Deep learning-based image reconstruction benefits diffusion tensor imaging for assessing severity of depression

ObjectiveThis study aimed to evaluate whether deep learning-based image reconstruction (DLR) improves the accuracy of diffusion tensor imaging (DTI) measurements used to assess the severity of depression.MethodsA total of 52 patients diagnosed with depression in our hospital between March 2023 and J...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in neuroscience Vol. 19
Main Authors Cui, Yuanyuan, Wang, Yihao, Yuan, Weimin, Zhang, Youhan, Wang, Yunmeng, Dai, Jiankun, Cheng, Yuxin, Zhang, Xin, Sun, Hongbiao, Dong, Shuwen, Wang, Jinlin, Bai, Yonghai, Liu, Shiyuan, Xiao, Yi
Format Journal Article
LanguageEnglish
Published Frontiers Media S.A 12.08.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ObjectiveThis study aimed to evaluate whether deep learning-based image reconstruction (DLR) improves the accuracy of diffusion tensor imaging (DTI) measurements used to assess the severity of depression.MethodsA total of 52 patients diagnosed with depression in our hospital between March 2023 and July 2023 were enrolled in this study. The severity of depression was measured using the 9-item Patient Health Questionnaire (PHQ-9). Each patient underwent DTI scans. Two image sets were generated: one with the original DTI (ORI DTI) and one using DLR DTI. Tract-Based Spatial Statistics (TBSS) were used to compare the fractional anisotropy (FA) between DLR DTI and ORI DTI, as well as between patients with mild-to-moderate and those with severe depression. Multivariate logistic regression was carried out to determine independent factors for discriminating mild-to-moderate from severe depression patients. Receiver operating characteristic (ROC) curve analysis and areas under the curve (AUC) were used to assess the diagnostic performance.ResultsTwenty-eight patients with mild-to-moderate depression and 24 with severe depression were included. No significant differences were observed between the two groups in terms of gender (p = 0.115), age (p = 0.603), or educational background (p = 0.148). Compared to patients with mild-to-moderate depression, those with severe depression showed lower FA values in the right corticospinal tract (CST) on ORI DTI. Using DLR DTI, decreases in FA values were observed in the right CST, right anterior thalamic radiation, and left superior longitudinal fasciculus. The diagnostic model based on DLR DTI outperformed the ORI DTI model in assessing severity of depression (AUC: 0.951 vs. 0.764, p < 0.001).ConclusionDLR DTI demonstrated greater sensitivity in detecting white matter (WM) abnormalities in patients with severe depression and provided better diagnostic performance in evaluating severity of depression.
AbstractList ObjectiveThis study aimed to evaluate whether deep learning-based image reconstruction (DLR) improves the accuracy of diffusion tensor imaging (DTI) measurements used to assess the severity of depression.MethodsA total of 52 patients diagnosed with depression in our hospital between March 2023 and July 2023 were enrolled in this study. The severity of depression was measured using the 9-item Patient Health Questionnaire (PHQ-9). Each patient underwent DTI scans. Two image sets were generated: one with the original DTI (ORI DTI) and one using DLR DTI. Tract-Based Spatial Statistics (TBSS) were used to compare the fractional anisotropy (FA) between DLR DTI and ORI DTI, as well as between patients with mild-to-moderate and those with severe depression. Multivariate logistic regression was carried out to determine independent factors for discriminating mild-to-moderate from severe depression patients. Receiver operating characteristic (ROC) curve analysis and areas under the curve (AUC) were used to assess the diagnostic performance.ResultsTwenty-eight patients with mild-to-moderate depression and 24 with severe depression were included. No significant differences were observed between the two groups in terms of gender (p = 0.115), age (p = 0.603), or educational background (p = 0.148). Compared to patients with mild-to-moderate depression, those with severe depression showed lower FA values in the right corticospinal tract (CST) on ORI DTI. Using DLR DTI, decreases in FA values were observed in the right CST, right anterior thalamic radiation, and left superior longitudinal fasciculus. The diagnostic model based on DLR DTI outperformed the ORI DTI model in assessing severity of depression (AUC: 0.951 vs. 0.764, p < 0.001).ConclusionDLR DTI demonstrated greater sensitivity in detecting white matter (WM) abnormalities in patients with severe depression and provided better diagnostic performance in evaluating severity of depression.
