolution – start-page: 729 year: 2019 ident: 10.1016/j.eswa.2025.126860_b0055 article-title: Synthesizing diverse lung nodules wherever massively: 3D multi-conditional GAN-based CT image augmentation for object detection – start-page: 2223 year: 2017 ident: 10.1016/j.eswa.2025.126860_b0215 article-title: Unpaired image-to-image translation using cycle-consistent adversarial networks – start-page: 1 year: 2019 ident: 10.1016/j.eswa.2025.126860_b0010 article-title: GaborNet: Gabor filters with learnable parameters in deep convolutional neural network – ident: 10.1016/j.eswa.2025.126860_b0120 doi: 10.1056/NEJMoa1102873 – year: 2024 ident: 10.1016/j.eswa.2025.126860_b0175 – ident: 10.1016/j.eswa.2025.126860_b0045 – volume: 160 start-page: 330 issue: 5 year: 2014 ident: 10.1016/j.eswa.2025.126860_b0115 article-title: Screening for lung cancer: US Preventive Services Task Force recommendation statement publication-title: Annals of internal medicine doi: 10.7326/M13-2771 – volume: 40 start-page: 2343 issue: 9 year: 2021 ident: 10.1016/j.eswa.2025.126860_b0195 article-title: Realistic lung nodule synthesis with multi-target co-guided adversarial mechanism publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/TMI.2021.3077089 – year: 2013 ident: 10.1016/j.eswa.2025.126860_b0210 article-title: Visualizing and understanding convolutional networks publication-title: Computer Research Repository. – volume: 74 start-page: 191 year: 2019 ident: 10.1016/j.eswa.2025.126860_b0205 article-title: Diverse adversarial network for image super-resolution publication-title: Signal Processing: Image Communication – start-page: 1125 year: 2017 ident: 10.1016/j.eswa.2025.126860_b0080 article-title: Image-to-image translation with conditional adversarial networks – volume: 13 start-page: 160 year: 2020 ident: 10.1016/j.eswa.2025.126860_b0135 article-title: Investigation of pulmonary nodule classification using multi-scale residual network enhanced with 3DGAN-synthesized volumes publication-title: Radiological physics and technology doi: 10.1007/s12194-020-00564-5 – volume: 38 start-page: 915 issue: 2 year: 2011 ident: 10.1016/j.eswa.2025.126860_b0020 article-title: The lung image database consortium (LIDC) and image database resource initiative (IDRI): A completed reference database of lung nodules on CT scans publication-title: Medical physics doi: 10.1118/1.3528204 – year: 2017 ident: 10.1016/j.eswa.2025.126860_b0075 article-title: Differential data augmentation techniques for medical imaging classification tasks – volume: 45 start-page: 312 year: 2015 ident: 10.1016/j.eswa.2025.126860_b0005 article-title: Face recognition using Gabor filter based feature extraction with anisotropic diffusion as a pre-processing technique publication-title: Procedia Computer Science doi: 10.1016/j.procs.2015.03.149 – year: 2013 ident: 10.1016/j.eswa.2025.126860_b0145 article-title: Overfeat: Integrated recognition, localization and detection using convolutional networks publication-title: Computing Research Repository. – volume: 6 start-page: 610 year: 1973 ident: 10.1016/j.eswa.2025.126860_b0060 article-title: Textural features for image classification publication-title: IEEE Trans Syst Man Cybern SMC-3 doi: 10.1109/TSMC.1973.4309314 |
SSID | ssj0017007 |
Score | 2.4611216 |
Snippet | Lung cancer is the second most common cancer and the leading cause of cancer-related death worldwide. Screening with low-dose computed tomography is crucial to... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 126860 |
SubjectTerms | Computed tomography Computer-aided diagnosis Data augmentation Generative adversarial nets Lung cancer |
Title | Texture-embedded Generative Adversarial Nets for the synthesis of 3D pulmonary nodules computed tomography images |
URI | https://dx.doi.org/10.1016/j.eswa.2025.126860 |
Volume | 274 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvXjxLdZH2YM3SZvs5nksVamKvdhCb2FfgUib1CZBevG3O5tNREE8CCEhIUvCzOw3s8nMNwhd24IFlAplSZ3l4IYitLgDO5fppAsnlELp75DPU38ydx8X3qKDxm0tjE6rbLDfYHqN1s2VYSPN4TpNhy8QHIA7hKWdp82Q6IJf1w20lQ8-vtI8NP1cYPj2Akvf3RTOmBwvVbxr7iHiDRzihzVN5S_O6ZvDuT9Ae02kiEfmZQ5RR2VHaL_twoCbSXmM3maAr9VGWWrFFcCIxIZKWuMYrvstF0xbGZ6qssAQo2KI-XCxzeBQpAXOE0xv8bpagkGyzRZnuayWqsDCPEniMl81vNY4XQH8FCdofn83G0-sppGCJYgdlRaRggY2J7YkkRc5ISORAjceBgl1GMzgiICf8rkNmgoT0BcLSGLDJgUs5ihj9BR1szxTZwjzxOeJywFfGXcjRzIiuFBEQRTCqZK0h25aCcZrw5cRt4lkr7GWd6zlHRt595DXCjn-ofUYAP2Pcef_HHeBdvWZ_vvveJeoW24qdQVBRcn7tdX00c7o4Wky_QSWIs1u |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9tAEB6S9NBc0kda8uhjDu2pKJZ2JUs69BCSGqeJfakNvqn7EjjYsuOVCb70T_UPdtZalRZCD4WAkEBipd1Po29mxbczAB9CJVLOlQm0UznEmcoCGdEuFk50EWVaGfcfcjDs9sfx10ky2YGf7VoYJ6v03N9w-pat_ZmOR7OznE473yg4IHdIU7vEmSHLvLLy2mzuad5mP19d0kv-yFjvy-iiH_jSAoFiYV4HTCuehpKFmuVJHmWC5YYcW5aWPBJk0zkj5u7KkPqelTQCkbIypE0rmt5wITjddxeexEQXrmzC2Y_fuhKX7y5tEvylgeueX6nTiMqMvXfJjlhyFrFuts2L-YA3_MPD9Z7DgQ9N8bwZ_QvYMdVLeNaWfUDPAodwNyJCX69MYObSEG9pbHJXO-LEbYFnK5xZ49DUFikoRgoy0W4qOtipxUWJ_BKX6xl9AWK1wWqh1zNjUTVP0lgv5j6RNk7nxHf2FYwfBd7XsFctKnMEKMuuLGNJhC5knEdaMCWVYYbCHsmN5sfwqUWwWDYJOopWuXZbOLwLh3fR4H0MSQty8ZeZFeRB_tHu5D_bvYen_dHgpri5Gl6fwr674qQHUfIG9urV2ryliKaW77YWhPD9sU32FxS3BwU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Texture-embedded+Generative+Adversarial+Nets+for+the+synthesis+of+3D+pulmonary+nodules+computed+tomography+images&rft.jtitle=Expert+systems+with+applications&rft.au=Chen%2C+Yi-Chang&rft.au=Chiu%2C+Ling-Ying&rft.au=Lee%2C+Chi-En&rft.au=Huang%2C+Wei-Chieh&rft.date=2025-05-15&rft.issn=0957-4174&rft.volume=274&rft.spage=126860&rft_id=info:doi/10.1016%2Fj.eswa.2025.126860&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2025_126860 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |