Estimating Interplanetary Magnetic Field Conditions at Mercury's Orbit From MESSENGER Magnetosheath Observations Using a Feedforward Neural Network

Mercury's small magnetosphere is embedded in the dynamic and intense solar wind environment characteristic of the inner heliosphere. Both the magnitude and orientation of the interplanetary magnetic field (IMF) significantly influence the solar wind‐magnetospheric interaction at Mercury, drivin...

Full description

Saved in:
Bibliographic Details
Published inJournal of geophysical research. Machine learning and computation Vol. 1; no. 4
Main Authors Bowers, Charles F., Jackman, Caitríona M., Azari, Abigail R., Smith, Andy W., Wright, Paul J., Rutala, Matthew J., Sun, Weijie, Healy, Adam
Format Journal Article
LanguageEnglish
Published United States American Geophysical Union (AGU) 01.12.2024
Wiley
Subjects
Online AccessGet full text
ISSN2993-5210
2993-5210
DOI10.1029/2024JH000239

Cover

Loading…
Abstract Mercury's small magnetosphere is embedded in the dynamic and intense solar wind environment characteristic of the inner heliosphere. Both the magnitude and orientation of the interplanetary magnetic field (IMF) significantly influence the solar wind‐magnetospheric interaction at Mercury, driving phenomena such as magnetic reconnection. The MErcury Surface, Space Environment, Geochemistry and Ranging (MESSENGER) spacecraft provided in‐situ magnetic field measurements of the solar wind, the magnetosheath, and the magnetosphere along each orbit. However, it is a challenge to directly assess the IMF's impact on Mercury's plasma environment due to the temporal separation between observations within the solar wind and the magnetosphere, especially in the absence of an upstream monitor. Here, we present a feedforward neural network (FNN) trained on a subset of magnetosheath observations to estimate the strength and orientation of the IMF upstream of the bow shock. Utilizing magnetosheath magnetic field, cylindrical spatial coordinates, and heliocentric distance measurements, the FNN predicts upstream IMF conditions with an r2 ${\mathit{r}}^{2}$ score of 0.70 and mean averaged error of 5.3 nT, thereby greatly decreasing the temporal separation between IMF estimates and magnetospheric measurements throughout the MESSENGER mission. This approach yields IMF estimates for all magnetosheath data measured by MESSENGER, providing a useful tool for future investigations of the IMF impact on Mercury's magnetosphere. This method will be integrable with the dual‐spacecraft BepiColombo magnetosheath measurements, providing useful estimates of upstream IMF conditions particularly during the extended periods in which neither spacecraft sample the solar wind. Our results demonstrate the utility of machine learning techniques on advancing space science research. Plain Language Summary The stream of electrically charged gas emitted from the Sun, known as the solar wind, encounters planetary objects within its flow. The solar wind carries the interplanetary magnetic field (IMF), which has a great influence on the dynamics that govern the interaction between the solar wind and a planetary environment. At Mercury, the solar wind is particularly strong, and the properties of the IMF drive a variety of important physical processes at the planet. The MESSENGER spacecraft orbited Mercury from 2011 to 2015 and sampled both the solar wind and the near‐Mercury environment along each orbit. However, it is difficult to directly measure the IMF's effect on Mercury's environment because there is a gap in time between observations in these different regions. In this study, we use a machine‐learning model to estimate the IMF's strength and direction just before it reaches Mercury, based on data from the region between Mercury's magnetic field and the solar wind. This allows us to fill in the gaps in between solar wind measurements and better understand how the IMF affects Mercury's environment. The model is accurate in predicting the IMF conditions, which provides valuable information for studying Mercury's magnetosphere with both past and future spacecraft missions. Key Points A feedforward neural network (FNN) is trained to predict interplanetary magnetic field (IMF) properties from Mercury magnetosheath observations made by MESSENGER The model achieves high accuracy (r2 = 0.70) predictions for the IMF from magnetosheath measurements The FNN could be integrated with BepiColombo measurements, yielding IMF estimates for the extended periods without solar wind observations
AbstractList Mercury's small magnetosphere is embedded in the dynamic and intense solar wind environment characteristic of the inner heliosphere. Both the magnitude and orientation of the interplanetary magnetic field (IMF) significantly influence the solar wind‐magnetospheric interaction at Mercury, driving phenomena such as magnetic reconnection. The MErcury Surface, Space Environment, Geochemistry and Ranging (MESSENGER) spacecraft provided in‐situ magnetic field measurements of the solar wind, the magnetosheath, and the magnetosphere along each orbit. However, it is a challenge to directly assess the IMF's impact on Mercury's plasma environment due to the temporal separation between observations within the solar wind and the magnetosphere, especially in the absence of an upstream monitor. Here, we present a feedforward neural network (FNN) trained on a subset of magnetosheath observations to estimate the strength and orientation of the IMF upstream of the bow shock. Utilizing magnetosheath magnetic field, cylindrical spatial coordinates, and heliocentric distance measurements, the FNN predicts upstream IMF conditions with an score of 0.70 and mean averaged error of 5.3 nT, thereby greatly decreasing the temporal separation between IMF estimates and magnetospheric measurements throughout the MESSENGER mission. This approach yields IMF estimates for all magnetosheath data measured by MESSENGER, providing a useful tool for future investigations of the IMF impact on Mercury's magnetosphere. This method will be integrable with the dual‐spacecraft BepiColombo magnetosheath measurements, providing useful estimates of upstream IMF conditions particularly during the extended periods in which neither spacecraft sample the solar wind. Our results demonstrate the utility of machine learning techniques on advancing space science research. The stream of electrically charged gas emitted from the Sun, known as the solar wind, encounters planetary objects within its flow. The solar wind carries the interplanetary magnetic field (IMF), which has a great influence on the dynamics that govern the interaction between the solar wind and a planetary environment. At Mercury, the solar wind is particularly strong, and the properties of the IMF drive a variety of important physical processes at the planet. The MESSENGER spacecraft orbited Mercury from 2011 to 2015 and sampled both the solar wind and the near‐Mercury environment along each orbit. However, it is difficult to directly measure the IMF's effect on Mercury's environment because there is a gap in time between observations in these different regions. In this study, we use a machine‐learning model to estimate the IMF's strength and direction just before it reaches Mercury, based on data from the region between Mercury's magnetic field and the solar wind. This allows us to fill in the gaps in between solar wind measurements and better understand how the IMF affects Mercury's environment. The model is accurate in predicting the IMF conditions, which provides valuable information for studying Mercury's magnetosphere with both past and future spacecraft missions. A feedforward neural network (FNN) is trained to predict interplanetary magnetic field (IMF) properties from Mercury magnetosheath observations made by MESSENGER The model achieves high accuracy ( r 2  = 0.70) predictions for the IMF from magnetosheath measurements The FNN could be integrated with BepiColombo measurements, yielding IMF estimates for the extended periods without solar wind observations
Abstract Mercury's small magnetosphere is embedded in the dynamic and intense solar wind environment characteristic of the inner heliosphere. Both the magnitude and orientation of the interplanetary magnetic field (IMF) significantly influence the solar wind‐magnetospheric interaction at Mercury, driving phenomena such as magnetic reconnection. The MErcury Surface, Space Environment, Geochemistry and Ranging (MESSENGER) spacecraft provided in‐situ magnetic field measurements of the solar wind, the magnetosheath, and the magnetosphere along each orbit. However, it is a challenge to directly assess the IMF's impact on Mercury's plasma environment due to the temporal separation between observations within the solar wind and the magnetosphere, especially in the absence of an upstream monitor. Here, we present a feedforward neural network (FNN) trained on a subset of magnetosheath observations to estimate the strength and orientation of the IMF upstream of the bow shock. Utilizing magnetosheath magnetic field, cylindrical spatial coordinates, and heliocentric distance measurements, the FNN predicts upstream IMF conditions with an r2 score of 0.70 and mean averaged error of 5.3 nT, thereby greatly decreasing the temporal separation between IMF estimates and magnetospheric measurements throughout the MESSENGER mission. This approach yields IMF estimates for all magnetosheath data measured by MESSENGER, providing a useful tool for future investigations of the IMF impact on Mercury's magnetosphere. This method will be integrable with the dual‐spacecraft BepiColombo magnetosheath measurements, providing useful estimates of upstream IMF conditions particularly during the extended periods in which neither spacecraft sample the solar wind. Our results demonstrate the utility of machine learning techniques on advancing space science research.
Abstract Mercury's small magnetosphere is embedded in the dynamic and intense solar wind environment characteristic of the inner heliosphere. Both the magnitude and orientation of the interplanetary magnetic field (IMF) significantly influence the solar wind‐magnetospheric interaction at Mercury, driving phenomena such as magnetic reconnection. The MErcury Surface, Space Environment, Geochemistry and Ranging (MESSENGER) spacecraft provided in‐situ magnetic field measurements of the solar wind, the magnetosheath, and the magnetosphere along each orbit. However, it is a challenge to directly assess the IMF's impact on Mercury's plasma environment due to the temporal separation between observations within the solar wind and the magnetosphere, especially in the absence of an upstream monitor. Here, we present a feedforward neural network (FNN) trained on a subset of magnetosheath observations to estimate the strength and orientation of the IMF upstream of the bow shock. Utilizing magnetosheath magnetic field, cylindrical spatial coordinates, and heliocentric distance measurements, the FNN predicts upstream IMF conditions with an score of 0.70 and mean averaged error of 5.3 nT, thereby greatly decreasing the temporal separation between IMF estimates and magnetospheric measurements throughout the MESSENGER mission. This approach yields IMF estimates for all magnetosheath data measured by MESSENGER, providing a useful tool for future investigations of the IMF impact on Mercury's magnetosphere. This method will be integrable with the dual‐spacecraft BepiColombo magnetosheath measurements, providing useful estimates of upstream IMF conditions particularly during the extended periods in which neither spacecraft sample the solar wind. Our results demonstrate the utility of machine learning techniques on advancing space science research.
Mercury's small magnetosphere is embedded in the dynamic and intense solar wind environment characteristic of the inner heliosphere. Both the magnitude and orientation of the interplanetary magnetic field (IMF) significantly influence the solar wind‐magnetospheric interaction at Mercury, driving phenomena such as magnetic reconnection. The MErcury Surface, Space Environment, Geochemistry and Ranging (MESSENGER) spacecraft provided in‐situ magnetic field measurements of the solar wind, the magnetosheath, and the magnetosphere along each orbit. However, it is a challenge to directly assess the IMF's impact on Mercury's plasma environment due to the temporal separation between observations within the solar wind and the magnetosphere, especially in the absence of an upstream monitor. Here, we present a feedforward neural network (FNN) trained on a subset of magnetosheath observations to estimate the strength and orientation of the IMF upstream of the bow shock. Utilizing magnetosheath magnetic field, cylindrical spatial coordinates, and heliocentric distance measurements, the FNN predicts upstream IMF conditions with an r2 ${\mathit{r}}^{2}$ score of 0.70 and mean averaged error of 5.3 nT, thereby greatly decreasing the temporal separation between IMF estimates and magnetospheric measurements throughout the MESSENGER mission. This approach yields IMF estimates for all magnetosheath data measured by MESSENGER, providing a useful tool for future investigations of the IMF impact on Mercury's magnetosphere. This method will be integrable with the dual‐spacecraft BepiColombo magnetosheath measurements, providing useful estimates of upstream IMF conditions particularly during the extended periods in which neither spacecraft sample the solar wind. Our results demonstrate the utility of machine learning techniques on advancing space science research. Plain Language Summary The stream of electrically charged gas emitted from the Sun, known as the solar wind, encounters planetary objects within its flow. The solar wind carries the interplanetary magnetic field (IMF), which has a great influence on the dynamics that govern the interaction between the solar wind and a planetary environment. At Mercury, the solar wind is particularly strong, and the properties of the IMF drive a variety of important physical processes at the planet. The MESSENGER spacecraft orbited Mercury from 2011 to 2015 and sampled both the solar wind and the near‐Mercury environment along each orbit. However, it is difficult to directly measure the IMF's effect on Mercury's environment because there is a gap in time between observations in these different regions. In this study, we use a machine‐learning model to estimate the IMF's strength and direction just before it reaches Mercury, based on data from the region between Mercury's magnetic field and the solar wind. This allows us to fill in the gaps in between solar wind measurements and better understand how the IMF affects Mercury's environment. The model is accurate in predicting the IMF conditions, which provides valuable information for studying Mercury's magnetosphere with both past and future spacecraft missions. Key Points A feedforward neural network (FNN) is trained to predict interplanetary magnetic field (IMF) properties from Mercury magnetosheath observations made by MESSENGER The model achieves high accuracy (r2 = 0.70) predictions for the IMF from magnetosheath measurements The FNN could be integrated with BepiColombo measurements, yielding IMF estimates for the extended periods without solar wind observations
Author Sun, Weijie
Healy, Adam
Azari, Abigail R.
Bowers, Charles F.
Rutala, Matthew J.
Wright, Paul J.
Jackman, Caitríona M.
Smith, Andy W.
Author_xml – sequence: 1
  givenname: Charles F.
  orcidid: 0000-0002-6336-7526
  surname: Bowers
  fullname: Bowers, Charles F.
  email: cbowers@cp.dias.ie
  organization: Dublin Institute for Advanced Studies
– sequence: 2
  givenname: Caitríona M.
  orcidid: 0000-0003-0635-7361
  surname: Jackman
  fullname: Jackman, Caitríona M.
  organization: Dublin Institute for Advanced Studies
– sequence: 3
  givenname: Abigail R.
  orcidid: 0000-0002-8665-5459
  surname: Azari
  fullname: Azari, Abigail R.
  organization: University of British Columbia
– sequence: 4
  givenname: Andy W.
  orcidid: 0000-0001-7321-4331
  surname: Smith
  fullname: Smith, Andy W.
  organization: Northumbria University
– sequence: 5
  givenname: Paul J.
  surname: Wright
  fullname: Wright, Paul J.
  organization: Dublin Institute for Advanced Studies
– sequence: 6
  givenname: Matthew J.
  orcidid: 0000-0002-1837-4057
  surname: Rutala
  fullname: Rutala, Matthew J.
  organization: Dublin Institute for Advanced Studies
– sequence: 7
  givenname: Weijie
  orcidid: 0000-0001-5260-658X
  surname: Sun
  fullname: Sun, Weijie
  organization: University of California
– sequence: 8
  givenname: Adam
  surname: Healy
  fullname: Healy, Adam
  organization: Dublin Institute for Advanced Studies
BackLink https://www.osti.gov/biblio/2483781$$D View this record in Osti.gov
BookMark eNp9kc1OGzEUha0KpFJgxwNY3XTTtP6b2LOsokkIIkTiZ2059nViOoyRbRrlOfrCNR1UserqHl199xzp3E_oaIgDIHRByTdKWPudESauLgkhjLcf0AlrWz5pGCVH7_RHdJ7zY2U4Z0QReYJ-d7mEJ1PCsMXLoUB67s0AxaQDXpltVcHieYDe4VkcXCghDhmbgleQ7Es6fMl4nTah4HmKT3jV3d11N4vu9u025h2YssPrTYb0y4zHD_k1y-A5gPMx7U1y-AZekunrKPuYfp6hY2_6DOdv8xQ9zLv72eXker1Yzn5cTywjrZq01lrFORccJKOuoYxvPIBvqeCeeTaVQMBLYacUqJKS-UaA4I4ab40zkp-i5ejronnUz6n2kA46mqD_LmLaapNqAT1oxZSzgkhJWyEa4BuqSOO8spa6unbV6_PoFWufOttQwO5sHAawRTOhuFS0Ql9HyKaYcwL_L5QS_fpE_f6JFScjvg89HP7L6qvFLZ0q_gea2J9i
Cites_doi 10.1016/j.pss.2011.02.004
10.5281/zenodo.10887513
10.1029/2019GL084151
10.1029/JA084iA10p05938
10.1029/2019ja027706
10.1029/2022GL101643
10.1023/a:1010933404324
10.1029/2019JA027490
10.1029/2009JA014173
10.3847/1538‐3881/ac9d89
10.3847/1538‐4357/ab7349
10.5281/zenodo.13737540
10.1002/2016JE005150
10.1029/2022JA030397
10.1029/2022ja031134
10.1029/2020GL089784
10.1029/2023JA032248
10.1029/2011JA016900
10.1007/s11214‐021‐00861‐4
10.1002/jgra.50342
10.1029/2023JA032162
10.1007/s11214‐020‐00712‐8
10.1002/jgra.50237
10.1029/2022ja030996
10.1051/0004‐6361/202346989
10.1029/2023JA031546
10.1029/JZ072i023p05865
10.1029/GL011i003p00279
10.17189/1522377
10.1016/j.artint.2021.103502
10.1126/science.1172011
10.1002/jgra.50123
10.1029/2019JA027544
10.1002/2017JA024435
10.1016/j.pss.2010.10.014
10.1002/2017JA024332
10.1126/science.1211001
10.1017/9781316650684
10.1002/2018JA025214
10.1016/j.icarus.2010.01.008
10.1002/jgra.50602
10.1007/bf00058655
10.1029/2012JE004217
10.1029/94ja01778
10.1007/s11214‐023‐01017‐2
10.1029/2020GL087350
10.1029/JA081i022p03897
10.1002/2017JA024295
10.1029/2012JA017898
10.1016/j.asr.2015.11.012
10.1029/2017JA025155
10.1029/2023JA031810
10.1016/j.pss.2017.12.016
10.1051/0004‐6361/202243911
10.1007/s11214‐007‐9246‐7
10.1002/2016JA023687
10.1029/2022ja031206
10.1029/2011JA017268
10.1029/ja080i031p04359
10.1029/97JA00196
10.1029/2009gl041485
10.1016/j.pss.2014.12.016
10.3847/1538‐4357/acf655
10.1016/0032‐0633(66)90124‐3
10.1007/s11430‐021‐9828‐0
10.1038/s41467‐021‐26344‐2
10.1002/2017JA024594
10.1029/2002ja009726
10.1016/s0032‐0633(02)00039‐9
10.1016/j.jastp.2021.105624
10.1126/science.1188067
10.1134/s0010952522600081
10.1029/2019JA026628
10.1029/2021JA029664
10.1029/2019JA026892
10.1038/ncomms2676
10.1002/2013JA019244
10.1029/2004JA010649
10.1051/0004‐6361/202245008
10.1002/9781119815624.ch34
10.1029/2002ja009569
10.1002/jgra.50428
10.1007/s11214‐021‐00839‐2
10.1029/2020JA028281
10.5281/zenodo.8298647
10.1029/2021GL092606
10.1002/2017gl073031
10.1029/2018GL079282
10.1002/2017GL074858
ContentType Journal Article
Copyright 2024. The Author(s). published by Wiley Periodicals LLC on behalf of American Geophysical Union.
Copyright_xml – notice: 2024. The Author(s). published by Wiley Periodicals LLC on behalf of American Geophysical Union.
DBID 24P
AAYXX
CITATION
OTOTI
DOA
DOI 10.1029/2024JH000239
DatabaseName Wiley Online Library Open Access
CrossRef
OSTI.GOV
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journal Collection
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISSN 2993-5210
EndPage n/a
ExternalDocumentID oai_doaj_org_article_828dc407719445e3b1805df8cc1d407d
2483781
10_1029_2024JH000239
JGR168
Genre researchArticle
GrantInformation_xml – fundername: Office of Nuclear Energy
– fundername: National Aeronautics and Space Administration
– fundername: Irish Research Council
– fundername: Discovery Eye Foundation
– fundername: University of British Columbia
– fundername: NERC Independent Research Fellowship
  funderid: NE/W009129/1
– fundername: Laureate Education
– fundername: NASA Discovery Data Analysis Program
  funderid: 80NSSC22K106
– fundername: Science Foundation Ireland
  funderid: 18/FRL/6199
– fundername: Irish Research Council Laureate Consolidator Grant
GroupedDBID 24P
ACCMX
ALMA_UNASSIGNED_HOLDINGS
0R~
AAMMB
AAYXX
AEFGJ
AGXDD
AIDQK
AIDYY
CITATION
GROUPED_DOAJ
M~E
WIN
OTOTI
ID FETCH-LOGICAL-c2098-9ccc833343e721d5123bfeef9143f2f267e0ef74c61e18772f54e43d1afcada73
IEDL.DBID DOA
ISSN 2993-5210
IngestDate Wed Aug 27 01:19:22 EDT 2025
Mon Apr 21 02:20:35 EDT 2025
Tue Aug 05 12:09:35 EDT 2025
Wed Jan 22 17:11:47 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2098-9ccc833343e721d5123bfeef9143f2f267e0ef74c61e18772f54e43d1afcada73
Notes USDOE
ORCID 0000-0001-5260-658X
0000-0001-7321-4331
0000-0003-0635-7361
0000-0002-8665-5459
0000-0002-1837-4057
0000-0002-6336-7526
0000000173214331
0000000218374057
000000015260658X
0000000286655459
0000000306357361
0000000263367526
OpenAccessLink https://doaj.org/article/828dc407719445e3b1805df8cc1d407d
PageCount 26
ParticipantIDs doaj_primary_oai_doaj_org_article_828dc407719445e3b1805df8cc1d407d
osti_scitechconnect_2483781
crossref_primary_10_1029_2024JH000239
wiley_primary_10_1029_2024JH000239_JGR168
PublicationCentury 2000
PublicationDate December 2024
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: December 2024
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of geophysical research. Machine learning and computation
PublicationYear 2024
Publisher American Geophysical Union (AGU)
Wiley
Publisher_xml – name: American Geophysical Union (AGU)
– name: Wiley
References 2013; 4
2020a; 47
1966; 14
2002; 50
2021; 126
2017; 44
2018; 123
2019; 124
2024; 220
2011; 59
2022; 65
2020; 125
2018; 45
2001; 45
2009; 114
1997; 102
2022; 164
2017; 30
2020; 891
1984; 11
2013; 118
2007; 131
2020; 216
2020; 47
1979; 3
2024b
2024a
2017; 122
1996; 24
2022; 127
2009; 324
1975; 80
2011; 333
2021; 48
2010; 37
2010; 209
2005; 110
2024; 129
1976; 81
2023; 128
2016; 121
2018; 21
2016; 58
2022; 49
2023; 61
2018; 153
2003; 108
2021; 12
2015; 115
2023
2022
2021
2019; 46
1967; 72
2021; 218
2021; 217
1994; 99
2023; 677
2023; 957
2015
2021; 298
2010a; 329
2012; 117
2022; 668
1979; 84
2022; 664
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
Lundberg S. M. (e_1_2_8_48_1) 2017; 30
e_1_2_8_3_1
e_1_2_8_81_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
Sonnerup B. t. (e_1_2_8_79_1) 1979; 3
e_1_2_8_87_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_17_1
e_1_2_8_19_1
Géron A. (e_1_2_8_23_1) 2022
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_70_1
e_1_2_8_91_1
e_1_2_8_95_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_93_1
e_1_2_8_29_1
e_1_2_8_25_1
Julka S. (e_1_2_8_37_1) 2022
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_69_1
Ioffe S. (e_1_2_8_31_1) 2015
e_1_2_8_2_1
e_1_2_8_80_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_88_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_86_1
e_1_2_8_63_1
e_1_2_8_84_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_82_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_58_1
e_1_2_8_92_1
e_1_2_8_94_1
e_1_2_8_90_1
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_77_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_75_1
e_1_2_8_52_1
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_71_1
References_xml – volume: 122
  start-page: 7907
  issue: 8
  year: 2017
  end-page: 7924
  article-title: Interplanetary magnetic field properties and variability near Mercury’s orbit
  publication-title: Journal of Geophysical Research: Space Physics
– volume: 58
  start-page: 181
  issue: 2
  year: 2016
  end-page: 187
  article-title: A comparison of the IMF structure and the magnetic field in the magnetosheath under the radial IMF conditions
  publication-title: Advances in Space Research
– volume: 81
  start-page: 3897
  issue: 22
  year: 1976
  end-page: 3906
  article-title: Bow shock and magnetosheath waves at mercury
  publication-title: Journal of Geophysical Research (1896‐1977)
– volume: 333
  start-page: 1859
  issue: 6051
  year: 2011
  end-page: 1862
  article-title: The global magnetic field of mercury from messenger orbital observations
  publication-title: Science
– volume: 24
  start-page: 123
  issue: 2
  year: 1996
  end-page: 140
  article-title: Bagging predictors
  publication-title: Machine Learning
– volume: 12
  issue: 1
  year: 2021
  article-title: Occurrence rate of ultra‐low frequency waves in the foreshock of mercury increases with heliocentric distance
  publication-title: Nature Communications
– volume: 128
  issue: 11
  year: 2023
  article-title: Magnetic field draping in induced magnetospheres: Evidence from the maven mission to mars
  publication-title: Journal of Geophysical Research: Space Physics
– volume: 122
  start-page: 12153
  issue: 12
  year: 2017
  end-page: 12169
  article-title: Mercury’s solar wind interaction as characterized by magnetospheric plasma mantle observations with messenger
  publication-title: Journal of Geophysical Research: Space Physics
– volume: 220
  start-page: 7
  issue: 1
  year: 2024
  article-title: Magnetic reconnection at planetary bodies and astrospheres
  publication-title: Space Science Reviews
– volume: 61
  start-page: 194
  issue: 3
  year: 2023
  end-page: 205
  article-title: Automatic detection of bow shock and magnetopause positions at Mercury’s magnetosphere using messenger magnetometer data
  publication-title: Cosmic Research
– volume: 65
  start-page: 1
  year: 2022
  end-page: 50
  article-title: Review of Mercury’s dynamic magnetosphere: Post‐MESSENGER era and comparative magnetospheres
  publication-title: Science China Earth Sciences
– volume: 125
  issue: 9
  year: 2020
  article-title: Properties of solar wind structures at Mercury’s orbit
  publication-title: Journal of Geophysical Research: Space Physics
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  end-page: 32
  article-title: Random forests
  publication-title: Machine Learning
– volume: 49
  issue: 24
  year: 2022
  article-title: The search for magnetotail twisting at Mercury: Comparing messenger observations with the terrestrial case
  publication-title: Geophysical Research Letters
– volume: 127
  issue: 11
  year: 2022
  article-title: Proton precipitation in Mercury’s northern magnetospheric cusp
  publication-title: Journal of Geophysical Research: Space Physics
– volume: 324
  start-page: 606
  issue: 5927
  year: 2009
  end-page: 610
  article-title: Messenger observations of magnetic reconnection in Mercury’s magnetosphere
  publication-title: Science
– volume: 37
  issue: 2
  year: 2010
  article-title: Messenger observations of large flux transfer events at Mercury
  publication-title: Geophysical Research Letters
– volume: 3
  start-page: 45
  year: 1979
  end-page: 108
  article-title: Magnetic field reconnection
  publication-title: Solar System Plasma Physics
– volume: 117
  issue: E12
  year: 2012
  article-title: Messenger observations of Mercury’s magnetic field structure
  publication-title: Journal of Geophysical Research
– volume: 80
  start-page: 4359
  issue: 31
  year: 1975
  end-page: 4363
  article-title: Substorms on Mercury?
  publication-title: Journal of Geophysical Research
– volume: 108
  issue: A5
  year: 2003
  article-title: Three‐dimensional modeling of Earth’s bow shock: Shock shape as a function of Alfvén Mach number
  publication-title: Journal of Geophysical Research
– volume: 217
  start-page: 90
  issue: 8
  year: 2021
  article-title: BepiColombo‐mission overview and science goals
  publication-title: Space Science Reviews
– volume: 118
  start-page: 2213
  issue: 5
  year: 2013
  end-page: 2227
  article-title: Mercury’s magnetopause and bow shock from messenger magnetometer observations
  publication-title: Journal of Geophysical Research: Space Physics
– volume: 117
  issue: A1
  year: 2012
  article-title: Messenger and mariner 10 flyby observations of magnetotail structure and dynamics at Mercury
  publication-title: Journal of Geophysical Research
– start-page: 535
  year: 2021
  end-page: 556
– volume: 11
  start-page: 279
  issue: 3
  year: 1984
  end-page: 282
  article-title: Large scale temporal and radial gradients in the IMF: Helios 1, 2, ISEE‐3, and pioneer 10, 11
  publication-title: Geophysical Research Letters
– volume: 72
  start-page: 5865
  issue: 23
  year: 1967
  end-page: 5877
  article-title: The ordered magnetic field of the magnetosheath
  publication-title: Journal of Geophysical Research (1896‐1977)
– volume: 126
  issue: 10
  year: 2021
  article-title: Variability of the interplanetary magnetic field as a driver of electromagnetic induction in Mercury’s interior
  publication-title: Journal of Geophysical Research: Space Physics
– volume: 121
  start-page: 2349
  issue: 11
  year: 2016
  end-page: 2362
  article-title: A whole new mercury: Messenger reveals a dynamic planet at the last Frontier of the inner solar system
  publication-title: Journal of Geophysical Research: Planets
– volume: 59
  start-page: 2075
  issue: 15
  year: 2011
  end-page: 2085
  article-title: The interplanetary magnetic field environment at Mercury’s orbit
  publication-title: Planetary and Space Science
– year: 2023
  article-title: Lists of magnetopause and bow shock crossings of Mercury by MESSENGER spacecraft
  publication-title: Zenodo
– volume: 118
  start-page: 2809
  issue: 6
  year: 2013
  end-page: 2823
  article-title: Upstream ultra‐low frequency waves in Mercury’s foreshock region: Messenger magnetic field observations
  publication-title: Journal of Geophysical Research: Space Physics
– volume: 46
  start-page: 10977
  issue: 20
  year: 2019
  end-page: 10986
  article-title: Recovery timescales of the dayside martian magnetosphere to IMF variability
  publication-title: Geophysical Research Letters
– volume: 117
  issue: A10
  year: 2012
  article-title: A global hybrid model for Mercury’s interaction with the solar wind: Case study of the dipole representation
  publication-title: Journal of Geophysical Research
– volume: 118
  start-page: 6457
  issue: 10
  year: 2013
  end-page: 6464
  article-title: Cyclic reformation of a quasi‐parallel bow shock at mercury: Messenger observations
  publication-title: Journal of Geophysical Research: Space Physics
– volume: 124
  start-page: 6613
  issue: 8
  year: 2019
  end-page: 6635
  article-title: Messenger observations of disappearing dayside magnetosphere events at Mercury
  publication-title: Journal of Geophysical Research: Space Physics
– volume: 44
  start-page: 5877
  issue: 12
  year: 2017
  end-page: 5883
  article-title: Local time asymmetry of Saturn’s magnetosheath flows
  publication-title: Geophysical Research Letters
– volume: 218
  year: 2021
  article-title: RMSE is not enough: Guidelines to robust data‐model comparisons for magnetospheric physics
  publication-title: Journal of Atmospheric and Solar‐Terrestrial Physics
– volume: 108
  issue: A5
  year: 2003
  article-title: Diamagnetic suppression of component magnetic reconnection at the magnetopause
  publication-title: Journal of Geophysical Research
– volume: 114
  issue: A8
  year: 2009
  article-title: Correlation properties of magnetosheath magnetic field fluctuations
  publication-title: Journal of Geophysical Research
– volume: 164
  start-page: 260
  issue: 6
  year: 2022
  article-title: The Mercury’s bow‐shock models near perihelion and aphelion
  publication-title: The Astronomical Journal
– year: 2022
– volume: 4
  issue: 1
  year: 2013
  article-title: Dawn–dusk asymmetry in the kelvin–Helmholtz instability at mercury
  publication-title: Nature Communications
– volume: 128
  issue: 5
  year: 2023
  article-title: Global Hall MHD simulations of Mercury’s magnetopause dynamics and FTEs under different solar wind and IMF conditions
  publication-title: Journal of Geophysical Research: Space Physics
– volume: 216
  start-page: 1
  issue: 5
  year: 2020
  end-page: 78
  article-title: Investigating Mercury’s environment with the two‐spacecraft BepiColombo mission
  publication-title: Space Science Reviews
– volume: 891
  start-page: 159
  issue: 2
  year: 2020
  article-title: Analysis of turbulence properties in the mercury plasma environment using messenger observations
  publication-title: The Astrophysical Journal
– year: 2021
  article-title: MESSENGER MAG time‐averaged calibrated MSO coordinates science data collection
  publication-title: Planetary Data System
– volume: 124
  start-page: 8865
  issue: 11
  year: 2019
  end-page: 8883
  article-title: Survey of saturn’s magnetopause and bow shock positions over the entire cassini mission: Boundary statistical properties and exploration of associated upstream conditions
  publication-title: Journal of Geophysical Research: Space Physics
– start-page: 452
  year: 2022
  end-page: 467
– volume: 127
  issue: 12
  year: 2022
  article-title: Global three‐dimensional draping of magnetic field lines in Earth’s magnetosheath from in‐situ spacecraft measurements
  publication-title: Journal of Geophysical Research: Space Physics
– volume: 217
  start-page: 1
  issue: 5
  year: 2021
  end-page: 91
  article-title: Pre‐flight calibration and near‐earth commissioning results of the mercury plasma particle experiment (MPPE) onboard MMO (MIO)
  publication-title: Space Science Reviews
– volume: 48
  issue: 9
  year: 2021
  article-title: Pick‐up ion cyclotron waves around mercury
  publication-title: Geophysical Research Letters
– volume: 125
  issue: 5
  year: 2020
  article-title: The shape of Mercury’s magnetopause: The picture from messenger magnetometer observations and future prospects for BepiColombo
  publication-title: Journal of Geophysical Research: Space Physics
– volume: 59
  start-page: 2004
  issue: 15
  year: 2011
  end-page: 2015
  article-title: MESSENGER observations of the plasma environment near Mercury
  publication-title: Planetary and Space Science
– volume: 47
  issue: 21
  year: 2020a
  article-title: Flux transfer event showers at Mercury: Dependence on plasma and magnetic shear and their contribution to the dungey cycle
  publication-title: Geophysical Research Letters
– volume: 128
  issue: 11
  year: 2023
  article-title: Does reconnection only occur at points of maximum shear on Mercury’s dayside magnetopause?
  publication-title: Journal of Geophysical Research: Space Physics
– volume: 129
  issue: 2
  year: 2024
  article-title: Statistical analysis of mercury’s magnetotail lobe field using messenger observations
  publication-title: Journal of Geophysical Research: Space Physics
– volume: 125
  issue: 3
  year: 2020
  article-title: Messenger observations of Mercury’s nightside magnetosphere under extreme solar wind conditions: Reconnection‐generated structures and steady convection
  publication-title: Journal of Geophysical Research: Space Physics
– volume: 44
  start-page: 10829
  issue: 21
  year: 2017
  end-page: 10837
  article-title: The influence of IMF clock angle on dayside flux transfer events at Mercury
  publication-title: Geophysical Research Letters
– volume: 50
  start-page: 601
  issue: 5–6
  year: 2002
  end-page: 612
  article-title: Multispacecraft measurements of plasma and magnetic field variations in the magnetosheath: Comparison with spreiter models and motion of the structures
  publication-title: Planetary and Space Science
– volume: 129
  issue: 3
  year: 2024
  article-title: Determining the influence of the IMF and planetary magnetic field models on Mercury’s magnetosphere along spacecraft trajectories of MESSENGER, BepiColombo and MPO
  publication-title: Journal of Geophysical Research: Space Physics
– volume: 102
  start-page: 9497
  issue: A5
  year: 1997
  end-page: 9511
  article-title: A new functional form to study the solar wind control of the magnetopause size and shape
  publication-title: Journal of Geophysical Research
– volume: 209
  start-page: 11
  issue: 1
  year: 2010
  end-page: 22
  article-title: Mercury’s magnetosphere–Solar wind interaction for northward and southward interplanetary magnetic field: Hybrid simulation results
  publication-title: Icarus
– volume: 125
  issue: 4
  year: 2020
  article-title: Hybrid simulations of solar wind proton precipitation to the surface of mercury
  publication-title: Journal of Geophysical Research: Space Physics
– volume: 45
  start-page: 10855
  issue: 20
  year: 2018
  end-page: 10865
  article-title: An artificial neural network for inferring solar wind proxies at Mars
  publication-title: Geophysical Research Letters
– volume: 14
  start-page: 223
  issue: 3
  year: 1966
  end-page: 253
  article-title: Hydromagnetic flow around the magnetosphere
  publication-title: Planetary and Space Science
– volume: 117
  issue: A4
  year: 2012
  article-title: Messenger orbital observations of large‐amplitude Kelvin‐Helmholtz waves at Mercury’s magnetopause
  publication-title: Journal of Geophysical Research
– volume: 30
  year: 2017
  article-title: A unified approach to interpreting model predictions
  publication-title: Advances in Neural Information Processing Systems
– volume: 122
  start-page: 11402
  issue: 11
  year: 2017
  end-page: 11412
  article-title: Messenger observations of magnetotail loading and unloading: Implications for substorms at mercury
  publication-title: Journal of Geophysical Research: Space Physics
– volume: 84
  start-page: 5938
  issue: A10
  year: 1979
  end-page: 5940
  article-title: Solar cycle variations in IMF intensity
  publication-title: Journal of Geophysical Research
– volume: 123
  start-page: 5315
  issue: 7
  year: 2018
  end-page: 5333
  article-title: Effects of the crustal magnetic fields and changes in the IMF orientation on the magnetosphere of Mars: Maven observations and Lathys results
  publication-title: Journal of Geophysical Research: Space Physics
– volume: 21
  year: 2018
– volume: 298
  year: 2021
  article-title: Explaining individual predictions when features are dependent: More accurate approximations to Shapley values
  publication-title: Artificial Intelligence
– volume: 118
  start-page: 4381
  issue: 7
  year: 2013
  end-page: 4390
  article-title: A comparison of magnetic overshoots at the bow shocks of mercury and Saturn
  publication-title: Journal of Geophysical Research: Space Physics
– volume: 128
  issue: 2
  year: 2023
  article-title: Messenger observations of reconnection in Mercury’s magnetotail under strong IMF forcing
  publication-title: Journal of Geophysical Research: Space Physics
– volume: 47
  issue: 9
  year: 2020
  article-title: Upstream ultra‐low frequency waves observed by messenger’s magnetometer: Implications for particle acceleration at Mercury’s bow shock
  publication-title: Geophysical Research Letters
– volume: 668
  start-page: A113
  year: 2022
  article-title: Solar‐wind‐dependent streamline model for Mercury’s magnetosheath‐a hydrodynamic magnetosheath model for Mercury
  publication-title: Astronomy & Astrophysics
– year: 2015
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
  publication-title: CoRR
– volume: 664
  year: 2022
  article-title: Electron dynamics in small magnetospheres‐insights from global, fully kinetic plasma simulations of the planet mercury
  publication-title: Astronomy & Astrophysics
– volume: 110
  issue: A2
  year: 2005
  article-title: Solar wind spatial scales in and comparisons of hourly wind and ace plasma and magnetic field data
  publication-title: Journal of Geophysical Research
– volume: 677
  start-page: A142
  year: 2023
  article-title: The magnetic field clock angle departure in the Venusian magnetosheath and its response to IMF rotation
  publication-title: Astronomy & Astrophysics
– volume: 153
  start-page: 89
  year: 2018
  end-page: 99
  article-title: Coronal mass ejection hits Mercury: AIKEF hybrid‐code results compared to MESSENGER data
  publication-title: Planetary and Space Science
– volume: 99
  start-page: 23617
  issue: A12
  year: 1994
  end-page: 23622
  article-title: A model of the steady state magnetic field in the magnetosheath
  publication-title: Journal of Geophysical Research
– volume: 123
  start-page: 2034
  issue: 3
  year: 2018
  end-page: 2053
  article-title: Survey of magnetosheath plasma properties at Saturn and inference of upstream flow conditions
  publication-title: Journal of Geophysical Research: Space Physics
– volume: 131
  start-page: 417
  issue: 1–4
  year: 2007
  end-page: 450
  article-title: The magnetometer instrument on messenger
  publication-title: The MESSENGER mission to Mercury
– volume: 329
  start-page: 665
  issue: 5992
  year: 2010a
  end-page: 668
  article-title: Messenger observations of extreme loading and unloading of Mercury’s magnetic tail
  publication-title: Science
– year: 2024b
  article-title: Messenger_fnn_imf_predictions_27_03_2024
  publication-title: Zenodo
– volume: 118
  start-page: 997
  issue: 3
  year: 2013
  end-page: 1008
  article-title: Messenger observations of magnetopause structure and dynamics at mercury
  publication-title: Journal of Geophysical Research: Space Physics
– volume: 122
  start-page: 8136
  issue: 8
  year: 2017
  end-page: 8153
  article-title: Flux ropes in the hermean magnetotail: Distribution, properties, and formation
  publication-title: Journal of Geophysical Research: Space Physics
– year: 2024a
  article-title: Annestimatorpub: Fnn_messenger_imf_predictor
  publication-title: Zenodo
– volume: 118
  start-page: 7181
  issue: 11
  year: 2013
  end-page: 7199
  article-title: Magnetic flux pileup and plasma depletion in Mercury’s subsolar magnetosheath
  publication-title: Journal of Geophysical Research: Space Physics
– volume: 957
  start-page: 26
  issue: 1
  year: 2023
  article-title: Anomalous response of mercury’s magnetosphere to solar wind compression: Comparison to earth
  publication-title: The Astrophysical Journal
– volume: 115
  start-page: 77
  year: 2015
  end-page: 89
  article-title: Messenger observations of flux ropes in Mercury’s magnetotail
  publication-title: Planetary and Space Science
– volume: 122
  start-page: 6150
  issue: 6
  year: 2017
  end-page: 6164
  article-title: Solar wind controls on mercury’s magnetospheric cusp
  publication-title: Journal of Geophysical Research: Space Physics
– ident: e_1_2_8_57_1
  doi: 10.1016/j.pss.2011.02.004
– ident: e_1_2_8_8_1
  doi: 10.5281/zenodo.10887513
– ident: e_1_2_8_61_1
  doi: 10.1029/2019GL084151
– volume: 3
  start-page: 45
  year: 1979
  ident: e_1_2_8_79_1
  article-title: Magnetic field reconnection
  publication-title: Solar System Plasma Physics
– ident: e_1_2_8_38_1
  doi: 10.1029/JA084iA10p05938
– ident: e_1_2_8_22_1
  doi: 10.1029/2019ja027706
– ident: e_1_2_8_62_1
  doi: 10.1029/2022GL101643
– ident: e_1_2_8_11_1
  doi: 10.1023/a:1010933404324
– ident: e_1_2_8_83_1
  doi: 10.1029/2019JA027490
– ident: e_1_2_8_26_1
  doi: 10.1029/2009JA014173
– ident: e_1_2_8_28_1
  doi: 10.3847/1538‐3881/ac9d89
– ident: e_1_2_8_29_1
  doi: 10.3847/1538‐4357/ab7349
– ident: e_1_2_8_7_1
  doi: 10.5281/zenodo.13737540
– ident: e_1_2_8_35_1
  doi: 10.1002/2016JE005150
– ident: e_1_2_8_56_1
  doi: 10.1029/2022JA030397
– ident: e_1_2_8_93_1
  doi: 10.1029/2022ja031134
– ident: e_1_2_8_84_1
  doi: 10.1029/2020GL089784
– ident: e_1_2_8_18_1
  doi: 10.1029/2023JA032248
– ident: e_1_2_8_72_1
  doi: 10.1029/2011JA016900
– ident: e_1_2_8_6_1
  doi: 10.1007/s11214‐021‐00861‐4
– ident: e_1_2_8_44_1
  doi: 10.1002/jgra.50342
– start-page: 452
  volume-title: Joint European conference on machine learning and knowledge discovery in databases
  year: 2022
  ident: e_1_2_8_37_1
– ident: e_1_2_8_9_1
  doi: 10.1029/2023JA032162
– ident: e_1_2_8_51_1
  doi: 10.1007/s11214‐020‐00712‐8
– ident: e_1_2_8_90_1
  doi: 10.1002/jgra.50237
– ident: e_1_2_8_50_1
  doi: 10.1029/2022ja030996
– ident: e_1_2_8_91_1
  doi: 10.1051/0004‐6361/202346989
– ident: e_1_2_8_5_1
  doi: 10.1029/2023JA031546
– ident: e_1_2_8_20_1
  doi: 10.1029/JZ072i023p05865
– ident: e_1_2_8_76_1
  doi: 10.1029/GL011i003p00279
– ident: e_1_2_8_41_1
  doi: 10.17189/1522377
– ident: e_1_2_8_2_1
  doi: 10.1016/j.artint.2021.103502
– ident: e_1_2_8_70_1
  doi: 10.1126/science.1172011
– ident: e_1_2_8_15_1
  doi: 10.1002/jgra.50123
– ident: e_1_2_8_54_1
  doi: 10.1029/2019JA027544
– ident: e_1_2_8_33_1
  doi: 10.1002/2017JA024435
– ident: e_1_2_8_42_1
  doi: 10.1016/j.pss.2010.10.014
– ident: e_1_2_8_30_1
  doi: 10.1002/2017JA024332
– ident: e_1_2_8_4_1
  doi: 10.1126/science.1211001
– ident: e_1_2_8_78_1
  doi: 10.1017/9781316650684
– ident: e_1_2_8_88_1
  doi: 10.1002/2018JA025214
– ident: e_1_2_8_89_1
  doi: 10.1016/j.icarus.2010.01.008
– ident: e_1_2_8_86_1
  doi: 10.1002/jgra.50602
– ident: e_1_2_8_10_1
  doi: 10.1007/bf00058655
– ident: e_1_2_8_36_1
  doi: 10.1029/2012JE004217
– ident: e_1_2_8_40_1
  doi: 10.1029/94ja01778
– ident: e_1_2_8_24_1
  doi: 10.1007/s11214‐023‐01017‐2
– ident: e_1_2_8_60_1
  doi: 10.1029/2020GL087350
– ident: e_1_2_8_21_1
  doi: 10.1029/JA081i022p03897
– ident: e_1_2_8_77_1
  doi: 10.1002/2017JA024295
– ident: e_1_2_8_58_1
  doi: 10.1029/2012JA017898
– ident: e_1_2_8_55_1
  doi: 10.1016/j.asr.2015.11.012
– ident: e_1_2_8_63_1
  doi: 10.1029/2017JA025155
– volume-title: Hands‐on machine learning with scikit‐learn, keras, and tensorflow
  year: 2022
  ident: e_1_2_8_23_1
– ident: e_1_2_8_95_1
  doi: 10.1029/2023JA031810
– ident: e_1_2_8_19_1
  doi: 10.1016/j.pss.2017.12.016
– ident: e_1_2_8_43_1
  doi: 10.1051/0004‐6361/202243911
– ident: e_1_2_8_3_1
  doi: 10.1007/s11214‐007‐9246‐7
– ident: e_1_2_8_27_1
  doi: 10.1002/2016JA023687
– ident: e_1_2_8_46_1
  doi: 10.1029/2022ja031206
– ident: e_1_2_8_85_1
  doi: 10.1029/2011JA017268
– year: 2015
  ident: e_1_2_8_31_1
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
  publication-title: CoRR
– ident: e_1_2_8_69_1
  doi: 10.1029/ja080i031p04359
– ident: e_1_2_8_68_1
  doi: 10.1029/97JA00196
– ident: e_1_2_8_74_1
  doi: 10.1029/2009gl041485
– ident: e_1_2_8_16_1
  doi: 10.1016/j.pss.2014.12.016
– ident: e_1_2_8_14_1
  doi: 10.3847/1538‐4357/acf655
– ident: e_1_2_8_80_1
  doi: 10.1016/0032‐0633(66)90124‐3
– ident: e_1_2_8_82_1
  doi: 10.1007/s11430‐021‐9828‐0
– ident: e_1_2_8_59_1
  doi: 10.1038/s41467‐021‐26344‐2
– ident: e_1_2_8_34_1
  doi: 10.1002/2017JA024594
– ident: e_1_2_8_87_1
  doi: 10.1029/2002ja009726
– ident: e_1_2_8_92_1
  doi: 10.1016/s0032‐0633(02)00039‐9
– ident: e_1_2_8_47_1
  doi: 10.1016/j.jastp.2021.105624
– ident: e_1_2_8_71_1
  doi: 10.1126/science.1188067
– ident: e_1_2_8_52_1
  doi: 10.1134/s0010952522600081
– ident: e_1_2_8_32_1
  doi: 10.1029/2019JA026628
– ident: e_1_2_8_94_1
  doi: 10.1029/2021JA029664
– ident: e_1_2_8_75_1
  doi: 10.1029/2019JA026892
– ident: e_1_2_8_53_1
  doi: 10.1038/ncomms2676
– ident: e_1_2_8_25_1
  doi: 10.1002/2013JA019244
– ident: e_1_2_8_39_1
  doi: 10.1029/2004JA010649
– ident: e_1_2_8_67_1
  doi: 10.1051/0004‐6361/202245008
– ident: e_1_2_8_73_1
  doi: 10.1002/9781119815624.ch34
– ident: e_1_2_8_13_1
  doi: 10.1029/2002ja009569
– volume: 30
  year: 2017
  ident: e_1_2_8_48_1
  article-title: A unified approach to interpreting model predictions
  publication-title: Advances in Neural Information Processing Systems
– ident: e_1_2_8_49_1
  doi: 10.1002/jgra.50428
– ident: e_1_2_8_65_1
  doi: 10.1007/s11214‐021‐00839‐2
– ident: e_1_2_8_17_1
  doi: 10.1029/2020JA028281
– ident: e_1_2_8_81_1
  doi: 10.5281/zenodo.8298647
– ident: e_1_2_8_66_1
  doi: 10.1029/2021GL092606
– ident: e_1_2_8_12_1
  doi: 10.1002/2017gl073031
– ident: e_1_2_8_64_1
  doi: 10.1029/2018GL079282
– ident: e_1_2_8_45_1
  doi: 10.1002/2017GL074858
SSID ssj0003320807
Score 2.2759461
Snippet Mercury's small magnetosphere is embedded in the dynamic and intense solar wind environment characteristic of the inner heliosphere. Both the magnitude and...
Abstract Mercury's small magnetosphere is embedded in the dynamic and intense solar wind environment characteristic of the inner heliosphere. Both the...
Abstract Mercury's small magnetosphere is embedded in the dynamic and intense solar wind environment characteristic of the inner heliosphere. Both the...
SourceID doaj
osti
crossref
wiley
SourceType Open Website
Open Access Repository
Index Database
Publisher
SubjectTerms IMF
magnetosphere
neural network
SummonAdditionalLinks – databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEBbN9tJLSElLt0mLDgklB1NZkm35mIZ1lgUnIWQhNyPrscmhdvC6vyR_ODOya3YvhV5sEJItz-gxM_rmMyFngrs854mKlPAiknXGIq0TC4sh0wzWZCkMBvTLm3S5lqvH5HEMuGEuzMAPMQXccGaE9RonuK63I9kAcmSC1y5Xy0DYkh-Q95hdi-Ocy7spxiIEZ0PGNEeYGuxUbMS-wyN-7j5gb1cK5P1wa2GS7dusYdMpjsjhaC3Sy0G9H8k71xyT1wW0QEOz2dABM4iA1R6-hJZ602BWIi0QmEavWjyQxoFFdU9L1xmQ4I8tve3q554WXfublqCABeIhxrbtFlfnJ3pbT-HaLQ24AqppAWIFIxeBthRZPaBrNwOM_BNZF4uHq2U0_lshMhwpRHNjjBJCSOHAB7Sw7YvaO-dzsJ889zzNHHM-kyaNXazABPeJdFLYWHujrc7EZzJr2sZ9IVRZxgzT0mAulPRKuVQYuFqprNO1nZPzv7KtXgYKjSocffO82tXBnPxCwU91kPg6FLTdphrnUQUOojXghGZxLmXiRB0rllivjIktFMPLTlBtFdgPSIJrEC1k-ooH4vx4Ti6CNv_Zj2p1fR-n6ut_1D0hH7B0gLmcklnf_XHfwFjp6-9hRL4BndrhDA
  priority: 102
  providerName: Wiley-Blackwell
Title Estimating Interplanetary Magnetic Field Conditions at Mercury's Orbit From MESSENGER Magnetosheath Observations Using a Feedforward Neural Network
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2024JH000239
https://www.osti.gov/biblio/2483781
https://doaj.org/article/828dc407719445e3b1805df8cc1d407d
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUKp14QiFYsFOQDVdVDhGM7iXNs0YbVSoGqYqW9RY4_Fg4kKJseeumf4A8z4wS0e4FLL45kxZE144zf2M_PhJwL7vKcJypSwotI1hmLtE4sBEOmGcRkKQwu6JfX6Wwh58tkuXHVF3LCBnngwXAXkBFYA1lHBtm2TJyoY8US65UxsYVqi9EX5ryNZApjsBAcoFA2Mt0ZzzHJl_NZ0HfJt-agINUPjxZ-qW2EGqaYYp_sjdiQ_hj6dEA-uOaQPE2hBcLKZkUHhiDSU3vd_aWlXjV4BpEWSEOjly1uP-MworqnpesM2Ovbmt509X1Pi659oCWYe4rsh7Ftu8ZYfEdv6tfF2TUNLAKqaQFGBEiLtFqKGh7QteuBNP6JLIrp7eUsGm9SiAxHwdDcGKOEEFI4yPgsTPKi9s75HNCS556nmWPOZ9KksYsVAG6fSCeFjbU32upMfCa7Tdu4I0KVZcwwLQ2efJJeKZcKA6WVyjpd2wn5-mLb6nEQzKjCRjfPq00fTMhPNPzrOyhzHSrA-dXo_Oo950_ICbqtArSAkrcGuUGmr3iQyY8n5Hvw5pv9qOZXv-NUHf-P7pyQj_jpge3yhez23R93Cpilr8_IDpe_zsIghbL8N30G5QbpWA
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELVKe4ALAhXEthR8AKEeIhzbSZxjqTYs22aLqlbqzXL8se2BBGXDL-kfZsZJV-0FiUsiWbbjeDz2ePzmmZBPgvuy5JlKlAgikU3BEmMyB5MhMwzmZCksOvTrVb64lsub7Ga65xRjYUZ-iK3DDTUjzteo4OiQntgGkCQTtu1yuYiMLeUzsidzXuDdDVz-3DpZhOBsDJnmiFODpYpN4Heo4uvjCp4sS5G9H14daNlTozWuOtUr8nIyF-nJKN_XZMe3--R-DiXQ0mzXdAQNImJ1gF-htVm3GJZIK0Sm0dMOT6RxZFEz0Nr3Frrwy4Ze9M3dQKu--0VrkMAcARFT2W6D0_MtvWi2_toNjcACamgF_QpWLiJtKdJ6QNNWI478Dbmu5leni2S6XCGxHDlES2utEkJI4WET6GDdF03wPpRgQAUeeF545kMhbZ76VIENHjLppXCpCdY4U4i3ZLftWv-OUOUYs8xIi8FQMijlc2Hh6aRy3jRuRj4_9K3-PXJo6Hj2zUv9WAYz8g07fpsHma9jQtev9aRIGnaIzsIutEhLKTMvmlSxzAVlbeogGT52iGLTYEAgC65FuJAdNI_M-emMHEdp_rMdevn9Ms3VwX_k_UieL67qc33-Y3V2SF5gjhHz8p7sDv0ffwSWy9B8iKPzL9C75Hg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwELUoSFUvVSuouqVQH0AVh6iO7STOkdINy9JdECoSN8vxx7aHJigbfkn_cGecsIJLpV4SKbIdx-MZz4yfXwg5EtyXJc9UokQQiawLlhiTOTCGzDCwyVJYTOgvlvnsVs7vsrsx4YZnYQZ-iE3CDTUj2mtU8HsXRrIB5MiEqF3OZ5GwpXxBdnC_D2c4l9ebHIsQnA0npjnC1GClYiP2HZr48rSBZ6tSJO-HWwtK9txnjYtO9Ya8Hr1FejqI9y3Z8s0u-TOFGuhoNis6YAYRsNrDl9CFWTV4KpFWCEyjZy1uSOPEoqanC99ZGMHPa3rV1b96WnXtb7oAAUwRDzHWbddonX_Sq3qTrl3TiCughlYwrODkItCWIqsHdG05wMj3yG01_XE2S8Z_KySWI4Voaa1VQggpPMSADpZ9UQfvQwn-U-CB54VnPhTS5qlPFbjgIZNeCpeaYI0zhXhHtpu28e8JVY4xy4y0eBZKBqV8LixcnVTOm9pNyPHj2Or7gUJDx61vXuqnMpiQrzjwmzJIfB0ftN1Kj3qkIUB0FoLQIi2lzLyoU8UyF5S1qYPH8LJ9FJsG_wFJcC2ihWyveSTOTyfkJErzn_3Q8_ObNFcf_qPsJ_Ly-lulv18sL_fJKywwIF4-ku2-e_AH4Lf09WGcnH8Bjynjqg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimating+Interplanetary+Magnetic+Field+Conditions+at+Mercury%27s+Orbit+From+MESSENGER+Magnetosheath+Observations+Using+a+Feedforward+Neural+Network&rft.jtitle=Journal+of+geophysical+research.+Machine+learning+and+computation&rft.au=Bowers%2C+Charles+F.&rft.au=Jackman%2C+Caitr%C3%ADona+M.&rft.au=Azari%2C+Abigail+R.&rft.au=Smith%2C+Andy+W.&rft.date=2024-12-01&rft.pub=American+Geophysical+Union+%28AGU%29&rft.issn=2993-5210&rft.eissn=2993-5210&rft.volume=1&rft.issue=4&rft_id=info:doi/10.1029%2F2024JH000239&rft.externalDocID=2483781
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2993-5210&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2993-5210&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2993-5210&client=summon