Author Zhang, Xin
Yuan, Weimin
Sun, Hongbiao
Wang, Jinlin
Dong, Shuwen
Bai, Yonghai
Wang, Yunmeng
Xiao, Yi
Liu, Shiyuan
Zhang, Youhan
Cui, Yuanyuan
Dai, Jiankun
Wang, Yihao
Cheng, Yuxin
AuthorAffiliation 3 Department of Radiology, Qingdao Special Servicemen Recuperation Center of PLA Navy , Qingdao , China
2 Department of Psychology, Second Affiliated Hospital of Naval Medical University , Shanghai , China
1 Department of Radiology, Second Affiliated Hospital of Naval Medical University , Shanghai , China
4 MR Research, GE Healthcare , Beijing , China
AuthorAffiliation_xml – name: 3 Department of Radiology, Qingdao Special Servicemen Recuperation Center of PLA Navy , Qingdao , China
– name: 2 Department of Psychology, Second Affiliated Hospital of Naval Medical University , Shanghai , China
– name: 4 MR Research, GE Healthcare , Beijing , China
– name: 1 Department of Radiology, Second Affiliated Hospital of Naval Medical University , Shanghai , China
Author_xml – sequence: 1
  givenname: Yuanyuan
  surname: Cui
  fullname: Cui, Yuanyuan
– sequence: 2
  givenname: Yihao
  surname: Wang
  fullname: Wang, Yihao
– sequence: 3
  givenname: Weimin
  surname: Yuan
  fullname: Yuan, Weimin
– sequence: 4
  givenname: Youhan
  surname: Zhang
  fullname: Zhang, Youhan
– sequence: 5
  givenname: Yunmeng
  surname: Wang
  fullname: Wang, Yunmeng
– sequence: 6
  givenname: Jiankun
  surname: Dai
  fullname: Dai, Jiankun
– sequence: 7
  givenname: Yuxin
  surname: Cheng
  fullname: Cheng, Yuxin
– sequence: 8
  givenname: Xin
  surname: Zhang
  fullname: Zhang, Xin
– sequence: 9
  givenname: Hongbiao
  surname: Sun
  fullname: Sun, Hongbiao
– sequence: 10
  givenname: Shuwen
  surname: Dong
  fullname: Dong, Shuwen
– sequence: 11
  givenname: Jinlin
  surname: Wang
  fullname: Wang, Jinlin
– sequence: 12
  givenname: Yonghai
  surname: Bai
  fullname: Bai, Yonghai
– sequence: 13
  givenname: Shiyuan
  surname: Liu
  fullname: Liu, Shiyuan
– sequence: 14
  givenname: Yi
  surname: Xiao
  fullname: Xiao, Yi
BookMark eNpVkd1KAzEQhYMoqNUX8GpfYGv-Ntm9Eqm_UPBGwbuQTSY1pSYl2Rb69mbbIno1M2dmPg6cS3QaYgCEbgieMtZ2ty74kKcU02ZKBJaE4RN0QYSgNW_Y5-mf_hxd5rzEWNCW0wsUHwDW1Qp0KoRF3esMtvLfegFVAhNDHtLGDD6GqocAzg-5st65TR6lAUKOaX9enitXep0z5DxOGbaQ_LCroqssrNMox3CFzpxeZbg-1gn6eHp8n73U87fn19n9vDYUd7g2XU94awTjjTOml1JaJiWXbY8td9JC8a-pdLgTBATunS7XuKXWCkpa2rAJej1wbdRLtU7FY9qpqL3aCzEtlE6DNytQjFgGrOMYSM-tYdo5zUwBtV3DKXGFdXdgrTf9N1gDYUh69Q_6fxP8l1rErSKUyZYIVgj0QDAp5pzA_T4TrMYA1T5ANQaojgGyH0frlaU
Cites_doi 10.1002/mrm.20283
10.1016/j.jad.2015.06.041
10.1192/bjp.bp.111.100594
10.1007/s00330-019-06648-0
10.3348/kjr.2024.0177
10.1017/S0033291714000440
10.1001/jama.2020.6504
10.1017/S0033291707001730
10.1016/S0022-3999(00)00095-7
