Texture-embedded Generative Adversarial Nets for the synthesis of 3D pulmonary nodules computed tomography images

Lung cancer is the second most common cancer and the leading cause of cancer-related death worldwide. Screening with low-dose computed tomography is crucial to detect early-stage lung cancer. Computer-aided diagnosis (CAD) can help clinicians to make diagnosis more quickly and more accurately. CAD b...

Full description

Saved in:
Bibliographic Details
Published inExpert systems with applications Vol. 274; p. 126860
Main Authors Chen, Yi-Chang, Chiu, Ling-Ying, Lee, Chi-En, Huang, Wei-Chieh, Chen, Li-Wei, Lin, Mong-Wei, Yang, Ai-Su, Ye, Ying-Zhen, Ou, De-Xiang, Chang, Yeun-Chung, Chen, Chung-Ming
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.05.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Lung cancer is the second most common cancer and the leading cause of cancer-related death worldwide. Screening with low-dose computed tomography is crucial to detect early-stage lung cancer. Computer-aided diagnosis (CAD) can help clinicians to make diagnosis more quickly and more accurately. CAD based on deep learning algorithms is gaining attention. These algorithms rely on large amount of training data, which are barely available in the field of medical imaging, therefore data augmentation becomes essential. Generative Adversarial Nets (GAN) is an emerging solution for data augmentation and has been successfully used to generate realistic pulmonary nodules. In this study, we developed Texture-embedded GAN, which took the texture of nodule into consideration by introducing a loss function based on Gabor filters. We trained Texture-embedded GAN with images of 1075 nodule from the LIDC-IDRI dataset. Visual Turing Test showed that Texture-embedded GAN could generate images realistic enough to deceive expert radiologists. Data augmentation with Texture-embedded GAN improved the performance of ResNet-based classifier, which could distinguish benign and malignant nodules with 0.883 accuracy and 0.950 AUC. It was concluded that Texture-embedded GAN could generate realistic pulmonary nodules with sufficient diversity and was useful for data augmentation.
AbstractList Lung cancer is the second most common cancer and the leading cause of cancer-related death worldwide. Screening with low-dose computed tomography is crucial to detect early-stage lung cancer. Computer-aided diagnosis (CAD) can help clinicians to make diagnosis more quickly and more accurately. CAD based on deep learning algorithms is gaining attention. These algorithms rely on large amount of training data, which are barely available in the field of medical imaging, therefore data augmentation becomes essential. Generative Adversarial Nets (GAN) is an emerging solution for data augmentation and has been successfully used to generate realistic pulmonary nodules. In this study, we developed Texture-embedded GAN, which took the texture of nodule into consideration by introducing a loss function based on Gabor filters. We trained Texture-embedded GAN with images of 1075 nodule from the LIDC-IDRI dataset. Visual Turing Test showed that Texture-embedded GAN could generate images realistic enough to deceive expert radiologists. Data augmentation with Texture-embedded GAN improved the performance of ResNet-based classifier, which could distinguish benign and malignant nodules with 0.883 accuracy and 0.950 AUC. It was concluded that Texture-embedded GAN could generate realistic pulmonary nodules with sufficient diversity and was useful for data augmentation.
ArticleNumber 126860
Author Ye, Ying-Zhen
Chen, Chung-Ming
Lin, Mong-Wei
Huang, Wei-Chieh
Chiu, Ling-Ying
Chen, Yi-Chang
Lee, Chi-En
Yang, Ai-Su
Ou, De-Xiang
Chen, Li-Wei
Chang, Yeun-Chung
Author_xml – sequence: 1
  givenname: Yi-Chang
  orcidid: 0000-0003-1380-3737
  surname: Chen
  fullname: Chen, Yi-Chang
  email: d06548013@ntu.edu.tw
  organization: Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan
– sequence: 2
  givenname: Ling-Ying
  orcidid: 0000-0001-7887-219X
  surname: Chiu
  fullname: Chiu, Ling-Ying
  email: f98546021@ntu.edu.tw
  organization: Institute of Medicine, Chung Shan Medical University, No. 110, Sec. 1, Jianguo N. Rd., Taichung, Taiwan
– sequence: 3
  givenname: Chi-En
  orcidid: 0000-0001-5963-2860
  surname: Lee
  fullname: Lee, Chi-En
  email: d00548004@ntu.edu.tw
  organization: Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan
– sequence: 4
  givenname: Wei-Chieh
  surname: Huang
  fullname: Huang, Wei-Chieh
  email: r07528008@ntu.edu.tw
  organization: Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan
– sequence: 5
  givenname: Li-Wei
  orcidid: 0000-0002-3618-0256
  surname: Chen
  fullname: Chen, Li-Wei
  email: f04548034@ntu.edu.tw
  organization: Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan
– sequence: 6
  givenname: Mong-Wei
  orcidid: 0000-0003-1268-3729
  surname: Lin
  fullname: Lin, Mong-Wei
  email: mwlin@ntu.edu.tw
  organization: Department of Surgery, National Taiwan University Hospital, No. 1, Sec. 1, Jen-Ai Rd., Taipei, Taiwan
– sequence: 7
  givenname: Ai-Su
  orcidid: 0009-0003-0290-5874
  surname: Yang
  fullname: Yang, Ai-Su
  email: f05548052@ntu.edu.tw
  organization: Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan
– sequence: 8
  givenname: Ying-Zhen
  surname: Ye
  fullname: Ye, Ying-Zhen
  email: f07528027@ntu.edu.tw
  organization: Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan
– sequence: 9
  givenname: De-Xiang
  orcidid: 0009-0002-3668-6609
  surname: Ou
  fullname: Ou, De-Xiang
  email: d10528013@ntu.edu.tw
  organization: Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan
– sequence: 10
  givenname: Yeun-Chung
  orcidid: 0000-0001-9984-5713
  surname: Chang
  fullname: Chang, Yeun-Chung
  email: ycc5566@ntu.edu.tw
  organization: Department of Medical Imaging, National Taiwan University Hospital, No. 1, Sec. 1, Jen-Ai Rd., Taipei, Taiwan
– sequence: 11
  givenname: Chung-Ming
  orcidid: 0000-0002-0023-5817
  surname: Chen
  fullname: Chen, Chung-Ming
  email: chung@ntu.edu.tw
  organization: Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan
BookMark eNp9kLFOwzAURT0UibbwA0z-gQTbSWNHYqkKtEgVLGW2XPuldZXEwXYK-XtSlRnpSXc6V_edGZq0rgWEHihJKaHF4ymF8K1SRtgipawQBZmgKSkXPMkpz2_RLIQTIZQTwqfoawc_sfeQQLMHY8DgNbTgVbRnwEtzBh-Ut6rG7xADrpzH8Qg4DO0YwQbsKpw9466vG9cqP-DWmb6GgLVruj6OddE17uBVdxywbdQBwh26qVQd4P4v5-jz9WW32iTbj_XbarlNNCNlTJjRGSd7RgwrFyUVipVQ0EzwKqMqF6JkYnx2T4QWosqFVpxVZDyjS8ozpbI5Ytde7V0IHirZ-XGBHyQl8iJKnuRFlLyIkldRI_R0hWBcdrbgZdAWWg3GetBRGmf_w38B28p3Ig
Cites_doi 10.1007/BF00341922
10.1016/0031-3203(90)90135-8
10.7557/18.6803
10.1155/2019/6051939
10.1001/jama.2021.0377
10.1056/NEJMoa1102873
10.7326/M13-2771
10.1109/TMI.2021.3077089
10.1007/s12194-020-00564-5
10.1118/1.3528204
10.1016/j.procs.2015.03.149
10.1109/TSMC.1973.4309314
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.eswa.2025.126860
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_eswa_2025_126860
S0957417425004828
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AATTM
AAXKI
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABMVD
ABUCO
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AFXIZ
AGCQF
AGHFR
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AKRWK
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APLSM
APXCP
AXJTR
BJAXD
BKOJK
BLXMC
BNPGV
BNSAS
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SSH
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
AAAKG
AAQXK
AAYWO
AAYXX
ABKBG
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEUPX
AFPUW
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
RIG
SBC
SET
WUQ
XPP
ZMT
ID FETCH-LOGICAL-c209t-2dc370b20d295918a29e61387f31a488928016b08c88f48ca72f02f0dc9173aa3
IEDL.DBID .~1
ISSN 0957-4174
IngestDate Tue Jul 01 05:10:41 EDT 2025
Sat May 03 15:57:28 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Data augmentation
Computed tomography
Generative adversarial nets
Lung cancer
Computer-aided diagnosis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c209t-2dc370b20d295918a29e61387f31a488928016b08c88f48ca72f02f0dc9173aa3
ORCID 0000-0002-3618-0256
0009-0003-0290-5874
0000-0002-0023-5817
0000-0001-9984-5713
0000-0003-1380-3737
0000-0001-5963-2860
0009-0002-3668-6609
0000-0001-7887-219X
0000-0003-1268-3729
ParticipantIDs crossref_primary_10_1016_j_eswa_2025_126860
elsevier_sciencedirect_doi_10_1016_j_eswa_2025_126860
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-05-15
PublicationDateYYYYMMDD 2025-05-15
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-15
  day: 15
PublicationDecade 2020
PublicationTitle Expert systems with applications
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Sung, Ferlay, Siegel, Laversanne, Soerjomataram, Jemal, Bray (b0170) 2021; 71
Wang, Zhang, Zhang, Gao, Huang, Wang, Liu (b0195) 2021; 40
Lim, Guntoro (b0100) 2002
Heusel, Ramsauer, Unterthiner, Nessler, Hochreiter (b0070) 2017; 30
Hussain, Gimenez, Yi, Rubin (b0075) 2017
Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair (b0050) 2014
Niu, Li, Wang, Lin (b0125) 2020; 17
Surveillance, Program (b0175) 2024
Sermanet, Eigen, Zhang, Mathieu, Fergus, LeCun (b0145) 2013
Zhu, Park, Isola, Efros (b0215) 2017
Chuquicusma, Hussein, Burt, Bagci (b0035) 2018
Karras, T. (2017). Progressive Growing of GANs for Improved Quality, Stability, and Variation. arXiv preprint arXiv:1710.10196.
Chen, Lu, Zhang (b0025) 2004
He, Zhang, Ren, Sun (b0065) 2016
Turner (b0180) 1986; 55
Jonas, Reuland, Reddy, Nagle, Clark, Weber (b0085) 2021; 325
Isola, Zhu, Zhou, Efros (b0080) 2017
Han, Kitamura, Kudo, Ichinose, Rundo, Furukawa (b0055) 2019
Haralick, Shanmugam, Dinstein (b0060) 1973; 6
Moyer, US Preventive Services Task Force (b0115) 2014; 160
Yu, Lin, Yang, Shen, Lu, Huang (b0200) 2019
Chollet (b0030) 2017
Simonyan, Zisserman (b0155) 2014
Armato, McLennan, Bidaut, McNitt-Gray, Meyer, Reeves, Clarke (b0020) 2011; 38
Sundgaard, J. V., Hannemose, M. R., Laugesen, S., Bray, P., Harte, J., Kamide, Y., ... & Christensen, A. N. (2022). Multi-modal data generation with a deep metric variational autoencoder. arXiv preprint arXiv:2202.03434.
395-409.
Shi, Caballero, Huszár, Totz, Aitken, Bishop (b0150) 2016
Krizhevsky, Sutskever, Hinton (b0095) 2012
Onishi, Teramoto, Tsujimoto, Tsukamoto, Saito, Toyama (b0135) 2020; 13
Sun, J., Chen, Y., Dong, J., & Zhong, G. (2020). Progressively unfreezing perceptual GAN. arXiv preprint arXiv:2006.10250.
Al-Rfou R, Alain G, Almahairi A, Angermueller C, Bahdanau D, Ballas N, Bengio Y (2016) Theano: a python framework for fastcomputation of mathematical expressions.
Gabor (b0040) 1946; 93
Wang, He (b0190) 1990; 23
National Lung Screening Trial Research Team. (2011). Reduced lung-cancer mortality with low-dose computed tomographic screening.
Zeiler, Fergus (b0210) 2013
Onishi, Teramoto, Tsujimoto, Tsukamoto, Saito, Toyama (b0130) 2019; 2019
Goodfellow, I. (2016). Nips 2016 tutorial: Generative adversarial networks. arXiv preprint arXiv:1701.00160.
Metz, Ganter, Lorenzen, van Marwick, Holzapfel, Herrmann, Beer (b0105) 2015; 10
van der Maaten, Hinton (b0185) 2008; 9
Abhishree, Latha, Manikantan, Ramachandran (b0005) 2015; 45
Ronneberger, Fischer, Brox (b0140) 2015
Zareapoor, Celebi, Yang (b0205) 2019; 74
Alekseev, Bobe (b0010) 2019
Miyato, T., Kataoka, T., Koyama, M., & Yoshida, Y. (2018). Spectral normalization for generative adversarial networks. arXiv preprint arXiv:1802.05957.
