Estimating Interplanetary Magnetic Field Conditions at Mercury's Orbit From MESSENGER Magnetosheath Observations Using a Feedforward Neural Network
Mercury's small magnetosphere is embedded in the dynamic and intense solar wind environment characteristic of the inner heliosphere. Both the magnitude and orientation of the interplanetary magnetic field (IMF) significantly influence the solar wind‐magnetospheric interaction at Mercury, drivin...
Saved in:
Published in | Journal of geophysical research. Machine learning and computation Vol. 1; no. 4 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Geophysical Union (AGU)
01.12.2024
Wiley |
Subjects | |
Online Access | Get full text |
ISSN | 2993-5210 2993-5210 |
DOI | 10.1029/2024JH000239 |
Cover
Loading…
Abstract | Mercury's small magnetosphere is embedded in the dynamic and intense solar wind environment characteristic of the inner heliosphere. Both the magnitude and orientation of the interplanetary magnetic field (IMF) significantly influence the solar wind‐magnetospheric interaction at Mercury, driving phenomena such as magnetic reconnection. The MErcury Surface, Space Environment, Geochemistry and Ranging (MESSENGER) spacecraft provided in‐situ magnetic field measurements of the solar wind, the magnetosheath, and the magnetosphere along each orbit. However, it is a challenge to directly assess the IMF's impact on Mercury's plasma environment due to the temporal separation between observations within the solar wind and the magnetosphere, especially in the absence of an upstream monitor. Here, we present a feedforward neural network (FNN) trained on a subset of magnetosheath observations to estimate the strength and orientation of the IMF upstream of the bow shock. Utilizing magnetosheath magnetic field, cylindrical spatial coordinates, and heliocentric distance measurements, the FNN predicts upstream IMF conditions with an r2 ${\mathit{r}}^{2}$ score of 0.70 and mean averaged error of 5.3 nT, thereby greatly decreasing the temporal separation between IMF estimates and magnetospheric measurements throughout the MESSENGER mission. This approach yields IMF estimates for all magnetosheath data measured by MESSENGER, providing a useful tool for future investigations of the IMF impact on Mercury's magnetosphere. This method will be integrable with the dual‐spacecraft BepiColombo magnetosheath measurements, providing useful estimates of upstream IMF conditions particularly during the extended periods in which neither spacecraft sample the solar wind. Our results demonstrate the utility of machine learning techniques on advancing space science research.
Plain Language Summary
The stream of electrically charged gas emitted from the Sun, known as the solar wind, encounters planetary objects within its flow. The solar wind carries the interplanetary magnetic field (IMF), which has a great influence on the dynamics that govern the interaction between the solar wind and a planetary environment. At Mercury, the solar wind is particularly strong, and the properties of the IMF drive a variety of important physical processes at the planet. The MESSENGER spacecraft orbited Mercury from 2011 to 2015 and sampled both the solar wind and the near‐Mercury environment along each orbit. However, it is difficult to directly measure the IMF's effect on Mercury's environment because there is a gap in time between observations in these different regions. In this study, we use a machine‐learning model to estimate the IMF's strength and direction just before it reaches Mercury, based on data from the region between Mercury's magnetic field and the solar wind. This allows us to fill in the gaps in between solar wind measurements and better understand how the IMF affects Mercury's environment. The model is accurate in predicting the IMF conditions, which provides valuable information for studying Mercury's magnetosphere with both past and future spacecraft missions.
Key Points
A feedforward neural network (FNN) is trained to predict interplanetary magnetic field (IMF) properties from Mercury magnetosheath observations made by MESSENGER
The model achieves high accuracy (r2 = 0.70) predictions for the IMF from magnetosheath measurements
The FNN could be integrated with BepiColombo measurements, yielding IMF estimates for the extended periods without solar wind observations |
---|---|
AbstractList | Mercury's small magnetosphere is embedded in the dynamic and intense solar wind environment characteristic of the inner heliosphere. Both the magnitude and orientation of the interplanetary magnetic field (IMF) significantly influence the solar wind‐magnetospheric interaction at Mercury, driving phenomena such as magnetic reconnection. The MErcury Surface, Space Environment, Geochemistry and Ranging (MESSENGER) spacecraft provided in‐situ magnetic field measurements of the solar wind, the magnetosheath, and the magnetosphere along each orbit. However, it is a challenge to directly assess the IMF's impact on Mercury's plasma environment due to the temporal separation between observations within the solar wind and the magnetosphere, especially in the absence of an upstream monitor. Here, we present a feedforward neural network (FNN) trained on a subset of magnetosheath observations to estimate the strength and orientation of the IMF upstream of the bow shock. Utilizing magnetosheath magnetic field, cylindrical spatial coordinates, and heliocentric distance measurements, the FNN predicts upstream IMF conditions with an score of 0.70 and mean averaged error of 5.3 nT, thereby greatly decreasing the temporal separation between IMF estimates and magnetospheric measurements throughout the MESSENGER mission. This approach yields IMF estimates for all magnetosheath data measured by MESSENGER, providing a useful tool for future investigations of the IMF impact on Mercury's magnetosphere. This method will be integrable with the dual‐spacecraft BepiColombo magnetosheath measurements, providing useful estimates of upstream IMF conditions particularly during the extended periods in which neither spacecraft sample the solar wind. Our results demonstrate the utility of machine learning techniques on advancing space science research.
The stream of electrically charged gas emitted from the Sun, known as the solar wind, encounters planetary objects within its flow. The solar wind carries the interplanetary magnetic field (IMF), which has a great influence on the dynamics that govern the interaction between the solar wind and a planetary environment. At Mercury, the solar wind is particularly strong, and the properties of the IMF drive a variety of important physical processes at the planet. The MESSENGER spacecraft orbited Mercury from 2011 to 2015 and sampled both the solar wind and the near‐Mercury environment along each orbit. However, it is difficult to directly measure the IMF's effect on Mercury's environment because there is a gap in time between observations in these different regions. In this study, we use a machine‐learning model to estimate the IMF's strength and direction just before it reaches Mercury, based on data from the region between Mercury's magnetic field and the solar wind. This allows us to fill in the gaps in between solar wind measurements and better understand how the IMF affects Mercury's environment. The model is accurate in predicting the IMF conditions, which provides valuable information for studying Mercury's magnetosphere with both past and future spacecraft missions.
A feedforward neural network (FNN) is trained to predict interplanetary magnetic field (IMF) properties from Mercury magnetosheath observations made by MESSENGER The model achieves high accuracy ( r 2 = 0.70) predictions for the IMF from magnetosheath measurements The FNN could be integrated with BepiColombo measurements, yielding IMF estimates for the extended periods without solar wind observations Abstract Mercury's small magnetosphere is embedded in the dynamic and intense solar wind environment characteristic of the inner heliosphere. Both the magnitude and orientation of the interplanetary magnetic field (IMF) significantly influence the solar wind‐magnetospheric interaction at Mercury, driving phenomena such as magnetic reconnection. The MErcury Surface, Space Environment, Geochemistry and Ranging (MESSENGER) spacecraft provided in‐situ magnetic field measurements of the solar wind, the magnetosheath, and the magnetosphere along each orbit. However, it is a challenge to directly assess the IMF's impact on Mercury's plasma environment due to the temporal separation between observations within the solar wind and the magnetosphere, especially in the absence of an upstream monitor. Here, we present a feedforward neural network (FNN) trained on a subset of magnetosheath observations to estimate the strength and orientation of the IMF upstream of the bow shock. Utilizing magnetosheath magnetic field, cylindrical spatial coordinates, and heliocentric distance measurements, the FNN predicts upstream IMF conditions with an r2 score of 0.70 and mean averaged error of 5.3 nT, thereby greatly decreasing the temporal separation between IMF estimates and magnetospheric measurements throughout the MESSENGER mission. This approach yields IMF estimates for all magnetosheath data measured by MESSENGER, providing a useful tool for future investigations of the IMF impact on Mercury's magnetosphere. This method will be integrable with the dual‐spacecraft BepiColombo magnetosheath measurements, providing useful estimates of upstream IMF conditions particularly during the extended periods in which neither spacecraft sample the solar wind. Our results demonstrate the utility of machine learning techniques on advancing space science research. Abstract Mercury's small magnetosphere is embedded in the dynamic and intense solar wind environment characteristic of the inner heliosphere. Both the magnitude and orientation of the interplanetary magnetic field (IMF) significantly influence the solar wind‐magnetospheric interaction at Mercury, driving phenomena such as magnetic reconnection. The MErcury Surface, Space Environment, Geochemistry and Ranging (MESSENGER) spacecraft provided in‐situ magnetic field measurements of the solar wind, the magnetosheath, and the magnetosphere along each orbit. However, it is a challenge to directly assess the IMF's impact on Mercury's plasma environment due to the temporal separation between observations within the solar wind and the magnetosphere, especially in the absence of an upstream monitor. Here, we present a feedforward neural network (FNN) trained on a subset of magnetosheath observations to estimate the strength and orientation of the IMF upstream of the bow shock. Utilizing magnetosheath magnetic field, cylindrical spatial coordinates, and heliocentric distance measurements, the FNN predicts upstream IMF conditions with an score of 0.70 and mean averaged error of 5.3 nT, thereby greatly decreasing the temporal separation between IMF estimates and magnetospheric measurements throughout the MESSENGER mission. This approach yields IMF estimates for all magnetosheath data measured by MESSENGER, providing a useful tool for future investigations of the IMF impact on Mercury's magnetosphere. This method will be integrable with the dual‐spacecraft BepiColombo magnetosheath measurements, providing useful estimates of upstream IMF conditions particularly during the extended periods in which neither spacecraft sample the solar wind. Our results demonstrate the utility of machine learning techniques on advancing space science research. Mercury's small magnetosphere is embedded in the dynamic and intense solar wind environment characteristic of the inner heliosphere. Both the magnitude and orientation of the interplanetary magnetic field (IMF) significantly influence the solar wind‐magnetospheric interaction at Mercury, driving phenomena such as magnetic reconnection. The MErcury Surface, Space Environment, Geochemistry and Ranging (MESSENGER) spacecraft provided in‐situ magnetic field measurements of the solar wind, the magnetosheath, and the magnetosphere along each orbit. However, it is a challenge to directly assess the IMF's impact on Mercury's plasma environment due to the temporal separation between observations within the solar wind and the magnetosphere, especially in the absence of an upstream monitor. Here, we present a feedforward neural network (FNN) trained on a subset of magnetosheath observations to estimate the strength and orientation of the IMF upstream of the bow shock. Utilizing magnetosheath magnetic field, cylindrical spatial coordinates, and heliocentric distance measurements, the FNN predicts upstream IMF conditions with an r2 ${\mathit{r}}^{2}$ score of 0.70 and mean averaged error of 5.3 nT, thereby greatly decreasing the temporal separation between IMF estimates and magnetospheric measurements throughout the MESSENGER mission. This approach yields IMF estimates for all magnetosheath data measured by MESSENGER, providing a useful tool for future investigations of the IMF impact on Mercury's magnetosphere. This method will be integrable with the dual‐spacecraft BepiColombo magnetosheath measurements, providing useful estimates of upstream IMF conditions particularly during the extended periods in which neither spacecraft sample the solar wind. Our results demonstrate the utility of machine learning techniques on advancing space science research. Plain Language Summary The stream of electrically charged gas emitted from the Sun, known as the solar wind, encounters planetary objects within its flow. The solar wind carries the interplanetary magnetic field (IMF), which has a great influence on the dynamics that govern the interaction between the solar wind and a planetary environment. At Mercury, the solar wind is particularly strong, and the properties of the IMF drive a variety of important physical processes at the planet. The MESSENGER spacecraft orbited Mercury from 2011 to 2015 and sampled both the solar wind and the near‐Mercury environment along each orbit. However, it is difficult to directly measure the IMF's effect on Mercury's environment because there is a gap in time between observations in these different regions. In this study, we use a machine‐learning model to estimate the IMF's strength and direction just before it reaches Mercury, based on data from the region between Mercury's magnetic field and the solar wind. This allows us to fill in the gaps in between solar wind measurements and better understand how the IMF affects Mercury's environment. The model is accurate in predicting the IMF conditions, which provides valuable information for studying Mercury's magnetosphere with both past and future spacecraft missions. Key Points A feedforward neural network (FNN) is trained to predict interplanetary magnetic field (IMF) properties from Mercury magnetosheath observations made by MESSENGER The model achieves high accuracy (r2 = 0.70) predictions for the IMF from magnetosheath measurements The FNN could be integrated with BepiColombo measurements, yielding IMF estimates for the extended periods without solar wind observations |
Author | Sun, Weijie Healy, Adam Azari, Abigail R. Bowers, Charles F. Rutala, Matthew J. Wright, Paul J. Jackman, Caitríona M. Smith, Andy W. |
Author_xml | – sequence: 1 givenname: Charles F. orcidid: 0000-0002-6336-7526 surname: Bowers fullname: Bowers, Charles F. email: cbowers@cp.dias.ie organization: Dublin Institute for Advanced Studies – sequence: 2 givenname: Caitríona M. orcidid: 0000-0003-0635-7361 surname: Jackman fullname: Jackman, Caitríona M. organization: Dublin Institute for Advanced Studies – sequence: 3 givenname: Abigail R. orcidid: 0000-0002-8665-5459 surname: Azari fullname: Azari, Abigail R. organization: University of British Columbia – sequence: 4 givenname: Andy W. orcidid: 0000-0001-7321-4331 surname: Smith fullname: Smith, Andy W. organization: Northumbria University – sequence: 5 givenname: Paul J. surname: Wright fullname: Wright, Paul J. organization: Dublin Institute for Advanced Studies – sequence: 6 givenname: Matthew J. orcidid: 0000-0002-1837-4057 surname: Rutala fullname: Rutala, Matthew J. organization: Dublin Institute for Advanced Studies – sequence: 7 givenname: Weijie orcidid: 0000-0001-5260-658X surname: Sun fullname: Sun, Weijie organization: University of California – sequence: 8 givenname: Adam surname: Healy fullname: Healy, Adam organization: Dublin Institute for Advanced Studies |
BackLink | https://www.osti.gov/biblio/2483781$$D View this record in Osti.gov |
BookMark | eNp9kc1OGzEUha0KpFJgxwNY3XTTtP6b2LOsokkIIkTiZ2059nViOoyRbRrlOfrCNR1UserqHl199xzp3E_oaIgDIHRByTdKWPudESauLgkhjLcf0AlrWz5pGCVH7_RHdJ7zY2U4Z0QReYJ-d7mEJ1PCsMXLoUB67s0AxaQDXpltVcHieYDe4VkcXCghDhmbgleQ7Es6fMl4nTah4HmKT3jV3d11N4vu9u025h2YssPrTYb0y4zHD_k1y-A5gPMx7U1y-AZekunrKPuYfp6hY2_6DOdv8xQ9zLv72eXker1Yzn5cTywjrZq01lrFORccJKOuoYxvPIBvqeCeeTaVQMBLYacUqJKS-UaA4I4ab40zkp-i5ejronnUz6n2kA46mqD_LmLaapNqAT1oxZSzgkhJWyEa4BuqSOO8spa6unbV6_PoFWufOttQwO5sHAawRTOhuFS0Ql9HyKaYcwL_L5QS_fpE_f6JFScjvg89HP7L6qvFLZ0q_gea2J9i |
Cites_doi | 10.1016/j.pss.2011.02.004 10.5281/zenodo.10887513 10.1029/2019GL084151 10.1029/JA084iA10p05938 10.1029/2019ja027706 10.1029/2022GL101643 10.1023/a:1010933404324 10.1029/2019JA027490 10.1029/2009JA014173 10.3847/1538‐3881/ac9d89 10.3847/1538‐4357/ab7349 10.5281/zenodo.13737540 10.1002/2016JE005150 10.1029/2022JA030397 10.1029/2022ja031134 10.1029/2020GL089784 10.1029/2023JA032248 10.1029/2011JA016900 10.1007/s11214‐021‐00861‐4 10.1002/jgra.50342 10.1029/2023JA032162 10.1007/s11214‐020‐00712‐8 10.1002/jgra.50237 10.1029/2022ja030996 10.1051/0004‐6361/202346989 10.1029/2023JA031546 10.1029/JZ072i023p05865 10.1029/GL011i003p00279 10.17189/1522377 10.1016/j.artint.2021.103502 10.1126/science.1172011 10.1002/jgra.50123 10.1029/2019JA027544 10.1002/2017JA024435 10.1016/j.pss.2010.10.014 10.1002/2017JA024332 10.1126/science.1211001 10.1017/9781316650684 10.1002/2018JA025214 10.1016/j.icarus.2010.01.008 10.1002/jgra.50602 10.1007/bf00058655 10.1029/2012JE004217 10.1029/94ja01778 10.1007/s11214‐023‐01017‐2 10.1029/2020GL087350 10.1029/JA081i022p03897 10.1002/2017JA024295 10.1029/2012JA017898 10.1016/j.asr.2015.11.012 10.1029/2017JA025155 10.1029/2023JA031810 10.1016/j.pss.2017.12.016 10.1051/0004‐6361/202243911 10.1007/s11214‐007‐9246‐7 10.1002/2016JA023687 10.1029/2022ja031206 10.1029/2011JA017268 10.1029/ja080i031p04359 10.1029/97JA00196 10.1029/2009gl041485 10.1016/j.pss.2014.12.016 10.3847/1538‐4357/acf655 10.1016/0032‐0633(66)90124‐3 10.1007/s11430‐021‐9828‐0 10.1038/s41467‐021‐26344‐2 10.1002/2017JA024594 10.1029/2002ja009726 10.1016/s0032‐0633(02)00039‐9 10.1016/j.jastp.2021.105624 10.1126/science.1188067 10.1134/s0010952522600081 10.1029/2019JA026628 10.1029/2021JA029664 10.1029/2019JA026892 10.1038/ncomms2676 10.1002/2013JA019244 10.1029/2004JA010649 10.1051/0004‐6361/202245008 10.1002/9781119815624.ch34 10.1029/2002ja009569 10.1002/jgra.50428 10.1007/s11214‐021‐00839‐2 10.1029/2020JA028281 10.5281/zenodo.8298647 10.1029/2021GL092606 10.1002/2017gl073031 10.1029/2018GL079282 10.1002/2017GL074858 |
ContentType | Journal Article |
Copyright | 2024. The Author(s). published by Wiley Periodicals LLC on behalf of American Geophysical Union. |
Copyright_xml | – notice: 2024. The Author(s). published by Wiley Periodicals LLC on behalf of American Geophysical Union. |
DBID | 24P AAYXX CITATION OTOTI DOA |
DOI | 10.1029/2024JH000239 |
DatabaseName | Wiley Online Library Open Access CrossRef OSTI.GOV DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journal Collection url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2993-5210 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_828dc407719445e3b1805df8cc1d407d 2483781 10_1029_2024JH000239 JGR168 |
Genre | researchArticle |
GrantInformation_xml | – fundername: Office of Nuclear Energy – fundername: National Aeronautics and Space Administration – fundername: Irish Research Council – fundername: Discovery Eye Foundation – fundername: University of British Columbia – fundername: NERC Independent Research Fellowship funderid: NE/W009129/1 – fundername: Laureate Education – fundername: NASA Discovery Data Analysis Program funderid: 80NSSC22K106 – fundername: Science Foundation Ireland funderid: 18/FRL/6199 – fundername: Irish Research Council Laureate Consolidator Grant |
GroupedDBID | 24P ACCMX ALMA_UNASSIGNED_HOLDINGS 0R~ AAMMB AAYXX AEFGJ AGXDD AIDQK AIDYY CITATION GROUPED_DOAJ M~E WIN OTOTI |
ID | FETCH-LOGICAL-c2098-9ccc833343e721d5123bfeef9143f2f267e0ef74c61e18772f54e43d1afcada73 |
IEDL.DBID | DOA |
ISSN | 2993-5210 |
IngestDate | Wed Aug 27 01:19:22 EDT 2025 Mon Apr 21 02:20:35 EDT 2025 Tue Aug 05 12:09:35 EDT 2025 Wed Jan 22 17:11:47 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2098-9ccc833343e721d5123bfeef9143f2f267e0ef74c61e18772f54e43d1afcada73 |
Notes | USDOE |
ORCID | 0000-0001-5260-658X 0000-0001-7321-4331 0000-0003-0635-7361 0000-0002-8665-5459 0000-0002-1837-4057 0000-0002-6336-7526 0000000173214331 0000000218374057 000000015260658X 0000000286655459 0000000306357361 0000000263367526 |
OpenAccessLink | https://doaj.org/article/828dc407719445e3b1805df8cc1d407d |
PageCount | 26 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_828dc407719445e3b1805df8cc1d407d osti_scitechconnect_2483781 crossref_primary_10_1029_2024JH000239 wiley_primary_10_1029_2024JH000239_JGR168 |
PublicationCentury | 2000 |
PublicationDate | December 2024 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: December 2024 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of geophysical research. Machine learning and computation |
PublicationYear | 2024 |
Publisher | American Geophysical Union (AGU) Wiley |
Publisher_xml | – name: American Geophysical Union (AGU) – name: Wiley |
References | 2013; 4 2020a; 47 1966; 14 2002; 50 2021; 126 2017; 44 2018; 123 2019; 124 2024; 220 2011; 59 2022; 65 2020; 125 2018; 45 2001; 45 2009; 114 1997; 102 2022; 164 2017; 30 2020; 891 1984; 11 2013; 118 2007; 131 2020; 216 2020; 47 1979; 3 2024b 2024a 2017; 122 1996; 24 2022; 127 2009; 324 1975; 80 2011; 333 2021; 48 2010; 37 2010; 209 2005; 110 2024; 129 1976; 81 2023; 128 2016; 121 2018; 21 2016; 58 2022; 49 2023; 61 2018; 153 2003; 108 2021; 12 2015; 115 2023 2022 2021 2019; 46 1967; 72 2021; 218 2021; 217 1994; 99 2023; 677 2023; 957 2015 2021; 298 2010a; 329 2012; 117 2022; 668 1979; 84 2022; 664 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 Lundberg S. M. (e_1_2_8_48_1) 2017; 30 e_1_2_8_3_1 e_1_2_8_81_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 Sonnerup B. t. (e_1_2_8_79_1) 1979; 3 e_1_2_8_87_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_17_1 e_1_2_8_19_1 Géron A. (e_1_2_8_23_1) 2022 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_70_1 e_1_2_8_91_1 e_1_2_8_95_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_93_1 e_1_2_8_29_1 e_1_2_8_25_1 Julka S. (e_1_2_8_37_1) 2022 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_69_1 Ioffe S. (e_1_2_8_31_1) 2015 e_1_2_8_2_1 e_1_2_8_80_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_67_1 e_1_2_8_88_1 e_1_2_8_44_1 e_1_2_8_65_1 e_1_2_8_86_1 e_1_2_8_63_1 e_1_2_8_84_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_82_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_58_1 e_1_2_8_92_1 e_1_2_8_94_1 e_1_2_8_90_1 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_77_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_75_1 e_1_2_8_52_1 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_71_1 |
References_xml | – volume: 122 start-page: 7907 issue: 8 year: 2017 end-page: 7924 article-title: Interplanetary magnetic field properties and variability near Mercury’s orbit publication-title: Journal of Geophysical Research: Space Physics – volume: 58 start-page: 181 issue: 2 year: 2016 end-page: 187 article-title: A comparison of the IMF structure and the magnetic field in the magnetosheath under the radial IMF conditions publication-title: Advances in Space Research – volume: 81 start-page: 3897 issue: 22 year: 1976 end-page: 3906 article-title: Bow shock and magnetosheath waves at mercury publication-title: Journal of Geophysical Research (1896‐1977) – volume: 333 start-page: 1859 issue: 6051 year: 2011 end-page: 1862 article-title: The global magnetic field of mercury from messenger orbital observations publication-title: Science – volume: 24 start-page: 123 issue: 2 year: 1996 end-page: 140 article-title: Bagging predictors publication-title: Machine Learning – volume: 12 issue: 1 year: 2021 article-title: Occurrence rate of ultra‐low frequency waves in the foreshock of mercury increases with heliocentric distance publication-title: Nature Communications – volume: 128 issue: 11 year: 2023 article-title: Magnetic field draping in induced magnetospheres: Evidence from the maven mission to mars publication-title: Journal of Geophysical Research: Space Physics – volume: 122 start-page: 12153 issue: 12 year: 2017 end-page: 12169 article-title: Mercury’s solar wind interaction as characterized by magnetospheric plasma mantle observations with messenger publication-title: Journal of Geophysical Research: Space Physics – volume: 220 start-page: 7 issue: 1 year: 2024 article-title: Magnetic reconnection at planetary bodies and astrospheres publication-title: Space Science Reviews – volume: 61 start-page: 194 issue: 3 year: 2023 end-page: 205 article-title: Automatic detection of bow shock and magnetopause positions at Mercury’s magnetosphere using messenger magnetometer data publication-title: Cosmic Research – volume: 65 start-page: 1 year: 2022 end-page: 50 article-title: Review of Mercury’s dynamic magnetosphere: Post‐MESSENGER era and comparative magnetospheres publication-title: Science China Earth Sciences – volume: 125 issue: 9 year: 2020 article-title: Properties of solar wind structures at Mercury’s orbit publication-title: Journal of Geophysical Research: Space Physics – volume: 45 start-page: 5 issue: 1 year: 2001 end-page: 32 article-title: Random forests publication-title: Machine Learning – volume: 49 issue: 24 year: 2022 article-title: The search for magnetotail twisting at Mercury: Comparing messenger observations with the terrestrial case publication-title: Geophysical Research Letters – volume: 127 issue: 11 year: 2022 article-title: Proton precipitation in Mercury’s northern magnetospheric cusp publication-title: Journal of Geophysical Research: Space Physics – volume: 324 start-page: 606 issue: 5927 year: 2009 end-page: 610 article-title: Messenger observations of magnetic reconnection in Mercury’s magnetosphere publication-title: Science – volume: 37 issue: 2 year: 2010 article-title: Messenger observations of large flux transfer events at Mercury publication-title: Geophysical Research Letters – volume: 3 start-page: 45 year: 1979 end-page: 108 article-title: Magnetic field reconnection publication-title: Solar System Plasma Physics – volume: 117 issue: E12 year: 2012 article-title: Messenger observations of Mercury’s magnetic field structure publication-title: Journal of Geophysical Research – volume: 80 start-page: 4359 issue: 31 year: 1975 end-page: 4363 article-title: Substorms on Mercury? publication-title: Journal of Geophysical Research – volume: 108 issue: A5 year: 2003 article-title: Three‐dimensional modeling of Earth’s bow shock: Shock shape as a function of Alfvén Mach number publication-title: Journal of Geophysical Research – volume: 217 start-page: 90 issue: 8 year: 2021 article-title: BepiColombo‐mission overview and science goals publication-title: Space Science Reviews – volume: 118 start-page: 2213 issue: 5 year: 2013 end-page: 2227 article-title: Mercury’s magnetopause and bow shock from messenger magnetometer observations publication-title: Journal of Geophysical Research: Space Physics – volume: 117 issue: A1 year: 2012 article-title: Messenger and mariner 10 flyby observations of magnetotail structure and dynamics at Mercury publication-title: Journal of Geophysical Research – start-page: 535 year: 2021 end-page: 556 – volume: 11 start-page: 279 issue: 3 year: 1984 end-page: 282 article-title: Large scale temporal and radial gradients in the IMF: Helios 1, 2, ISEE‐3, and pioneer 10, 11 publication-title: Geophysical Research Letters – volume: 72 start-page: 5865 issue: 23 year: 1967 end-page: 5877 article-title: The ordered magnetic field of the magnetosheath publication-title: Journal of Geophysical Research (1896‐1977) – volume: 126 issue: 10 year: 2021 article-title: Variability of the interplanetary magnetic field as a driver of electromagnetic induction in Mercury’s interior publication-title: Journal of Geophysical Research: Space Physics – volume: 121 start-page: 2349 issue: 11 year: 2016 end-page: 2362 article-title: A whole new mercury: Messenger reveals a dynamic planet at the last Frontier of the inner solar system publication-title: Journal of Geophysical Research: Planets – volume: 59 start-page: 2075 issue: 15 year: 2011 end-page: 2085 article-title: The interplanetary magnetic field environment at Mercury’s orbit publication-title: Planetary and Space Science – year: 2023 article-title: Lists of magnetopause and bow shock crossings of Mercury by MESSENGER spacecraft publication-title: Zenodo – volume: 118 start-page: 2809 issue: 6 year: 2013 end-page: 2823 article-title: Upstream ultra‐low frequency waves in Mercury’s foreshock region: Messenger magnetic field observations publication-title: Journal of Geophysical Research: Space Physics – volume: 46 start-page: 10977 issue: 20 year: 2019 end-page: 10986 article-title: Recovery timescales of the dayside martian magnetosphere to IMF variability publication-title: Geophysical Research Letters – volume: 117 issue: A10 year: 2012 article-title: A global hybrid model for Mercury’s interaction with the solar wind: Case study of the dipole representation publication-title: Journal of Geophysical Research – volume: 118 start-page: 6457 issue: 10 year: 2013 end-page: 6464 article-title: Cyclic reformation of a quasi‐parallel bow shock at mercury: Messenger observations publication-title: Journal of Geophysical Research: Space Physics – volume: 124 start-page: 6613 issue: 8 year: 2019 end-page: 6635 article-title: Messenger observations of disappearing dayside magnetosphere events at Mercury publication-title: Journal of Geophysical Research: Space Physics – volume: 44 start-page: 5877 issue: 12 year: 2017 end-page: 5883 article-title: Local time asymmetry of Saturn’s magnetosheath flows publication-title: Geophysical Research Letters – volume: 218 year: 2021 article-title: RMSE is not enough: Guidelines to robust data‐model comparisons for magnetospheric physics publication-title: Journal of Atmospheric and Solar‐Terrestrial Physics – volume: 108 issue: A5 year: 2003 article-title: Diamagnetic suppression of component magnetic reconnection at the magnetopause publication-title: Journal of Geophysical Research – volume: 114 issue: A8 year: 2009 article-title: Correlation properties of magnetosheath magnetic field fluctuations publication-title: Journal of Geophysical Research – volume: 164 start-page: 260 issue: 6 year: 2022 article-title: The Mercury’s bow‐shock models near perihelion and aphelion publication-title: The Astronomical Journal – year: 2022 – volume: 4 issue: 1 year: 2013 article-title: Dawn–dusk asymmetry in the kelvin–Helmholtz instability at mercury publication-title: Nature Communications – volume: 128 issue: 5 year: 2023 article-title: Global Hall MHD simulations of Mercury’s magnetopause dynamics and FTEs under different solar wind and IMF conditions publication-title: Journal of Geophysical Research: Space Physics – volume: 216 start-page: 1 issue: 5 year: 2020 end-page: 78 article-title: Investigating Mercury’s environment with the two‐spacecraft BepiColombo mission publication-title: Space Science Reviews – volume: 891 start-page: 159 issue: 2 year: 2020 article-title: Analysis of turbulence properties in the mercury plasma environment using messenger observations publication-title: The Astrophysical Journal – year: 2021 article-title: MESSENGER MAG time‐averaged calibrated MSO coordinates science data collection publication-title: Planetary Data System – volume: 124 start-page: 8865 issue: 11 year: 2019 end-page: 8883 article-title: Survey of saturn’s magnetopause and bow shock positions over the entire cassini mission: Boundary statistical properties and exploration of associated upstream conditions publication-title: Journal of Geophysical Research: Space Physics – start-page: 452 year: 2022 