10.1001/jama.2024.5756
10.1002/mrm.1315
10.1016/j.jad.2022.12.149
10.1002/mrm.27096
10.1046/j.1525-1497.2001.016009606.x
10.1016/j.biopsych.2023.11.028
10.1016/j.neuroimage.2007.02.056
10.1001/archinte.166.10.1092
10.1016/j.neurad.2023.10.008
10.48550/arXiv.2008.06559
10.1016/j.pscychresns.2013.09.002
10.1016/j.neulet.2012.06.027
10.1016/j.acra.2025.01.043
10.1016/j.biopsych.2019.06.011
10.1038/s41380-019-0477-2
10.2463/mrms.tn.2020-0061
10.30773/pi.2023.0229
10.1136/bmj.n2183
10.1136/jnnp.2004.055129
10.1016/S0730-725X(98)00098-8
10.1017/S0033291712001511
10.3390/tomography10040039
10.1176/appi.neuropsych.11080180
10.1016/S0140-6736(18)31948-2
10.1016/j.neuroimage.2013.01.038
10.1002/mrm.1910360612
10.1016/j.nicl.2024.103682
10.1016/j.jad.2014.09.042
10.2147/NDT.S5700
10.1016/j.neuroimage.2021.118632
10.1016/j.media.2023.103073
ContentType Journal Article
Copyright Copyright © 2025 Cui, Wang, Yuan, Zhang, Wang, Dai, Cheng, Zhang, Sun, Dong, Wang, Bai, Liu and Xiao. 2025 Cui, Wang, Yuan, Zhang, Wang, Dai, Cheng, Zhang, Sun, Dong, Wang, Bai, Liu and Xiao
Copyright_xml – notice: Copyright © 2025 Cui, Wang, Yuan, Zhang, Wang, Dai, Cheng, Zhang, Sun, Dong, Wang, Bai, Liu and Xiao. 2025 Cui, Wang, Yuan, Zhang, Wang, Dai, Cheng, Zhang, Sun, Dong, Wang, Bai, Liu and Xiao
DBID AAYXX
CITATION
5PM
DOA
DOI 10.3389/fnins.2025.1607130
DatabaseName CrossRef
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1662-453X
ExternalDocumentID oai_doaj_org_article_31d3e3940e1b4dc3affa3cd62895421f
PMC12378163
10_3389_fnins_2025_1607130
GroupedDBID ---
29H
2WC
53G
5GY
5VS
88I
8FE
8FH
9T4
AAFWJ
AAYXX
ABUWG
ACGFO
ACGFS
ACXDI
ADRAZ
AEGXH
AENEX
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BBNVY
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
CS3
DIK
DU5
DWQXO
E3Z
EBS
EJD
EMOBN
F5P
FRP
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HYE
KQ8
LK8
M2P
M7P
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
RNS
RPM
W2D
5PM
PUEGO
ID FETCH-LOGICAL-c2090-c9b148c6345fccb777d377478b0d4f7de062a27f0961e60bfa48c082dd6218253
IEDL.DBID DOA
ISSN 1662-453X
1662-4548
IngestDate Wed Aug 27 01:18:15 EDT 2025
Thu Aug 28 05:25:11 EDT 2025
Thu Aug 14 00:17:15 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2090-c9b148c6345fccb777d377478b0d4f7de062a27f0961e60bfa48c082dd6218253
Notes Reviewed by: Weiwei Zhao, East China Normal University, China
Jinyuan Wang, National University of Singapore, Singapore
These authors have contributed equally to this work
Edited by: Amir Shmuel, McGill University, Canada
OpenAccessLink https://doaj.org/article/31d3e3940e1b4dc3affa3cd62895421f
ParticipantIDs doaj_primary_oai_doaj_org_article_31d3e3940e1b4dc3affa3cd62895421f
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12378163
crossref_primary_10_3389_fnins_2025_1607130
PublicationCentury 2000
PublicationDate 20250812
PublicationDateYYYYMMDD 2025-08-12
PublicationDate_xml – month: 8
  year: 2025
  text: 20250812
  day: 12
PublicationDecade 2020
PublicationTitle Frontiers in neuroscience
PublicationYear 2025
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Lebel (B18) 2020
Anderson (B2) 2001; 46
Jones (B13) 2004; 52
Shen (B32) 2019; 86
Santos (B31) 2024; 10
Ferrari (B10) 2013; 43
Sagawa (B29) 2021; 20
Lai (B16) 2014; 44
Guo (B11) 2012; 522
Spitzer (B35) 2006; 166
Nothdurfter (B25) 2024; 95
van Velzen (B37) 2020; 25
Loizillon (B21) 2024; 93
Pouliquen (B28) 2024; 51
Li (B20) 2023; 324
Uher (B36) 2008; 38
Chen (B5) 2013; 72
Kroenke (B14) 2001; 16
Zhang (B39) 2021; 244
Nobuhara (B24) 2006; 77
Sanjuan (B30) 2013; 214
Malhi (B22) 2018; 392
Wang (B38) 2024; 25
Pilmeyer (B27) 2024; 44
Bracht (B4) 2015; 187
Ahn (B1) 2024; 21
Simon (B33) 2024; 332
Iima (B12) 2020; 30
Cole (B8) 2012; 201
Negeri (B23) 2021; 375
Pierpaoli (B26) 1996; 36
Bastin (B3) 1998; 16
Dwivedi (B9) 2009; 5
Choi (B6) 2015; 172
Zhu (B40) 2025; 32
Coenen (B7) 2012; 24
Kyathanahally (B15) 2018; 80
Soldatos (B34) 2000; 48
Levis (B19) 2020; 323
Landman (B17) 2007; 36
References_xml – volume: 52
  start-page: 979
  year: 2004
  ident: B13
  article-title: “Squashing peanuts and smashing pumpkins”: how noise distorts diffusion-weighted MR data
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.20283
– volume: 187
  start-page: 45
  year: 2015
  ident: B4
  article-title: A review of white matter microstructure alterations of pathways of the reward circuit in depression
  publication-title: J. Affect. Disord.
  doi: 10.1016/j.jad.2015.06.041
– volume: 201
  start-page: 33
  year: 2012
  ident: B8
  article-title: White matter abnormalities and illness severity in major depressive disorder
  publication-title: Br. J. Psychiatry
  doi: 10.1192/bjp.bp.111.100594
– volume: 30
  start-page: 2561
  year: 2020
  ident: B12
  article-title: Six DWI questions you always wanted to know but were afraid to ask: clinical relevance for breast diffusion MRI
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-019-06648-0
– volume: 25
  start-page: 913
  year: 2024
  ident: B38
  article-title: Prospective comparison of FOCUS MUSE and single-shot echo-planar imaging for diffusion-weighted imaging in evaluating thyroid-associated ophthalmopathy
  publication-title: Korean J. Radiol.
  doi: 10.3348/kjr.2024.0177
– volume: 44
  start-page: 2825
  year: 2014
  ident: B16
  article-title: Alterations in white matter micro-integrity of the superior longitudinal fasciculus and anterior thalamic radiation of young adult patients with depression
  publication-title: Psychol. Med.
  doi: 10.1017/S0033291714000440
– volume: 323
  start-page: 2290
  year: 2020
  ident: B19
  article-title: Accuracy of the PHQ-2 alone and in combination with the PHQ-9 for screening to detect major depression: systematic review and meta-analysis
  publication-title: JAMA
  doi: 10.1001/jama.2020.6504
– volume: 38
  start-page: 289
  year: 2008
  ident: B36
  article-title: Measuring depression: comparison and integration of three scales in the GENDEP study
  publication-title: Psychol. Med.
  doi: 10.1017/S0033291707001730
– volume: 48
  start-page: 555
  year: 2000
  ident: B34
  article-title: Athens insomnia scale: validation of an instrument based on ICD-10 criteria
  publication-title: J. Psychosom. Res.
  doi: 10.1016/S0022-3999(00)00095-7
– volume: 332
  start-page: 141
  year: 2024
  ident: B33
  article-title: Management of depression in adults: a review
  publication-title: JAMA
  doi: 10.1001/jama.2024.5756
– volume: 46
  start-page: 1174
  year: 2001
  ident: B2
  article-title: Theoretical analysis of the effects of noise on diffusion tensor imaging
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.1315
– volume: 324
  start-page: 489
  year: 2023
  ident: B20
  article-title: Abnormal white matter integrity in Papez circuit in first-episode medication-naive adults with anxious depression: a combined voxel-based analysis and region of interest study
  publication-title: J. Affect. Disord.
  doi: 10.1016/j.jad.2022.12.149
– volume: 80
  start-page: 851
  year: 2018
  ident: B15
  article-title: Deep learning approaches for detection and removal of ghosting artifacts in MR spectroscopy
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.27096
– volume: 16
  start-page: 606
  year: 2001
  ident: B14
  article-title: The PHQ-9
  publication-title: J. Gen. Intern. Med.
  doi: 10.1046/j.1525-1497.2001.016009606.x
– volume: 95
  start-page: 1063
  year: 2024
  ident: B25
  article-title: White matter tract integrity is reduced in depression and in individuals with genetic liability to depression
  publication-title: Biol. Psychiatry
  doi: 10.1016/j.biopsych.2023.11.028
– volume: 36
  start-page: 1123
  year: 2007
  ident: B17
  article-title: Effects of diffusion weighting schemes on the reproducibility of DTI-derived fractional anisotropy, mean diffusivity, and principal eigenvector measurements at 1.5T
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.02.056
– volume: 166
  start-page: 1092
  year: 2006
  ident: B35
  article-title: A brief measure for assessing generalized anxiety disorder: the GAD-7
  publication-title: Arch. Intern. Med.
  doi: 10.1001/archinte.166.10.1092
– volume: 51
  start-page: 101163
  year: 2024
  ident: B28
  article-title: Deep learning-based noise reduction preserves quantitative MRI biomarkers in patients with brain tumors
  publication-title: J. Neuroradiol.
  doi: 10.1016/j.neurad.2023.10.008
– year: 2020
  ident: B18
  article-title: Performance characterization of a novel deep learning-based MR image reconstruction pipeline
  publication-title: arXiv
  doi: 10.48550/arXiv.2008.06559
– volume: 214
  start-page: 260
  year: 2013
  ident: B30
  article-title: Reduced white matter integrity in the cingulum and anterior corona radiata in posttraumatic stress disorder in male combat veterans: a diffusion tensor imaging study
  publication-title: Psychiatry Res. Neuroimaging
  doi: 10.1016/j.pscychresns.2013.09.002
– volume: 522
  start-page: 139
  year: 2012
  ident: B11
  article-title: Altered white matter integrity in young adults with first-episode, treatment-naive, and treatment-responsive depression
  publication-title: Neurosci. Lett.
  doi: 10.1016/j.neulet.2012.06.027
– volume: 32
  start-page: 3924
  year: 2025
  ident: B40
  article-title: Accelerated multi-b-value DWI using deep learning reconstruction: image quality improvement and microvascular invasion prediction in BCLC stage a hepatocellular carcinoma
  publication-title: Acad. Radiol.
  doi: 10.1016/j.acra.2025.01.043
– volume: 86
  start-page: 759
  year: 2019
  ident: B32
  article-title: White matter microstructure and its relation to longitudinal measures of depressive symptoms in mid- and late life
  publication-title: Biol. Psychiatry
  doi: 10.1016/j.biopsych.2019.06.011
– volume: 25
  start-page: 1511
  year: 2020
  ident: B37
  article-title: White matter disturbances in major depressive disorder: a coordinated analysis across 20 international cohorts in the ENIGMA MDD working group
  publication-title: Mol. Psychiatry
  doi: 10.1038/s41380-019-0477-2
– volume: 20
  start-page: 450
  year: 2021
  ident: B29
  article-title: Deep learning-based noise reduction for fast volume diffusion tensor imaging: assessing the noise reduction effect and reliability of diffusion metrics
  publication-title: Magn. Reson. Med. Sci.
  doi: 10.2463/mrms.tn.2020-0061
– volume: 21
  start-page: 133
  year: 2024
  ident: B1
  article-title: Association between white matter tract integrity and frontal-executive function in non-geriatric adult patients with major depressive disorder
  publication-title: Psychiatry Investig.
  doi: 10.30773/pi.2023.0229
– volume: 375
  start-page: n2183
  year: 2021
  ident: B23
  article-title: Accuracy of the Patient Health Questionnaire-9 for screening to detect major depression: updated systematic review and individual participant data meta-analysis
  publication-title: BMJ
  doi: 10.1136/bmj.n2183
– volume: 77
  start-page: 120
  year: 2006
  ident: B24
  article-title: Frontal white matter anisotropy and symptom severity of late-life depression: a magnetic resonance diffusion tensor imaging study
  publication-title: J. Neurol. Neurosurg. Psychiatry
  doi: 10.1136/jnnp.2004.055129
– volume: 16
  start-page: 773
  year: 1998
  ident: B3
  article-title: A theoretical study of the effect of experimental noise on the measurement of anisotropy in diffusion imaging
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/S0730-725X(98)00098-8
– volume: 43
  start-page: 471
  year: 2013
  ident: B10
  article-title: Global variation in the prevalence and incidence of major depressive disorder: a systematic review of the epidemiological literature
  publication-title: Psychol. Med.
  doi: 10.1017/S0033291712001511
– volume: 10
  start-page: 504
  year: 2024
  ident: B31
  article-title: Impact of deep learning denoising algorithm on diffusion tensor imaging of the growth plate on different spatial resolutions
  publication-title: Tomography
  doi: 10.3390/tomography10040039
– volume: 24
  start-page: 223
  year: 2012
  ident: B7
  article-title: Human medial forebrain bundle (MFB) and anterior thalamic radiation (ATR): imaging of two major subcortical pathways and the dynamic balance of opposite Affects in understanding depression
  publication-title: J. Neuropsychiatry Clin. Neurosci.
  doi: 10.1176/appi.neuropsych.11080180
– volume: 392
  start-page: 2299
  year: 2018
  ident: B22
  article-title: Depression
  publication-title: Lancet
  doi: 10.1016/S0140-6736(18)31948-2
– volume: 72
  start-page: 41
  year: 2013
  ident: B5
  article-title: A robust multi-shot scan strategy for high-resolution diffusion weighted MRI enabled by multiplexed sensitivity-encoding (MUSE)
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.01.038
– volume: 36
  start-page: 893
  year: 1996
  ident: B26
  article-title: Toward a quantitative assessment of diffusion anisotropy
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.1910360612
– volume: 44
  start-page: 103682
  year: 2024
  ident: B27
  article-title: Multi-modal MRI for objective diagnosis and outcome prediction in depression
  publication-title: Neuroimage Clin.
  doi: 10.1016/j.nicl.2024.103682
– volume: 172
  start-page: 74
  year: 2015
  ident: B6
  article-title: Association of brain-derived neurotrophic factor DNA methylation and reduced white matter integrity in the anterior corona radiata in major depression
  publication-title: J. Affect. Disord.
  doi: 10.1016/j.jad.2014.09.042
– volume: 5
  start-page: 433
  year: 2009
  ident: B9
  article-title: Brain-derived neurotrophic factor: role in depression and suicide
  publication-title: Neuropsychiatr. Dis. Treat.
  doi: 10.2147/NDT.S5700
– volume: 244
  start-page: 118632
  year: 2021
  ident: B39
  article-title: Deep learning based multiplexed sensitivity-encoding (DL-MUSE) for high-resolution multi-shot DWI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2021.118632
– volume: 93
  start-page: 103073
  year: 2024
  ident: B21
  article-title: Automatic motion artefact detection in brain T1-weighted magnetic resonance images from a clinical data warehouse using synthetic data
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2023.103073
SSID ssj0062842
Score 2.3994741
Snippet ObjectiveThis study aimed to evaluate whether deep learning-based image reconstruction (DLR) improves the accuracy of diffusion tensor imaging (DTI)...
SourceID doaj
pubmedcentral
crossref
SourceType Open Website
Open Access Repository
Index Database
SubjectTerms deep learning
depression
diffusion tensor imaging
fractional anisotropy
Neuroscience
white matter tract
Title Deep learning-based image reconstruction benefits diffusion tensor imaging for assessing severity of depression
URI https://pubmed.ncbi.nlm.nih.gov/PMC12378163
https://doaj.org/article/31d3e3940e1b4dc3affa3cd62895421f
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEwsCCqK85AGxoNAkduxmLI9SIcFEpW6Rn5ChbgVl4N9z56RVy8LCEimx8_ou8t3nnL8j5JJZozVqtkrG04SXLE3KXJWJhtiWaW1FWeJ65-cXMRrzp0kxWSv1hTlhjTxwA1yPZZY5LN_tMs2tYcp7xYwVQBQKnmceR1_weUsy1YzB0MrzZokMULCy50MdUJs7L26ioBrmPK-5oajW_zsrcs3NDPfIbhsf0kHzXPtky4UD0hkE4MbTb3pFY8ZmnArvkNm9c3Pa1n14S9AhWVpPYYSgkeeutGGphhHN14tPivVQvnCCjGLm-uwjdoeTKcSuVMUfwLgH7tJhVTs683SVKxsOyXj48Ho3StoCCokBTNLElBrYjhGMF94YLaW0TKJgvk4t99I6AErl0mPZFydS7RX0hpjAArzAOwp2RLbDLLhjQpXQ2hsu0r7xXAqtmAf3WoBlhDIZE11yvcSzmjc6GRXwC0S_iuhXiH7Vot8ltwj5qidqXMcDYPmqtXz1l-W7pL9hsI2rbbaE-j0qZ4Obln2IQE_-4_6nZAffCSeYs_yMbINN3TlEKAt9ET9G2D5Osh8D1Opk
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning-based+image+reconstruction+benefits+diffusion+tensor+imaging+for+assessing+severity+of+depression&rft.jtitle=Frontiers+in+neuroscience&rft.au=Cui%2C+Yuanyuan&rft.au=Wang%2C+Yihao&rft.au=Yuan%2C+Weimin&rft.au=Zhang%2C+Youhan&rft.date=2025-08-12&rft.issn=1662-453X&rft.eissn=1662-453X&rft.volume=19&rft_id=info:doi/10.3389%2Ffnins.2025.1607130&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fnins_2025_1607130
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-453X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-453X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-453X&client=summon