Wang (10.1016/j.eswa.2025.126860_b0195) 2021; 40
Zhu (10.1016/j.eswa.2025.126860_b0215) 2017
Hussain (10.1016/j.eswa.2025.126860_b0075) 2017
Zareapoor (10.1016/j.eswa.2025.126860_b0205) 2019; 74
Niu (10.1016/j.eswa.2025.126860_b0125) 2020; 17
Yu (10.1016/j.eswa.2025.126860_b0200) 2019
Heusel (10.1016/j.eswa.2025.126860_b0070) 2017; 30
Alekseev (10.1016/j.eswa.2025.126860_b0010) 2019
Zeiler (10.1016/j.eswa.2025.126860_b0210) 2013
Chuquicusma (10.1016/j.eswa.2025.126860_b0035) 2018
Haralick (10.1016/j.eswa.2025.126860_b0060) 1973; 6
Chollet (10.1016/j.eswa.2025.126860_b0030) 2017
Isola (10.1016/j.eswa.2025.126860_b0080) 2017
10.1016/j.eswa.2025.126860_b0160
Moyer (10.1016/j.eswa.2025.126860_b0115) 2014; 160
10.1016/j.eswa.2025.126860_b0120
Sermanet (10.1016/j.eswa.2025.126860_b0145) 2013
10.1016/j.eswa.2025.126860_b0165
Turner (10.1016/j.eswa.2025.126860_b0180) 1986; 55
10.1016/j.eswa.2025.126860_b0045
Sung (10.1016/j.eswa.2025.126860_b0170) 2021; 71
Armato (10.1016/j.eswa.2025.126860_b0020) 2011; 38
Gabor (10.1016/j.eswa.2025.126860_b0040) 1946; 93
Shi (10.1016/j.eswa.2025.126860_b0150) 2016
Ronneberger (10.1016/j.eswa.2025.126860_b0140) 2015
He (10.1016/j.eswa.2025.126860_b0065) 2016
Surveillance (10.1016/j.eswa.2025.126860_b0175) 2024
Onishi (10.1016/j.eswa.2025.126860_b0135) 2020; 13
Goodfellow (10.1016/j.eswa.2025.126860_b0050) 2014
Onishi (10.1016/j.eswa.2025.126860_b0130) 2019; 2019
van der Maaten (10.1016/j.eswa.2025.126860_b0185) 2008; 9
Lim (10.1016/j.eswa.2025.126860_b0100) 2002
Krizhevsky (10.1016/j.eswa.2025.126860_b0095) 2012
10.1016/j.eswa.2025.126860_b0090
Simonyan (10.1016/j.eswa.2025.126860_b0155) 2014
Han (10.1016/j.eswa.2025.126860_b0055) 2019
Wang (10.1016/j.eswa.2025.126860_b0190) 1990; 23
Abhishree (10.1016/j.eswa.2025.126860_b0005) 2015; 45
Chen (10.1016/j.eswa.2025.126860_b0025) 2004
Metz (10.1016/j.eswa.2025.126860_b0105) 2015; 10
10.1016/j.eswa.2025.126860_b0110
Jonas (10.1016/j.eswa.2025.126860_b0085) 2021; 325
10.1016/j.eswa.2025.126860_b0015
References_xml – volume: 9
  start-page: 2579
  year: 2008
  end-page: 2605
  ident: b0185
  article-title: Visualizing data using t-SNE
– start-page: 1800
  year: 2017
  end-page: 1807
  ident: b0030
  publication-title: In: Proceedings of the IEEE conference on computer vision and pattern recognition
– start-page: 770
  year: 2016
  end-page: 778
  ident: b0065
  publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition
– start-page: 1
  year: 2019
  end-page: 4
  ident: b0010
  publication-title: 2019 International Conference on Engineering and Telecommunication (EnT)
– start-page: 240
  year: 2018
  end-page: 244
  ident: b0035
  publication-title: 2018 IEEE 15th international symposium on biomedical imaging (ISBI 2018)
– reference: National Lung Screening Trial Research Team. (2011). Reduced lung-cancer mortality with low-dose computed tomographic screening.
– volume: 55
  start-page: 71
  year: 1986
  end-page: 82
  ident: b0180
  article-title: Texture discrimination by Gabor functions
– volume: 325
  start-page: 971
  year: 2021
  end-page: 987
  ident: b0085
  article-title: Screening for lung cancer with low-dose computed tomography: updated evidence report and systematic review for the US preventive services task force
– year: 2013
  ident: b0145
  publication-title: Computing Research Repository.
– reference: Sun, J., Chen, Y., Dong, J., & Zhong, G. (2020). Progressively unfreezing perceptual GAN. arXiv preprint arXiv:2006.10250.
– volume: 45
  start-page: 312
  year: 2015
  end-page: 321
  ident: b0005
  article-title: Face recognition using Gabor filter based feature extraction with anisotropic diffusion as a pre-processing technique
– reference: Al-Rfou R, Alain G, Almahairi A, Angermueller C, Bahdanau D, Ballas N, Bengio Y (2016) Theano: a python framework for fastcomputation of mathematical expressions.
– volume: 10
  year: 2015
  ident: b0105
  article-title: Multiparametric MR and PET imaging of intratumoral biological heterogeneity in patients with metastatic lung cancer using voxel-by-voxel analysis
– reference: Goodfellow, I. (2016). Nips 2016 tutorial: Generative adversarial networks. arXiv preprint arXiv:1701.00160.
– start-page: 27
  year: 2014
  ident: b0050
  publication-title: Advances in neural information processing systems
– volume: 17
  start-page: 1611
  year: 2020
  end-page: 1622
  ident: b0125
  article-title: Defect image sample generation with GAN for improving defect recognition
– volume: 38
  start-page: 915
  year: 2011
  end-page: 931
  ident: b0020
  article-title: The lung image database consortium (LIDC) and image database resource initiative (IDRI): A completed reference database of lung nodules on CT scans
– volume: 13
  start-page: 160
  year: 2020
  end-page: 169
  ident: b0135
  article-title: Investigation of pulmonary nodule classification using multi-scale residual network enhanced with 3DGAN-synthesized volumes
– volume: 40
  start-page: 2343
  year: 2021
  end-page: 2353
  ident: b0195
  article-title: Realistic lung nodule synthesis with multi-target co-guided adversarial mechanism
– start-page: 234
  year: 2015
  end-page: 241
  ident: b0140
  article-title: U-net: Convolutional networks for biomedical image segmentation
  publication-title: Medical image computing and computer-assisted intervention–MICCAI 2015: 18th international conference, Munich, Germany, October 5-9, 2015, proceedings, part III 18
– volume: 30
  year: 2017
  ident: b0070
  article-title: Gans trained by a two time-scale update rule converge to a local nash equilibrium
– year: 2014
  ident: b0155
– volume: 74
  start-page: 191
  year: 2019
  end-page: 200
  ident: b0205
  article-title: Diverse adversarial network for image super-resolution
– volume: 71
  start-page: 209
  year: 2021
  end-page: 249
  ident: b0170
  article-title: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries
– volume: 93
  start-page: 429
  year: 1946
  end-page: 457
  ident: b0040
  article-title: Theory of communication
– start-page: 273
  year: 2004
  end-page: 278
  ident: b0025
  article-title: Eects of different Gabor filters parameters on image retrieval by texture
  publication-title: 10th International Multimedia Modelling Conference, 2004. Proceeding
– start-page: 729
  year: 2019
  end-page: 737
  ident: b0055
  article-title: Synthesizing diverse lung nodules wherever massively: 3D multi-conditional GAN-based CT image augmentation for object detection
– start-page: 1874
  year: 2016
  end-page: 1883
  ident: b0150
  publication-title: In Proceedings of the IEEE conference on computer vision and pattern recognition
– start-page: 1106
  year: 2012
  end-page: 1114
  ident: b0095
  publication-title: Advances in neural information processing systems 25: proceedings of the 26th annual conference on neural information processing systems
– volume: 2019
  year: 2019
  ident: b0130
  article-title: Automated pulmonary nodule classification in computed tomography images using a deep convolutional neural network trained by generative adversarial networks
  publication-title: BioMed research international
– volume: 23
  start-page: 905
  year: 1990
  end-page: 910
  ident: b0190
  article-title: Texture classification using texture spectrum
– start-page: 2223
  year: 2017
  end-page: 2232
  ident: b0215
  publication-title: In Proceedings of the IEEE international conference on computer vision
– year: 2017
  ident: b0075
  publication-title: AMIA annual symposium proceedings
– start-page: 1125
  year: 2017
  end-page: 1134
  ident: b0080
  publication-title: In Proceedings of the IEEE conference on computer vision and pattern recognition
– reference: Miyato, T., Kataoka, T., Koyama, M., & Yoshida, Y. (2018). Spectral normalization for generative adversarial networks. arXiv preprint arXiv:1802.05957.
– volume: 6
  start-page: 610
  year: 1973
  end-page: 621
  ident: b0060
  article-title: Textural features for image classification
– reference: Sundgaard, J. V., Hannemose, M. R., Laugesen, S., Bray, P., Harte, J., Kamide, Y., ... & Christensen, A. N. (2022). Multi-modal data generation with a deep metric variational autoencoder. arXiv preprint arXiv:2202.03434.
– year: 2013
  ident: b0210
  publication-title: Computer Research Repository.
– start-page: 4471
  year: 2019
  end-page: 4480
  ident: b0200
  publication-title: Proceedings of the IEEE/CVF international conference on computer vision
– start-page: 451
  year: 2002
  end-page: 455
  ident: b0100
  article-title: Car recognition using Gabor filter feature extraction
  publication-title: Asia-Pacific Conference on Circuits and Systems
– reference: Karras, T. (2017). Progressive Growing of GANs for Improved Quality, Stability, and Variation. arXiv preprint arXiv:1710.10196.
– volume: 160
  start-page: 330
  year: 2014
  end-page: 338
  ident: b0115
  article-title: Screening for lung cancer: US Preventive Services Task Force recommendation statement
– reference: 395-409.
– year: 2024
  ident: b0175
  article-title: U.S. Department of health and human services
– ident: 10.1016/j.eswa.2025.126860_b0090
– volume: 9
  start-page: 2579
  issue: 11
  year: 2008
  ident: 10.1016/j.eswa.2025.126860_b0185
  article-title: Visualizing data using t-SNE
  publication-title: Journal of machine learning research
– ident: 10.1016/j.eswa.2025.126860_b0015
– volume: 10
  issue: 7
  year: 2015
  ident: 10.1016/j.eswa.2025.126860_b0105
  article-title: Multiparametric MR and PET imaging of intratumoral biological heterogeneity in patients with metastatic lung cancer using voxel-by-voxel analysis
  publication-title: PLoS One1
– volume: 30
  year: 2017
  ident: 10.1016/j.eswa.2025.126860_b0070
  article-title: Gans trained by a two time-scale update rule converge to a local nash equilibrium
  publication-title: Advances in neural information processing systems
– volume: 93
  start-page: 429
  issue: 26
  year: 1946
  ident: 10.1016/j.eswa.2025.126860_b0040
  article-title: Theory of communication
  publication-title: Journal of the Institution of Electrical Engineers
– start-page: 770
  year: 2016
  ident: 10.1016/j.eswa.2025.126860_b0065
  article-title: Deep residual learning for image recognition
– volume: 55
  start-page: 71
  issue: 2
  year: 1986
  ident: 10.1016/j.eswa.2025.126860_b0180
  article-title: Texture discrimination by Gabor functions
  publication-title: Biological cybernetics
  doi: 10.1007/BF00341922
– volume: 23
  start-page: 905
  year: 1990
  ident: 10.1016/j.eswa.2025.126860_b0190
  article-title: Texture classification using texture spectrum
  publication-title: Pattern Recognition
  doi: 10.1016/0031-3203(90)90135-8
– year: 2014
  ident: 10.1016/j.eswa.2025.126860_b0155
– ident: 10.1016/j.eswa.2025.126860_b0165
  doi: 10.7557/18.6803
– start-page: 27
  year: 2014
  ident: 10.1016/j.eswa.2025.126860_b0050
  article-title: Generative adversarial nets
  publication-title: Advances in neural information processing systems
– volume: 2019
  year: 2019
  ident: 10.1016/j.eswa.2025.126860_b0130
  article-title: Automated pulmonary nodule classification in computed tomography images using a deep convolutional neural network trained by generative adversarial networks
  publication-title: BioMed research international
  doi: 10.1155/2019/6051939
– start-page: 234
  year: 2015
  ident: 10.1016/j.eswa.2025.126860_b0140
  article-title: U-net: Convolutional networks for biomedical image segmentation
– start-page: 1874
  year: 2016
  ident: 10.1016/j.eswa.2025.126860_b0150
  article-title: Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network
– ident: 10.1016/j.eswa.2025.126860_b0160
– volume: 325
  start-page: 971
  issue: 10
  year: 2021
  ident: 10.1016/j.eswa.2025.126860_b0085
  article-title: Screening for lung cancer with low-dose computed tomography: updated evidence report and systematic review for the US preventive services task force
  publication-title: Journal of the American Medical Association
  doi: 10.1001/jama.2021.0377
– start-page: 1106
  year: 2012
  ident: 10.1016/j.eswa.2025.126860_b0095
  article-title: Imagenet classification with deep convolutional neural networks
– ident: 10.1016/j.eswa.2025.126860_b0110
– volume: 17