end-page: 467 – volume: 127 issue: 12 year: 2022 article-title: Global three‐dimensional draping of magnetic field lines in Earth’s magnetosheath from in‐situ spacecraft measurements publication-title: Journal of Geophysical Research: Space Physics – volume: 217 start-page: 1 issue: 5 year: 2021 end-page: 91 article-title: Pre‐flight calibration and near‐earth commissioning results of the mercury plasma particle experiment (MPPE) onboard MMO (MIO) publication-title: Space Science Reviews – volume: 48 issue: 9 year: 2021 article-title: Pick‐up ion cyclotron waves around mercury publication-title: Geophysical Research Letters – volume: 125 issue: 5 year: 2020 article-title: The shape of Mercury’s magnetopause: The picture from messenger magnetometer observations and future prospects for BepiColombo publication-title: Journal of Geophysical Research: Space Physics – volume: 59 start-page: 2004 issue: 15 year: 2011 end-page: 2015 article-title: MESSENGER observations of the plasma environment near Mercury publication-title: Planetary and Space Science – volume: 47 issue: 21 year: 2020a article-title: Flux transfer event showers at Mercury: Dependence on plasma and magnetic shear and their contribution to the dungey cycle publication-title: Geophysical Research Letters – volume: 128 issue: 11 year: 2023 article-title: Does reconnection only occur at points of maximum shear on Mercury’s dayside magnetopause? publication-title: Journal of Geophysical Research: Space Physics – volume: 129 issue: 2 year: 2024 article-title: Statistical analysis of mercury’s magnetotail lobe field using messenger observations publication-title: Journal of Geophysical Research: Space Physics – volume: 125 issue: 3 year: 2020 article-title: Messenger observations of Mercury’s nightside magnetosphere under extreme solar wind conditions: Reconnection‐generated structures and steady convection publication-title: Journal of Geophysical Research: Space Physics – volume: 44 start-page: 10829 issue: 21 year: 2017 end-page: 10837 article-title: The influence of IMF clock angle on dayside flux transfer events at Mercury publication-title: Geophysical Research Letters – volume: 50 start-page: 601 issue: 5–6 year: 2002 end-page: 612 article-title: Multispacecraft measurements of plasma and magnetic field variations in the magnetosheath: Comparison with spreiter models and motion of the structures publication-title: Planetary and Space Science – volume: 129 issue: 3 year: 2024 article-title: Determining the influence of the IMF and planetary magnetic field models on Mercury’s magnetosphere along spacecraft trajectories of MESSENGER, BepiColombo and MPO publication-title: Journal of Geophysical Research: Space Physics – volume: 102 start-page: 9497 issue: A5 year: 1997 end-page: 9511 article-title: A new functional form to study the solar wind control of the magnetopause size and shape publication-title: Journal of Geophysical Research – volume: 209 start-page: 11 issue: 1 year: 2010 end-page: 22 article-title: Mercury’s magnetosphere–Solar wind interaction for northward and southward interplanetary magnetic field: Hybrid simulation results publication-title: Icarus – volume: 125 issue: 4 year: 2020 article-title: Hybrid simulations of solar wind proton precipitation to the surface of mercury publication-title: Journal of Geophysical Research: Space Physics – volume: 45 start-page: 10855 issue: 20 year: 2018 end-page: 10865 article-title: An artificial neural network for inferring solar wind proxies at Mars publication-title: Geophysical Research Letters – volume: 14 start-page: 223 issue: 3 year: 1966 end-page: 253 article-title: Hydromagnetic flow around the magnetosphere publication-title: Planetary and Space Science – volume: 117 issue: A4 year: 2012 article-title: Messenger orbital observations of large‐amplitude Kelvin‐Helmholtz waves at Mercury’s magnetopause publication-title: Journal of Geophysical Research – volume: 30 year: 2017 article-title: A unified approach to interpreting model predictions publication-title: Advances in Neural Information Processing Systems – volume: 122 start-page: 11402 issue: 11 year: 2017 end-page: 11412 article-title: Messenger observations of magnetotail loading and unloading: Implications for substorms at mercury publication-title: Journal of Geophysical Research: Space Physics – volume: 84 start-page: 5938 issue: A10 year: 1979 end-page: 5940 article-title: Solar cycle variations in IMF intensity publication-title: Journal of Geophysical Research – volume: 123 start-page: 5315 issue: 7 year: 2018 end-page: 5333 article-title: Effects of the crustal magnetic fields and changes in the IMF orientation on the magnetosphere of Mars: Maven observations and Lathys results publication-title: Journal of Geophysical Research: Space Physics – volume: 21 year: 2018 – volume: 298 year: 2021 article-title: Explaining individual predictions when features are dependent: More accurate approximations to Shapley values publication-title: Artificial Intelligence – volume: 118 start-page: 4381 issue: 7 year: 2013 end-page: 4390 article-title: A comparison of magnetic overshoots at the bow shocks of mercury and Saturn publication-title: Journal of Geophysical Research: Space Physics – volume: 128 issue: 2 year: 2023 article-title: Messenger observations of reconnection in Mercury’s magnetotail under strong IMF forcing publication-title: Journal of Geophysical Research: Space Physics – volume: 47 issue: 9 year: 2020 article-title: Upstream ultra‐low frequency waves observed by messenger’s magnetometer: Implications for particle acceleration at Mercury’s bow shock publication-title: Geophysical Research Letters – volume: 668 start-page: A113 year: 2022 article-title: Solar‐wind‐dependent streamline model for Mercury’s magnetosheath‐a hydrodynamic magnetosheath model for Mercury publication-title: Astronomy & Astrophysics – year: 2015 article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift publication-title: CoRR – volume: 664 year: 2022 article-title: Electron dynamics in small magnetospheres‐insights from global, fully kinetic plasma simulations of the planet mercury publication-title: Astronomy & Astrophysics – volume: 110 issue: A2 year: 2005 article-title: Solar wind spatial scales in and comparisons of hourly wind and ace plasma and magnetic field data publication-title: Journal of Geophysical Research – volume: 677 start-page: A142 year: 2023 article-title: The magnetic field clock angle departure in the Venusian magnetosheath and its response to IMF rotation publication-title: Astronomy & Astrophysics – volume: 153 start-page: 89 year: 2018 end-page: 99 article-title: Coronal mass ejection hits Mercury: AIKEF hybrid‐code results compared to MESSENGER data publication-title: Planetary and Space Science – volume: 99 start-page: 23617 issue: A12 year: 1994 end-page: 23622 article-title: A model of the steady state magnetic field in the magnetosheath publication-title: Journal of Geophysical Research – volume: 123 start-page: 2034 issue: 3 year: 2018 end-page: 2053 article-title: Survey of magnetosheath plasma properties at Saturn and inference of upstream flow conditions publication-title: Journal of Geophysical Research: Space Physics – volume: 131 start-page: 417 issue: 1–4 year: 2007 end-page: 450 article-title: The magnetometer instrument on messenger publication-title: The MESSENGER mission to Mercury – volume: 329 start-page: 665 issue: 5992 year: 2010a end-page: 668 article-title: Messenger observations of extreme loading and unloading of Mercury’s magnetic tail publication-title: Science – year: 2024b article-title: Messenger_fnn_imf_predictions_27_03_2024 publication-title: Zenodo – volume: 118 start-page: 997 issue: 3 year: 2013 end-page: 1008 article-title: Messenger observations of magnetopause structure and dynamics at mercury publication-title: Journal of Geophysical Research: Space Physics – volume: 122 start-page: 8136 issue: 8 year: 2017 end-page: 8153 article-title: Flux ropes in the hermean magnetotail: Distribution, properties, and formation publication-title: Journal of Geophysical Research: Space Physics – year: 2024a article-title: Annestimatorpub: Fnn_messenger_imf_predictor publication-title: Zenodo – volume: 118 start-page: 7181 issue: 11 year: 2013 end-page: 7199 article-title: Magnetic flux pileup and plasma depletion in Mercury’s subsolar magnetosheath publication-title: Journal of Geophysical Research: Space Physics – volume: 957 start-page: 26 issue: 1 year: 2023 article-title: Anomalous response of mercury’s magnetosphere to solar wind compression: Comparison to earth publication-title: The Astrophysical Journal – volume: 115 start-page: 77 year: 2015 end-page: 89 article-title: Messenger observations of flux ropes in Mercury’s magnetotail publication-title: Planetary and Space Science – volume: 122 start-page: 6150 issue: 6 year: 2017 end-page: 6164 article-title: Solar wind controls on mercury’s magnetospheric cusp publication-title: Journal of Geophysical Research: Space Physics – ident: e_1_2_8_57_1 doi: 10.1016/j.pss.2011.02.004 – ident: e_1_2_8_8_1 doi: 10.5281/zenodo.10887513 – ident: e_1_2_8_61_1 doi: 10.1029/2019GL084151 – volume: 3 start-page: 45 year: 1979 ident: e_1_2_8_79_1 article-title: Magnetic field reconnection publication-title: Solar System Plasma Physics – ident: e_1_2_8_38_1 doi: 10.1029/JA084iA10p05938 – ident: e_1_2_8_22_1 doi: 10.1029/2019ja027706 – ident: e_1_2_8_62_1 doi: 10.1029/2022GL101643 – ident: e_1_2_8_11_1 doi: 10.1023/a:1010933404324 – ident: e_1_2_8_83_1 doi: 10.1029/2019JA027490 – ident: e_1_2_8_26_1 doi: 10.1029/2009JA014173 – ident: e_1_2_8_28_1 doi: 10.3847/1538‐3881/ac9d89 – ident: e_1_2_8_29_1 doi: 10.3847/1538‐4357/ab7349 – ident: e_1_2_8_7_1 doi: 10.5281/zenodo.13737540 – ident: e_1_2_8_35_1 doi: 10.1002/2016JE005150 – ident: e_1_2_8_56_1 doi: 10.1029/2022JA030397 – ident: e_1_2_8_93_1 doi: 10.1029/2022ja031134 – ident: e_1_2_8_84_1 doi: 10.1029/2020GL089784 – ident: e_1_2_8_18_1 doi: 10.1029/2023JA032248 – ident: e_1_2_8_72_1 doi: 10.1029/2011JA016900 – ident: e_1_2_8_6_1 doi: 10.1007/s11214‐021‐00861‐4 – ident: e_1_2_8_44_1 doi: 10.1002/jgra.50342 – start-page: 452 volume-title: Joint European conference on machine learning and knowledge discovery in databases year: 2022 ident: e_1_2_8_37_1 – ident: e_1_2_8_9_1 doi: 10.1029/2023JA032162 – ident: e_1_2_8_51_1 doi: 10.1007/s11214‐020‐00712‐8 – ident: e_1_2_8_90_1 doi: 10.1002/jgra.50237 – ident: e_1_2_8_50_1 doi: 10.1029/2022ja030996 – ident: e_1_2_8_91_1 doi: 10.1051/0004‐6361/202346989 – ident: e_1_2_8_5_1 doi: 10.1029/2023JA031546 – ident: e_1_2_8_20_1 doi: 10.1029/JZ072i023p05865 – ident: e_1_2_8_76_1 doi: 10.1029/GL011i003p00279 – ident: e_1_2_8_41_1 doi: 10.17189/1522377 – ident: e_1_2_8_2_1 doi: 10.1016/j.artint.2021.103502 – ident: e_1_2_8_70_1 doi: 10.1126/science.1172011 – ident: e_1_2_8_15_1 doi: 10.1002/jgra.50123 – ident: e_1_2_8_54_1 doi: 10.1029/2019JA027544 – ident: e_1_2_8_33_1 doi: 10.1002/2017JA024435 – ident: e_1_2_8_42_1 doi: 10.1016/j.pss.2010.10.014 – ident: e_1_2_8_30_1 doi: 10.1002/2017JA024332 – ident: e_1_2_8_4_1 doi: 10.1126/science.1211001 – ident: e_1_2_8_78_1 doi: 10.1017/9781316650684 – ident: e_1_2_8_88_1 doi: 10.1002/2018JA025214 – ident: e_1_2_8_89_1 doi: 10.1016/j.icarus.2010.01.008 – ident: e_1_2_8_86_1 doi: 10.1002/jgra.50602 – ident: e_1_2_8_10_1 doi: 10.1007/bf00058655 – ident: e_1_2_8_36_1 doi: 10.1029/2012JE004217 – ident: e_1_2_8_40_1 doi: 10.1029/94ja01778 – ident: e_1_2_8_24_1 doi: 10.1007/s11214‐023‐01017‐2 – ident: e_1_2_8_60_1 doi: 10.1029/2020GL087350 – ident: e_1_2_8_21_1 doi: 10.1029/JA081i022p03897 – ident: e_1_2_8_77_1 doi: 10.1002/2017JA024295 – ident: e_1_2_8_58_1 doi: 10.1029/2012JA017898 – ident: e_1_2_8_55_1 doi: 10.1016/j.asr.2015.11.012 – ident: e_1_2_8_63_1 doi: 10.1029/2017JA025155 – volume-title: Hands‐on machine learning with scikit‐learn, keras, and tensorflow year: 2022 ident: e_1_2_8_23_1 – ident: e_1_2_8_95_1 doi: 10.1029/2023JA031810 – ident: e_1_2_8_19_1 doi: 10.1016/j.pss.2017.12.016 – ident: e_1_2_8_43_1 doi: 10.1051/0004‐6361/202243911 – ident: e_1_2_8_3_1 doi: 10.1007/s11214‐007‐9246‐7 – ident: e_1_2_8_27_1 doi: 10.1002/2016JA023687 – ident: e_1_2_8_46_1 doi: 10.1029/2022ja031206 – ident: e_1_2_8_85_1 doi: 10.1029/2011JA017268 – year: 2015 ident: e_1_2_8_31_1 article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift publication-title: CoRR – ident: e_1_2_8_69_1 doi: 10.1029/ja080i031p04359 – ident: e_1_2_8_68_1 doi: 10.1029/97JA00196 – ident: e_1_2_8_74_1 doi: 