Deep learning-based image reconstruction benefits diffusion tensor imaging for assessing severity of depression
ObjectiveThis study aimed to evaluate whether deep learning-based image reconstruction (DLR) improves the accuracy of diffusion tensor imaging (DTI) measurements used to assess the severity of depression.MethodsA total of 52 patients diagnosed with depression in our hospital between March 2023 and J...
Saved in:
Published in | Frontiers in neuroscience Vol. 19 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Frontiers Media S.A
12.08.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | ObjectiveThis study aimed to evaluate whether deep learning-based image reconstruction (DLR) improves the accuracy of diffusion tensor imaging (DTI) measurements used to assess the severity of depression.MethodsA total of 52 patients diagnosed with depression in our hospital between March 2023 and July 2023 were enrolled in this study. The severity of depression was measured using the 9-item Patient Health Questionnaire (PHQ-9). Each patient underwent DTI scans. Two image sets were generated: one with the original DTI (ORI DTI) and one using DLR DTI. Tract-Based Spatial Statistics (TBSS) were used to compare the fractional anisotropy (FA) between DLR DTI and ORI DTI, as well as between patients with mild-to-moderate and those with severe depression. Multivariate logistic regression was carried out to determine independent factors for discriminating mild-to-moderate from severe depression patients. Receiver operating characteristic (ROC) curve analysis and areas under the curve (AUC) were used to assess the diagnostic performance.ResultsTwenty-eight patients with mild-to-moderate depression and 24 with severe depression were included. No significant differences were observed between the two groups in terms of gender (p = 0.115), age (p = 0.603), or educational background (p = 0.148). Compared to patients with mild-to-moderate depression, those with severe depression showed lower FA values in the right corticospinal tract (CST) on ORI DTI. Using DLR DTI, decreases in FA values were observed in the right CST, right anterior thalamic radiation, and left superior longitudinal fasciculus. The diagnostic model based on DLR DTI outperformed the ORI DTI model in assessing severity of depression (AUC: 0.951 vs. 0.764, p < 0.001).ConclusionDLR DTI demonstrated greater sensitivity in detecting white matter (WM) abnormalities in patients with severe depression and provided better diagnostic performance in evaluating severity of depression. |
---|---|
AbstractList | ObjectiveThis study aimed to evaluate whether deep learning-based image reconstruction (DLR) improves the accuracy of diffusion tensor imaging (DTI) measurements used to assess the severity of depression.MethodsA total of 52 patients diagnosed with depression in our hospital between March 2023 and July 2023 were enrolled in this study. The severity of depression was measured using the 9-item Patient Health Questionnaire (PHQ-9). Each patient underwent DTI scans. Two image sets were generated: one with the original DTI (ORI DTI) and one using DLR DTI. Tract-Based Spatial Statistics (TBSS) were used to compare the fractional anisotropy (FA) between DLR DTI and ORI DTI, as well as between patients with mild-to-moderate and those with severe depression. Multivariate logistic regression was carried out to determine independent factors for discriminating mild-to-moderate from severe depression patients. Receiver operating characteristic (ROC) curve analysis and areas under the curve (AUC) were used to assess the diagnostic performance.ResultsTwenty-eight patients with mild-to-moderate depression and 24 with severe depression were included. No significant differences were observed between the two groups in terms of gender (p = 0.115), age (p = 0.603), or educational background (p = 0.148). Compared to patients with mild-to-moderate depression, those with severe depression showed lower FA values in the right corticospinal tract (CST) on ORI DTI. Using DLR DTI, decreases in FA values were observed in the right CST, right anterior thalamic radiation, and left superior longitudinal fasciculus. The diagnostic model based on DLR DTI outperformed the ORI DTI model in assessing severity of depression (AUC: 0.951 vs. 0.764, p < 0.001).ConclusionDLR DTI demonstrated greater sensitivity in detecting white matter (WM) abnormalities in patients with severe depression and provided better diagnostic performance in evaluating severity of depression. |
Author | Zhang, Xin Yuan, Weimin Sun, Hongbiao Wang, Jinlin Dong, Shuwen Bai, Yonghai Wang, Yunmeng Xiao, Yi Liu, Shiyuan Zhang, Youhan Cui, Yuanyuan Dai, Jiankun Wang, Yihao Cheng, Yuxin |
AuthorAffiliation | 3 Department of Radiology, Qingdao Special Servicemen Recuperation Center of PLA Navy , Qingdao , China 2 Department of Psychology, Second Affiliated Hospital of Naval Medical University , Shanghai , China 1 Department of Radiology, Second Affiliated Hospital of Naval Medical University , Shanghai , China 4 MR Research, GE Healthcare , Beijing , China |
AuthorAffiliation_xml | – name: 3 Department of Radiology, Qingdao Special Servicemen Recuperation Center of PLA Navy , Qingdao , China – name: 2 Department of Psychology, Second Affiliated Hospital of Naval Medical University , Shanghai , China – name: 4 MR Research, GE Healthcare , Beijing , China – name: 1 Department of Radiology, Second Affiliated Hospital of Naval Medical University , Shanghai , China |
Author_xml | – sequence: 1 givenname: Yuanyuan surname: Cui fullname: Cui, Yuanyuan – sequence: 2 givenname: Yihao surname: Wang fullname: Wang, Yihao – sequence: 3 givenname: Weimin surname: Yuan fullname: Yuan, Weimin – sequence: 4 givenname: Youhan surname: Zhang fullname: Zhang, Youhan – sequence: 5 givenname: Yunmeng surname: Wang fullname: Wang, Yunmeng – sequence: 6 givenname: Jiankun surname: Dai fullname: Dai, Jiankun – sequence: 7 givenname: Yuxin surname: Cheng fullname: Cheng, Yuxin – sequence: 8 givenname: Xin surname: Zhang fullname: Zhang, Xin – sequence: 9 givenname: Hongbiao surname: Sun fullname: Sun, Hongbiao – sequence: 10 givenname: Shuwen surname: Dong fullname: Dong, Shuwen – sequence: 11 givenname: Jinlin surname: Wang fullname: Wang, Jinlin – sequence: 12 givenname: Yonghai surname: Bai fullname: Bai, Yonghai – sequence: 13 givenname: Shiyuan surname: Liu fullname: Liu, Shiyuan – sequence: 14 givenname: Yi surname: Xiao fullname: Xiao, Yi |
BookMark | eNpVkd1KAzEQhYMoqNUX8GpfYGv-Ntm9Eqm_UPBGwbuQTSY1pSYl2Rb69mbbIno1M2dmPg6cS3QaYgCEbgieMtZ2ty74kKcU02ZKBJaE4RN0QYSgNW_Y5-mf_hxd5rzEWNCW0wsUHwDW1Qp0KoRF3esMtvLfegFVAhNDHtLGDD6GqocAzg-5st65TR6lAUKOaX9enitXep0z5DxOGbaQ_LCroqssrNMox3CFzpxeZbg-1gn6eHp8n73U87fn19n9vDYUd7g2XU94awTjjTOml1JaJiWXbY8td9JC8a-pdLgTBATunS7XuKXWCkpa2rAJej1wbdRLtU7FY9qpqL3aCzEtlE6DNytQjFgGrOMYSM-tYdo5zUwBtV3DKXGFdXdgrTf9N1gDYUh69Q_6fxP8l1rErSKUyZYIVgj0QDAp5pzA_T4TrMYA1T5ANQaojgGyH0frlaU |
Cites_doi | 10.1002/mrm.20283 10.1016/j.jad.2015.06.041 10.1192/bjp.bp.111.100594 10.1007/s00330-019-06648-0 10.3348/kjr.2024.0177 10.1017/S0033291714000440 10.1001/jama.2020.6504 10.1017/S0033291707001730 10.1016/S0022-3999(00)00095-7 10.1001/jama.2024.5756 10.1002/mrm.1315 10.1016/j.jad.2022.12.149 10.1002/mrm.27096 10.1046/j.1525-1497.2001.016009606.x 10.1016/j.biopsych.2023.11.028 10.1016/j.neuroimage.2007.02.056 10.1001/archinte.166.10.1092 10.1016/j.neurad.2023.10.008 10.48550/arXiv.2008.06559 10.1016/j.pscychresns.2013.09.002 10.1016/j.neulet.2012.06.027 10.1016/j.acra.2025.01.043 10.1016/j.biopsych.2019.06.011 10.1038/s41380-019-0477-2 10.2463/mrms.tn.2020-0061 10.30773/pi.2023.0229 10.1136/bmj.n2183 10.1136/jnnp.2004.055129 10.1016/S0730-725X(98)00098-8 10.1017/S0033291712001511 10.3390/tomography10040039 10.1176/appi.neuropsych.11080180 10.1016/S0140-6736(18)31948-2 10.1016/j.neuroimage.2013.01.038 10.1002/mrm.1910360612 10.1016/j.nicl.2024.103682 10.1016/j.jad.2014.09.042 10.2147/NDT.S5700 10.1016/j.neuroimage.2021.118632 10.1016/j.media.2023.103073 |
ContentType | Journal Article |
Copyright | Copyright © 2025 Cui, Wang, Yuan, Zhang, Wang, Dai, Cheng, Zhang, Sun, Dong, Wang, Bai, Liu and Xiao. 2025 Cui, Wang, Yuan, Zhang, Wang, Dai, Cheng, Zhang, Sun, Dong, Wang, Bai, Liu and Xiao |
Copyright_xml | – notice: Copyright © 2025 Cui, Wang, Yuan, Zhang, Wang, Dai, Cheng, Zhang, Sun, Dong, Wang, Bai, Liu and Xiao. 2025 Cui, Wang, Yuan, Zhang, Wang, Dai, Cheng, Zhang, Sun, Dong, Wang, Bai, Liu and Xiao |
DBID | AAYXX CITATION 5PM DOA |
DOI | 10.3389/fnins.2025.1607130 |
DatabaseName | CrossRef PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1662-453X |
ExternalDocumentID | oai_doaj_org_article_31d3e3940e1b4dc3affa3cd62895421f PMC12378163 10_3389_fnins_2025_1607130 |
GroupedDBID | --- 29H 2WC 53G 5GY 5VS 88I 8FE 8FH 9T4 AAFWJ AAYXX ABUWG ACGFO ACGFS ACXDI ADRAZ AEGXH AENEX AFKRA AFPKN AIAGR ALMA_UNASSIGNED_HOLDINGS AZQEC BBNVY BENPR BHPHI BPHCQ CCPQU CITATION CS3 DIK DU5 DWQXO E3Z EBS EJD EMOBN F5P FRP GNUQQ GROUPED_DOAJ GX1 HCIFZ HYE KQ8 LK8 M2P M7P O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC RNS RPM W2D 5PM PUEGO |
ID | FETCH-LOGICAL-c2090-c9b148c6345fccb777d377478b0d4f7de062a27f0961e60bfa48c082dd6218253 |
IEDL.DBID | DOA |
ISSN | 1662-453X 1662-4548 |
IngestDate | Wed Aug 27 01:18:15 EDT 2025 Thu Aug 28 05:25:11 EDT 2025 Thu Aug 14 00:17:15 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2090-c9b148c6345fccb777d377478b0d4f7de062a27f0961e60bfa48c082dd6218253 |
Notes | Reviewed by: Weiwei Zhao, East China Normal University, China Jinyuan Wang, National University of Singapore, Singapore These authors have contributed equally to this work Edited by: Amir Shmuel, McGill University, Canada |
OpenAccessLink | https://doaj.org/article/31d3e3940e1b4dc3affa3cd62895421f |
ParticipantIDs | doaj_primary_oai_doaj_org_article_31d3e3940e1b4dc3affa3cd62895421f pubmedcentral_primary_oai_pubmedcentral_nih_gov_12378163 crossref_primary_10_3389_fnins_2025_1607130 |
PublicationCentury | 2000 |
PublicationDate | 20250812 |
PublicationDateYYYYMMDD | 2025-08-12 |
PublicationDate_xml | – month: 8 year: 2025 text: 20250812 day: 12 |
PublicationDecade | 2020 |
PublicationTitle | Frontiers in neuroscience |
PublicationYear | 2025 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Lebel (B18) 2020 Anderson (B2) 2001; 46 Jones (B13) 2004; 52 Shen (B32) 2019; 86 Santos (B31) 2024; 10 Ferrari (B10) 2013; 43 Sagawa (B29) 2021; 20 Lai (B16) 2014; 44 Guo (B11) 2012; 522 Spitzer (B35) 2006; 166 Nothdurfter (B25) 2024; 95 van Velzen (B37) 2020; 25 Loizillon (B21) 2024; 93 Pouliquen (B28) 2024; 51 Li (B20) 2023; 324 Uher (B36) 2008; 38 Chen (B5) 2013; 72 Kroenke (B14) 2001; 16 Zhang (B39) 2021; 244 Nobuhara (B24) 2006; 77 Sanjuan (B30) 2013; 214 Malhi (B22) 2018; 392 Wang (B38) 2024; 25 Pilmeyer (B27) 2024; 44 Bracht (B4) 2015; 187 Ahn (B1) 2024; 21 Simon (B33) 2024; 332 Iima (B12) 2020; 30 Cole (B8) 2012; 201 Negeri (B23) 2021; 375 Pierpaoli (B26) 1996; 36 Bastin (B3) 1998; 16 Dwivedi (B9) 2009; 5 Choi (B6) 2015; 172 Zhu (B40) 2025; 32 Coenen (B7) 2012; 24 Kyathanahally (B15) 2018; 80 Soldatos (B34) 2000; 48 Levis (B19) 2020; 323 Landman (B17) 2007; 36 |
References_xml | – volume: 52 start-page: 979 year: 2004 ident: B13 article-title: “Squashing peanuts and smashing pumpkins”: how noise distorts diffusion-weighted MR data publication-title: Magn. Reson. Med. doi: 10.1002/mrm.20283 – volume: 187 start-page: 45 year: 2015 ident: B4 article-title: A review of white matter microstructure alterations of pathways of the reward circuit in depression publication-title: J. Affect. Disord. doi: 10.1016/j.jad.2015.06.041 – volume: 201 start-page: 33 year: 2012 ident: B8 article-title: White matter abnormalities and illness severity in major depressive disorder publication-title: Br. J. Psychiatry doi: 10.1192/bjp.bp.111.100594 – volume: 30 start-page: 2561 year: 2020 ident: B12 article-title: Six DWI questions you always wanted to know but were afraid to ask: clinical relevance for breast diffusion MRI publication-title: Eur. Radiol. doi: 10.1007/s00330-019-06648-0 – volume: 25 start-page: 913 year: 2024 ident: B38 article-title: Prospective comparison of FOCUS MUSE and single-shot echo-planar imaging for diffusion-weighted imaging in evaluating thyroid-associated ophthalmopathy publication-title: Korean J. Radiol. doi: 10.3348/kjr.2024.0177 – volume: 44 start-page: 2825 year: 2014 ident: B16 article-title: Alterations in white matter micro-integrity of the superior longitudinal fasciculus and anterior thalamic radiation of young adult patients with depression publication-title: Psychol. Med. doi: 10.1017/S0033291714000440 – volume: 323 start-page: 2290 year: 2020 ident: B19 article-title: Accuracy of the PHQ-2 alone and in combination with the PHQ-9 for screening to detect major depression: systematic review and meta-analysis publication-title: JAMA doi: 10.1001/jama.2020.6504 – volume: 38 start-page: 289 year: 2008 ident: B36 article-title: Measuring depression: comparison and integration of three scales in the GENDEP study publication-title: Psychol. Med. doi: 10.1017/S0033291707001730 – volume: 48 start-page: 555 year: 2000 ident: B34 article-title: Athens insomnia scale: validation of an instrument based on ICD-10 criteria publication-title: J. Psychosom. Res. doi: 10.1016/S0022-3999(00)00095-7 – volume: 332 start-page: 141 year: 2024 ident: B33 article-title: Management of depression in adults: a review publication-title: JAMA doi: 10.1001/jama.2024.5756 – volume: 46 start-page: 1174 year: 2001 ident: B2 article-title: Theoretical analysis of the effects of noise on diffusion tensor imaging publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1315 – volume: 324 start-page: 489 year: 2023 ident: B20 article-title: Abnormal white matter integrity in Papez circuit in first-episode medication-naive adults with anxious depression: a combined voxel-based analysis and region of interest study publication-title: J. Affect. Disord. doi: 10.1016/j.jad.2022.12.149 – volume: 80 start-page: 851 year: 2018 ident: B15 article-title: Deep learning approaches for detection and removal of ghosting artifacts in MR spectroscopy publication-title: Magn. Reson. Med. doi: 10.1002/mrm.27096 – volume: 16 start-page: 606 year: 2001 ident: B14 article-title: The PHQ-9 publication-title: J. Gen. Intern. Med. doi: 10.1046/j.1525-1497.2001.016009606.x – volume: 95 start-page: 1063 year: 2024 ident: B25 article-title: White matter tract integrity is reduced in depression and in individuals with genetic liability to depression publication-title: Biol. Psychiatry doi: 10.1016/j.biopsych.2023.11.028 – volume: 36 start-page: 1123 year: 2007 ident: B17 article-title: Effects of diffusion weighting schemes on the reproducibility of DTI-derived fractional anisotropy, mean diffusivity, and principal eigenvector measurements at 1.5T publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.02.056 – volume: 166 start-page: 1092 year: 2006 ident: B35 article-title: A brief measure for assessing generalized anxiety disorder: the GAD-7 publication-title: Arch. Intern. Med. doi: 10.1001/archinte.166.10.1092 – volume: 51 start-page: 101163 year: 2024 ident: B28 article-title: Deep learning-based noise reduction preserves quantitative MRI biomarkers in patients with brain tumors publication-title: J. Neuroradiol. doi: 10.1016/j.neurad.2023.10.008 – year: 2020 ident: B18 article-title: Performance characterization of a novel deep learning-based MR image reconstruction pipeline publication-title: arXiv doi: 10.48550/arXiv.2008.06559 – volume: 214 start-page: 260 year: 2013 ident: B30 article-title: Reduced white matter integrity in the cingulum and anterior corona radiata in posttraumatic stress disorder in male combat veterans: a diffusion tensor imaging study publication-title: Psychiatry Res. Neuroimaging doi: 10.1016/j.pscychresns.2013.09.002 – volume: 522 start-page: 139 year: 2012 ident: B11 article-title: Altered white matter integrity in young adults with first-episode, treatment-naive, and treatment-responsive depression publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2012.06.027 – volume: 32 start-page: 3924 year: 2025 ident: B40 article-title: Accelerated multi-b-value DWI using deep learning reconstruction: image quality improvement and microvascular invasion prediction in BCLC stage a hepatocellular carcinoma publication-title: Acad. Radiol. doi: 10.1016/j.acra.2025.01.043 – volume: 86 start-page: 759 year: 2019 ident: B32 article-title: White matter microstructure and its relation to longitudinal measures of depressive symptoms in mid- and late life publication-title: Biol. Psychiatry doi: 10.1016/j.biopsych.2019.06.011 – volume: 25 start-page: 1511 year: 2020 ident: B37 article-title: White matter disturbances in major depressive disorder: a coordinated analysis across 20 international cohorts in the ENIGMA MDD working group publication-title: Mol. Psychiatry doi: 10.1038/s41380-019-0477-2 – volume: 20 start-page: 450 year: 2021 ident: B29 article-title: Deep learning-based noise reduction for fast volume diffusion tensor imaging: assessing the noise reduction effect and reliability of diffusion metrics publication-title: Magn. Reson. Med. Sci. doi: 10.2463/mrms.tn.2020-0061 – volume: 21 start-page: 133 year: 2024 ident: B1 article-title: Association between white matter tract integrity and frontal-executive function in non-geriatric adult patients with major depressive disorder publication-title: Psychiatry Investig. doi: 10.30773/pi.2023.0229 – volume: 375 start-page: n2183 year: 2021 ident: B23 article-title: Accuracy of the Patient Health Questionnaire-9 for screening to detect major depression: updated systematic review and individual participant data meta-analysis publication-title: BMJ doi: 10.1136/bmj.n2183 – volume: 77 start-page: 120 year: 2006 ident: B24 article-title: Frontal white matter anisotropy and symptom severity of late-life depression: a magnetic resonance diffusion tensor imaging study publication-title: J. Neurol. Neurosurg. Psychiatry doi: 10.1136/jnnp.2004.055129 – volume: 16 start-page: 773 year: 1998 ident: B3 article-title: A theoretical study of the effect of experimental noise on the measurement of anisotropy in diffusion imaging publication-title: Magn. Reson. Imaging doi: 10.1016/S0730-725X(98)00098-8 – volume: 43 start-page: 471 year: 2013 ident: B10 article-title: Global variation in the prevalence and incidence of major depressive disorder: a systematic review of the epidemiological literature publication-title: Psychol. Med. doi: 10.1017/S0033291712001511 – volume: 10 start-page: 504 year: 2024 ident: B31 article-title: Impact of deep learning denoising algorithm on diffusion tensor imaging of the growth plate on different spatial resolutions publication-title: Tomography doi: 10.3390/tomography10040039 – volume: 24 start-page: 223 year: 2012 ident: B7 article-title: Human medial forebrain bundle (MFB) and anterior thalamic radiation (ATR): imaging of two major subcortical pathways and the dynamic balance of opposite Affects in understanding depression publication-title: J. Neuropsychiatry Clin. Neurosci. doi: 10.1176/appi.neuropsych.11080180 – volume: 392 start-page: 2299 year: 2018 ident: B22 article-title: Depression publication-title: Lancet doi: 10.1016/S0140-6736(18)31948-2 – volume: 72 start-page: 41 year: 2013 ident: B5 article-title: A robust multi-shot scan strategy for high-resolution diffusion weighted MRI enabled by multiplexed sensitivity-encoding (MUSE) publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.01.038 – volume: 36 start-page: 893 year: 1996 ident: B26 article-title: Toward a quantitative assessment of diffusion anisotropy publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1910360612 – volume: 44 start-page: 103682 year: 2024 ident: B27 article-title: Multi-modal MRI for objective diagnosis and outcome prediction in depression publication-title: Neuroimage Clin. doi: 10.1016/j.nicl.2024.103682 – volume: 172 start-page: 74 year: 2015 ident: B6 article-title: Association of brain-derived neurotrophic factor DNA methylation and reduced white matter integrity in the anterior corona radiata in major depression publication-title: J. Affect. Disord. doi: 10.1016/j.jad.2014.09.042 – volume: 5 start-page: 433 year: 2009 ident: B9 article-title: Brain-derived neurotrophic factor: role in depression and suicide publication-title: Neuropsychiatr. Dis. Treat. doi: 10.2147/NDT.S5700 – volume: 244 start-page: 118632 year: 2021 ident: B39 article-title: Deep learning based multiplexed sensitivity-encoding (DL-MUSE) for high-resolution multi-shot DWI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2021.118632 – volume: 93 start-page: 103073 year: 2024 ident: B21 article-title: Automatic motion artefact detection in brain T1-weighted magnetic resonance images from a clinical data warehouse using synthetic data publication-title: Med. Image Anal. doi: 10.1016/j.media.2023.103073 |
SSID | ssj0062842 |
Score | 2.3994741 |
Snippet | ObjectiveThis study aimed to evaluate whether deep learning-based image reconstruction (DLR) improves the accuracy of diffusion tensor imaging (DTI)... |
SourceID | doaj pubmedcentral crossref |
SourceType | Open Website Open Access Repository Index Database |
SubjectTerms | deep learning depression diffusion tensor imaging fractional anisotropy Neuroscience white matter tract |
Title | Deep learning-based image reconstruction benefits diffusion tensor imaging for assessing severity of depression |
URI | https://pubmed.ncbi.nlm.nih.gov/PMC12378163 https://doaj.org/article/31d3e3940e1b4dc3affa3cd62895421f |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEwsCCqK85AGxoNAkduxmLI9SIcFEpW6Rn5ChbgVl4N9z56RVy8LCEimx8_ou8t3nnL8j5JJZozVqtkrG04SXLE3KXJWJhtiWaW1FWeJ65-cXMRrzp0kxWSv1hTlhjTxwA1yPZZY5LN_tMs2tYcp7xYwVQBQKnmceR1_weUsy1YzB0MrzZokMULCy50MdUJs7L26ioBrmPK-5oajW_zsrcs3NDPfIbhsf0kHzXPtky4UD0hkE4MbTb3pFY8ZmnArvkNm9c3Pa1n14S9AhWVpPYYSgkeeutGGphhHN14tPivVQvnCCjGLm-uwjdoeTKcSuVMUfwLgH7tJhVTs683SVKxsOyXj48Ho3StoCCokBTNLElBrYjhGMF94YLaW0TKJgvk4t99I6AErl0mPZFydS7RX0hpjAArzAOwp2RLbDLLhjQpXQ2hsu0r7xXAqtmAf3WoBlhDIZE11yvcSzmjc6GRXwC0S_iuhXiH7Vot8ltwj5qidqXMcDYPmqtXz1l-W7pL9hsI2rbbaE-j0qZ4Obln2IQE_-4_6nZAffCSeYs_yMbINN3TlEKAt9ET9G2D5Osh8D1Opk |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning-based+image+reconstruction+benefits+diffusion+tensor+imaging+for+assessing+severity+of+depression&rft.jtitle=Frontiers+in+neuroscience&rft.au=Cui%2C+Yuanyuan&rft.au=Wang%2C+Yihao&rft.au=Yuan%2C+Weimin&rft.au=Zhang%2C+Youhan&rft.date=2025-08-12&rft.issn=1662-453X&rft.eissn=1662-453X&rft.volume=19&rft_id=info:doi/10.3389%2Ffnins.2025.1607130&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fnins_2025_1607130 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-453X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-453X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-453X&client=summon |