  start-page: 1611
  issue: 3
  year: 2020
  ident: 10.1016/j.eswa.2025.126860_b0125
  article-title: Defect image sample generation with GAN for improving defect recognition
  publication-title: IEEE Transactions on Automation Science and Engineering
– start-page: 273
  year: 2004
  ident: 10.1016/j.eswa.2025.126860_b0025
  article-title: Eects of different Gabor filters parameters on image retrieval by texture
– start-page: 240
  year: 2018
  ident: 10.1016/j.eswa.2025.126860_b0035
  article-title: How to fool radiologists with generative adversarial networks? A visual turing test for lung cancer diagnosis
– start-page: 451
  year: 2002
  ident: 10.1016/j.eswa.2025.126860_b0100
  article-title: Car recognition using Gabor filter feature extraction
– start-page: 1800
  year: 2017
  ident: 10.1016/j.eswa.2025.126860_b0030
  article-title: Xception: Deep learning with depthwise separable convolutions
– volume: 71
  start-page: 209
  issue: 3
  year: 2021
  ident: 10.1016/j.eswa.2025.126860_b0170
  article-title: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries
  publication-title: CA: A Cancer Journal For Clinicians
– start-page: 4471
  year: 2019
  ident: 10.1016/j.eswa.2025.126860_b0200
  article-title: Free-form image inpainting with gated convolution
– start-page: 729
  year: 2019
  ident: 10.1016/j.eswa.2025.126860_b0055
  article-title: Synthesizing diverse lung nodules wherever massively: 3D multi-conditional GAN-based CT image augmentation for object detection
– start-page: 2223
  year: 2017
  ident: 10.1016/j.eswa.2025.126860_b0215
  article-title: Unpaired image-to-image translation using cycle-consistent adversarial networks
– start-page: 1
  year: 2019
  ident: 10.1016/j.eswa.2025.126860_b0010
  article-title: GaborNet: Gabor filters with learnable parameters in deep convolutional neural network
– ident: 10.1016/j.eswa.2025.126860_b0120
  doi: 10.1056/NEJMoa1102873
– year: 2024
  ident: 10.1016/j.eswa.2025.126860_b0175
– ident: 10.1016/j.eswa.2025.126860_b0045
– volume: 160
  start-page: 330
  issue: 5
  year: 2014
  ident: 10.1016/j.eswa.2025.126860_b0115
  article-title: Screening for lung cancer: US Preventive Services Task Force recommendation statement
  publication-title: Annals of internal medicine
  doi: 10.7326/M13-2771
– volume: 40
  start-page: 2343
  issue: 9
  year: 2021
  ident: 10.1016/j.eswa.2025.126860_b0195
  article-title: Realistic lung nodule synthesis with multi-target co-guided adversarial mechanism
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2021.3077089
– year: 2013
  ident: 10.1016/j.eswa.2025.126860_b0210
  article-title: Visualizing and understanding convolutional networks
  publication-title: Computer Research Repository.
– volume: 74
  start-page: 191
  year: 2019
  ident: 10.1016/j.eswa.2025.126860_b0205
  article-title: Diverse adversarial network for image super-resolution
  publication-title: Signal Processing: Image Communication
– start-page: 1125
  year: 2017
  ident: 10.1016/j.eswa.2025.126860_b0080
  article-title: Image-to-image translation with conditional adversarial networks
– volume: 13
  start-page: 160
  year: 2020
  ident: 10.1016/j.eswa.2025.126860_b0135
  article-title: Investigation of pulmonary nodule classification using multi-scale residual network enhanced with 3DGAN-synthesized volumes
  publication-title: Radiological physics and technology
  doi: 10.1007/s12194-020-00564-5
– volume: 38
  start-page: 915
  issue: 2
  year: 2011
  ident: 10.1016/j.eswa.2025.126860_b0020
  article-title: The lung image database consortium (LIDC) and image database resource initiative (IDRI): A completed reference database of lung nodules on CT scans
  publication-title: Medical physics
  doi: 10.1118/1.3528204
– year: 2017
  ident: 10.1016/j.eswa.2025.126860_b0075
  article-title: Differential data augmentation techniques for medical imaging classification tasks
– volume: 45
  start-page: 312
  year: 2015
  ident: 10.1016/j.eswa.2025.126860_b0005
  article-title: Face recognition using Gabor filter based feature extraction with anisotropic diffusion as a pre-processing technique
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2015.03.149
– year: 2013
  ident: 10.1016/j.eswa.2025.126860_b0145
  article-title: Overfeat: Integrated recognition, localization and detection using convolutional networks
  publication-title: Computing Research Repository.