10.1029/2009gl041485 – ident: e_1_2_8_16_1 doi: 10.1016/j.pss.2014.12.016 – ident: e_1_2_8_14_1 doi: 10.3847/1538‐4357/acf655 – ident: e_1_2_8_80_1 doi: 10.1016/0032‐0633(66)90124‐3 – ident: e_1_2_8_82_1 doi: 10.1007/s11430‐021‐9828‐0 – ident: e_1_2_8_59_1 doi: 10.1038/s41467‐021‐26344‐2 – ident: e_1_2_8_34_1 doi: 10.1002/2017JA024594 – ident: e_1_2_8_87_1 doi: 10.1029/2002ja009726 – ident: e_1_2_8_92_1 doi: 10.1016/s0032‐0633(02)00039‐9 – ident: e_1_2_8_47_1 doi: 10.1016/j.jastp.2021.105624 – ident: e_1_2_8_71_1 doi: 10.1126/science.1188067 – ident: e_1_2_8_52_1 doi: 10.1134/s0010952522600081 – ident: e_1_2_8_32_1 doi: 10.1029/2019JA026628 – ident: e_1_2_8_94_1 doi: 10.1029/2021JA029664 – ident: e_1_2_8_75_1 doi: 10.1029/2019JA026892 – ident: e_1_2_8_53_1 doi: 10.1038/ncomms2676 – ident: e_1_2_8_25_1 doi: 10.1002/2013JA019244 – ident: e_1_2_8_39_1 doi: 10.1029/2004JA010649 – ident: e_1_2_8_67_1 doi: 10.1051/0004‐6361/202245008 – ident: e_1_2_8_73_1 doi: 10.1002/9781119815624.ch34 – ident: e_1_2_8_13_1 doi: 10.1029/2002ja009569 – volume: 30 year: 2017 ident: e_1_2_8_48_1 article-title: A unified approach to interpreting model predictions publication-title: Advances in Neural Information Processing Systems – ident: e_1_2_8_49_1 doi: 10.1002/jgra.50428 – ident: e_1_2_8_65_1 doi: 10.1007/s11214‐021‐00839‐2 – ident: e_1_2_8_17_1 doi: 10.1029/2020JA028281 – ident: e_1_2_8_81_1 doi: 10.5281/zenodo.8298647 – ident: e_1_2_8_66_1 doi: 10.1029/2021GL092606 – ident: e_1_2_8_12_1 doi: 10.1002/2017gl073031 – ident: e_1_2_8_64_1 doi: 10.1029/2018GL079282 – ident: e_1_2_8_45_1 doi: 10.1002/2017GL074858 |
SSID | ssj0003320807 |
Score | 2.2759461 |
Snippet | Mercury's small magnetosphere is embedded in the dynamic and intense solar wind environment characteristic of the inner heliosphere. Both the magnitude and... Abstract Mercury's small magnetosphere is embedded in the dynamic and intense solar wind environment characteristic of the inner heliosphere. Both the... Abstract Mercury's small magnetosphere is embedded in the dynamic and intense solar wind environment characteristic of the inner heliosphere. Both the... |
SourceID | doaj osti crossref wiley |
SourceType | Open Website Open Access Repository Index Database Publisher |
SubjectTerms | IMF magnetosphere neural network |
SummonAdditionalLinks | – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEBbN9tJLSElLt0mLDgklB1NZkm35mIZ1lgUnIWQhNyPrscmhdvC6vyR_ODOya3YvhV5sEJItz-gxM_rmMyFngrs854mKlPAiknXGIq0TC4sh0wzWZCkMBvTLm3S5lqvH5HEMuGEuzMAPMQXccGaE9RonuK63I9kAcmSC1y5Xy0DYkh-Q95hdi-Ocy7spxiIEZ0PGNEeYGuxUbMS-wyN-7j5gb1cK5P1wa2GS7dusYdMpjsjhaC3Sy0G9H8k71xyT1wW0QEOz2dABM4iA1R6-hJZ602BWIi0QmEavWjyQxoFFdU9L1xmQ4I8tve3q554WXfublqCABeIhxrbtFlfnJ3pbT-HaLQ24AqppAWIFIxeBthRZPaBrNwOM_BNZF4uHq2U0_lshMhwpRHNjjBJCSOHAB7Sw7YvaO-dzsJ889zzNHHM-kyaNXazABPeJdFLYWHujrc7EZzJr2sZ9IVRZxgzT0mAulPRKuVQYuFqprNO1nZPzv7KtXgYKjSocffO82tXBnPxCwU91kPg6FLTdphrnUQUOojXghGZxLmXiRB0rllivjIktFMPLTlBtFdgPSIJrEC1k-ooH4vx4Ti6CNv_Zj2p1fR-n6ut_1D0hH7B0gLmcklnf_XHfwFjp6-9hRL4BndrhDA priority: 102 providerName: Wiley-Blackwell |
Title | Estimating Interplanetary Magnetic Field Conditions at Mercury's Orbit From MESSENGER Magnetosheath Observations Using a Feedforward Neural Network |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2024JH000239 https://www.osti.gov/biblio/2483781 https://doaj.org/article/828dc407719445e3b1805df8cc1d407d |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUKp14QiFYsFOQDVdVDhGM7iXNs0YbVSoGqYqW9RY4_Fg4kKJseeumf4A8z4wS0e4FLL45kxZE144zf2M_PhJwL7vKcJypSwotI1hmLtE4sBEOmGcRkKQwu6JfX6Wwh58tkuXHVF3LCBnngwXAXkBFYA1lHBtm2TJyoY8US65UxsYVqi9EX5ryNZApjsBAcoFA2Mt0ZzzHJl_NZ0HfJt-agINUPjxZ-qW2EGqaYYp_sjdiQ_hj6dEA-uOaQPE2hBcLKZkUHhiDSU3vd_aWlXjV4BpEWSEOjly1uP-MworqnpesM2Ovbmt509X1Pi659oCWYe4rsh7Ftu8ZYfEdv6tfF2TUNLAKqaQFGBEiLtFqKGh7QteuBNP6JLIrp7eUsGm9SiAxHwdDcGKOEEFI4yPgsTPKi9s75HNCS556nmWPOZ9KksYsVAG6fSCeFjbU32upMfCa7Tdu4I0KVZcwwLQ2efJJeKZcKA6WVyjpd2wn5-mLb6nEQzKjCRjfPq00fTMhPNPzrOyhzHSrA-dXo_Oo950_ICbqtArSAkrcGuUGmr3iQyY8n5Hvw5pv9qOZXv-NUHf-P7pyQj_jpge3yhez23R93Cpilr8_IDpe_zsIghbL8N30G5QbpWA |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELVKe4ALAhXEthR8AKEeIhzbSZxjqTYs22aLqlbqzXL8se2BBGXDL-kfZsZJV-0FiUsiWbbjeDz2ePzmmZBPgvuy5JlKlAgikU3BEmMyB5MhMwzmZCksOvTrVb64lsub7Ga65xRjYUZ-iK3DDTUjzteo4OiQntgGkCQTtu1yuYiMLeUzsidzXuDdDVz-3DpZhOBsDJnmiFODpYpN4Heo4uvjCp4sS5G9H14daNlTozWuOtUr8nIyF-nJKN_XZMe3--R-DiXQ0mzXdAQNImJ1gF-htVm3GJZIK0Sm0dMOT6RxZFEz0Nr3Frrwy4Ze9M3dQKu--0VrkMAcARFT2W6D0_MtvWi2_toNjcACamgF_QpWLiJtKdJ6QNNWI478Dbmu5leni2S6XCGxHDlES2utEkJI4WET6GDdF03wPpRgQAUeeF545kMhbZ76VIENHjLppXCpCdY4U4i3ZLftWv-OUOUYs8xIi8FQMijlc2Hh6aRy3jRuRj4_9K3-PXJo6Hj2zUv9WAYz8g07fpsHma9jQtev9aRIGnaIzsIutEhLKTMvmlSxzAVlbeogGT52iGLTYEAgC65FuJAdNI_M-emMHEdp_rMdevn9Ms3VwX_k_UieL67qc33-Y3V2SF5gjhHz8p7sDv0ffwSWy9B8iKPzL9C75Hg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwELUoSFUvVSuouqVQH0AVh6iO7STOkdINy9JdECoSN8vxx7aHJigbfkn_cGecsIJLpV4SKbIdx-MZz4yfXwg5EtyXJc9UokQQiawLlhiTOTCGzDCwyVJYTOgvlvnsVs7vsrsx4YZnYQZ-iE3CDTUj2mtU8HsXRrIB5MiEqF3OZ5GwpXxBdnC_D2c4l9ebHIsQnA0npjnC1GClYiP2HZr48rSBZ6tSJO-HWwtK9txnjYtO9Ya8Hr1FejqI9y3Z8s0u-TOFGuhoNis6YAYRsNrDl9CFWTV4KpFWCEyjZy1uSOPEoqanC99ZGMHPa3rV1b96WnXtb7oAAUwRDzHWbddonX_Sq3qTrl3TiCughlYwrODkItCWIqsHdG05wMj3yG01_XE2S8Z_KySWI4Voaa1VQggpPMSADpZ9UQfvQwn-U-CB54VnPhTS5qlPFbjgIZNeCpeaYI0zhXhHtpu28e8JVY4xy4y0eBZKBqV8LixcnVTOm9pNyPHj2Or7gUJDx61vXuqnMpiQrzjwmzJIfB0ftN1Kj3qkIUB0FoLQIi2lzLyoU8UyF5S1qYPH8LJ9FJsG_wFJcC2ihWyveSTOTyfkJErzn_3Q8_ObNFcf_qPsJ_Ly-lulv18sL_fJKywwIF4-ku2-e_AH4Lf09WGcnH8Bjynjqg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimating+Interplanetary+Magnetic+Field+Conditions+at+Mercury%27s+Orbit+From+MESSENGER+Magnetosheath+Observations+Using+a+Feedforward+Neural+Network&rft.jtitle=Journal+of+geophysical+research.+Machine+learning+and+computation&rft.au=Bowers%2C+Charles+F.&rft.au=Jackman%2C+Caitr%C3%ADona+M.&rft.au=Azari%2C+Abigail+R.&rft.au=Smith%2C+Andy+W.&rft.date=2024-12-01&rft.pub=American+Geophysical+Union+%28AGU%29&rft.issn=2993-5210&rft.eissn=2993-5210&rft.volume=1&rft.issue=4&rft_id=info:doi/10.1029%2F2024JH000239&rft.externalDocID=2483781 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2993-5210&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2993-5210&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2993-5210&client=summon |