– volume: 6
  start-page: 610
  year: 1973
  ident: 10.1016/j.eswa.2025.126860_b0060
  article-title: Textural features for image classification
  publication-title: IEEE Trans Syst Man Cybern SMC-3
  doi: 10.1109/TSMC.1973.4309314
SSID ssj0017007
Score 2.4611216
Snippet Lung cancer is the second most common cancer and the leading cause of cancer-related death worldwide. Screening with low-dose computed tomography is crucial to...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 126860
SubjectTerms Computed tomography
Computer-aided diagnosis
Data augmentation
Generative adversarial nets
Lung cancer
Title Texture-embedded Generative Adversarial Nets for the synthesis of 3D pulmonary nodules computed tomography images
URI https://dx.doi.org/10.1016/j.eswa.2025.126860
Volume 274
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvXjxLdZH2YM3SZvs5nksVamKvdhCb2FfgUib1CZBevG3O5tNREE8CCEhIUvCzOw3s8nMNwhd24IFlAplSZ3l4IYitLgDO5fppAsnlELp75DPU38ydx8X3qKDxm0tjE6rbLDfYHqN1s2VYSPN4TpNhy8QHIA7hKWdp82Q6IJf1w20lQ8-vtI8NP1cYPj2Akvf3RTOmBwvVbxr7iHiDRzihzVN5S_O6ZvDuT9Ae02kiEfmZQ5RR2VHaL_twoCbSXmM3maAr9VGWWrFFcCIxIZKWuMYrvstF0xbGZ6qssAQo2KI-XCxzeBQpAXOE0xv8bpagkGyzRZnuayWqsDCPEniMl81vNY4XQH8FCdofn83G0-sppGCJYgdlRaRggY2J7YkkRc5ISORAjceBgl1GMzgiICf8rkNmgoT0BcLSGLDJgUs5ihj9BR1szxTZwjzxOeJywFfGXcjRzIiuFBEQRTCqZK0h25aCcZrw5cRt4lkr7GWd6zlHRt595DXCjn-ofUYAP2Pcef_HHeBdvWZ_vvveJeoW24qdQVBRcn7tdX00c7o4Wky_QSWIs1u
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9tAEB6S9NBc0kda8uhjDu2pKJZ2JUs69BCSGqeJfakNvqn7EjjYsuOVCb70T_UPdtZalRZCD4WAkEBipd1Po29mxbczAB9CJVLOlQm0UznEmcoCGdEuFk50EWVaGfcfcjDs9sfx10ky2YGf7VoYJ6v03N9w-pat_ZmOR7OznE473yg4IHdIU7vEmSHLvLLy2mzuad5mP19d0kv-yFjvy-iiH_jSAoFiYV4HTCuehpKFmuVJHmWC5YYcW5aWPBJk0zkj5u7KkPqelTQCkbIypE0rmt5wITjddxeexEQXrmzC2Y_fuhKX7y5tEvylgeueX6nTiMqMvXfJjlhyFrFuts2L-YA3_MPD9Z7DgQ9N8bwZ_QvYMdVLeNaWfUDPAodwNyJCX69MYObSEG9pbHJXO-LEbYFnK5xZ49DUFikoRgoy0W4qOtipxUWJ_BKX6xl9AWK1wWqh1zNjUTVP0lgv5j6RNk7nxHf2FYwfBd7XsFctKnMEKMuuLGNJhC5knEdaMCWVYYbCHsmN5sfwqUWwWDYJOopWuXZbOLwLh3fR4H0MSQty8ZeZFeRB_tHu5D_bvYen_dHgpri5Gl6fwr674qQHUfIG9urV2ryliKaW77YWhPD9sU32FxS3BwU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Texture-embedded+Generative+Adversarial+Nets+for+the+synthesis+of+3D+pulmonary+nodules+computed+tomography+images&rft.jtitle=Expert+systems+with+applications&rft.au=Chen%2C+Yi-Chang&rft.au=Chiu%2C+Ling-Ying&rft.au=Lee%2C+Chi-En&rft.au=Huang%2C+Wei-Chieh&rft.date=2025-05-15&rft.issn=0957-4174&rft.volume=274&rft.spage=126860&rft_id=info:doi/10.1016%2Fj.eswa.2025.126860&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2025_126860
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon