An Epilepsy-Associated KCNT1 Mutation Enhances Excitability of Human iPSC-Derived Neurons by Increasing Slack K Na Currents

Mutations in the KCNT1 (Slack, K 1.1) sodium-activated potassium channel produce severe epileptic encephalopathies. Expression in heterologous systems has shown that the disease-causing mutations give rise to channels that have increased current amplitude. It is not known, however, whether such gain...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of neuroscience Vol. 39; no. 37; pp. 7438 - 7449
Main Authors Quraishi, Imran H, Stern, Shani, Mangan, Kile P, Zhang, Yalan, Ali, Syed R, Mercier, Michael R, Marchetto, Maria C, McLachlan, Michael J, Jones, Eugenia M, Gage, Fred H, Kaczmarek, Leonard K
Format Journal Article
LanguageEnglish
Published United States 11.09.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Mutations in the KCNT1 (Slack, K 1.1) sodium-activated potassium channel produce severe epileptic encephalopathies. Expression in heterologous systems has shown that the disease-causing mutations give rise to channels that have increased current amplitude. It is not known, however, whether such gain of function occurs in human neurons, nor whether such increased K current is expected to suppress or increase the excitability of cortical neurons. Using genetically engineered human induced pluripotent stem cell (iPSC)-derived neurons, we have now found that sodium-dependent potassium currents are increased several-fold in neurons bearing a homozygous P924L mutation. In current-clamp recordings, the increased K current in neurons with the P924L mutation acts to shorten the duration of action potentials and to increase the amplitude of the afterhyperpolarization that follows each action potential. Strikingly, the number of action potentials that were evoked by depolarizing currents as well as maximal firing rates were increased in neurons expressing the mutant channel. In networks of spontaneously active neurons, the mean firing rate, the occurrence of rapid bursts of action potentials, and the intensity of firing during the burst were all increased in neurons with the P924L Slack mutation. The feasibility of an increased K current to increase firing rates independent of any compensatory changes was validated by numerical simulations. Our findings indicate that gain-of-function in Slack K channels causes hyperexcitability in both isolated neurons and in neural networks and occurs by a cell-autonomous mechanism that does not require network interactions. mutations lead to severe epileptic encephalopathies for which there are no effective treatments. This study is the first demonstration that a mutation increases the Slack current in neurons. It also provides the first explanation for how this increased potassium current induces hyperexcitability, which could be the underlining factor causing seizures.
AbstractList Mutations in the KCNT1 (Slack, K 1.1) sodium-activated potassium channel produce severe epileptic encephalopathies. Expression in heterologous systems has shown that the disease-causing mutations give rise to channels that have increased current amplitude. It is not known, however, whether such gain of function occurs in human neurons, nor whether such increased K current is expected to suppress or increase the excitability of cortical neurons. Using genetically engineered human induced pluripotent stem cell (iPSC)-derived neurons, we have now found that sodium-dependent potassium currents are increased several-fold in neurons bearing a homozygous P924L mutation. In current-clamp recordings, the increased K current in neurons with the P924L mutation acts to shorten the duration of action potentials and to increase the amplitude of the afterhyperpolarization that follows each action potential. Strikingly, the number of action potentials that were evoked by depolarizing currents as well as maximal firing rates were increased in neurons expressing the mutant channel. In networks of spontaneously active neurons, the mean firing rate, the occurrence of rapid bursts of action potentials, and the intensity of firing during the burst were all increased in neurons with the P924L Slack mutation. The feasibility of an increased K current to increase firing rates independent of any compensatory changes was validated by numerical simulations. Our findings indicate that gain-of-function in Slack K channels causes hyperexcitability in both isolated neurons and in neural networks and occurs by a cell-autonomous mechanism that does not require network interactions. mutations lead to severe epileptic encephalopathies for which there are no effective treatments. This study is the first demonstration that a mutation increases the Slack current in neurons. It also provides the first explanation for how this increased potassium current induces hyperexcitability, which could be the underlining factor causing seizures.
Author Jones, Eugenia M
Gage, Fred H
Zhang, Yalan
Mangan, Kile P
Mercier, Michael R
Ali, Syed R
Quraishi, Imran H
Stern, Shani
Marchetto, Maria C
McLachlan, Michael J
Kaczmarek, Leonard K
Author_xml – sequence: 1
  givenname: Imran H
  orcidid: 0000-0003-2859-7446
  surname: Quraishi
  fullname: Quraishi, Imran H
  organization: Department of Neurology, Yale Comprehensive Epilepsy Center, Yale School of Medicine, New Haven, Connecticut 06520
– sequence: 2
  givenname: Shani
  surname: Stern
  fullname: Stern, Shani
  organization: Laboratory of Genetics-G, The Salk Institute for Biological Studies, La Jolla, California 92037
– sequence: 3
  givenname: Kile P
  surname: Mangan
  fullname: Mangan, Kile P
  organization: FUJIFILM Cellular Dynamics, Inc., Madison, Wisconsin 53711
– sequence: 4
  givenname: Yalan
  surname: Zhang
  fullname: Zhang, Yalan
  organization: Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut 06520, and
– sequence: 5
  givenname: Syed R
  surname: Ali
  fullname: Ali, Syed R
  organization: Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut 06520, and
– sequence: 6
  givenname: Michael R
  surname: Mercier
  fullname: Mercier, Michael R
  organization: Department of Neurology, Yale Comprehensive Epilepsy Center, Yale School of Medicine, New Haven, Connecticut 06520
– sequence: 7
  givenname: Maria C
  surname: Marchetto
  fullname: Marchetto, Maria C
  organization: Laboratory of Genetics-G, The Salk Institute for Biological Studies, La Jolla, California 92037
– sequence: 8
  givenname: Michael J
  surname: McLachlan
  fullname: McLachlan, Michael J
  organization: FUJIFILM Cellular Dynamics, Inc., Madison, Wisconsin 53711
– sequence: 9
  givenname: Eugenia M
  surname: Jones
  fullname: Jones, Eugenia M
  organization: FUJIFILM Cellular Dynamics, Inc., Madison, Wisconsin 53711
– sequence: 10
  givenname: Fred H
  surname: Gage
  fullname: Gage, Fred H
  organization: Laboratory of Genetics-G, The Salk Institute for Biological Studies, La Jolla, California 92037
– sequence: 11
  givenname: Leonard K
  orcidid: 0000-0001-5128-6326
  surname: Kaczmarek
  fullname: Kaczmarek, Leonard K
  email: leonard.kaczmarek@yale.edu
  organization: Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut 06520
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31350261$$D View this record in MEDLINE/PubMed
BookMark eNo90N1OgzAUwPHGzLgPfYWlL8DsB9ByuSC6ucmM265JKUWrrCwtGIkvL8vUq3Nxzv9c_MZgYGqjAJhiNMMBobePabJ_2Wzj5QyHhHuYzwjC0QUY9dvIIz7CAzBChCEv9Jk_BGPn3hFCDGF2BYYU0wCREI_A99zA5KgrdXSdN3eullo0qoCrON1h-NQ2otF1f2LehJHKweRL6kbkutJNB-sSLtqDMFA_b2PvTln92aepam1tHMw7uDTSKuG0eYXbSsgPuIKpgHFrrTKNuwaXpaicuvmdE7C_T3bxwltvHpbxfO1JgnjjUU4EK1QQRAWN8lBFAcFK8jyilImiIChkASslL0UZ5rhEfsQpFyHPmcxR4Zd0AsLzX2lr56wqs6PVB2G7DKPspJn9a2YnzQzz7KTZh9NzeGzzgyr-sz8--gOo73PK
CitedBy_id crossref_primary_10_3389_fneur_2024_1416648
crossref_primary_10_1111_epi_17648
crossref_primary_10_1016_j_celrep_2021_109495
crossref_primary_10_1088_2516_1091_acce12
crossref_primary_10_4155_ppa_2022_0002
crossref_primary_10_1152_jn_00257_2021
crossref_primary_10_1523_ENEURO_0438_19_2020
crossref_primary_10_12677_ACM_2023_13102326
crossref_primary_10_3390_cells11243957
crossref_primary_10_1111_epi_16834
crossref_primary_10_1523_JNEUROSCI_0564_21_2021
crossref_primary_10_3389_fnmol_2022_810081
crossref_primary_10_1007_s13311_021_01110_w
crossref_primary_10_1007_s13311_021_01115_5
crossref_primary_10_3390_ijms232315133
crossref_primary_10_1523_JNEUROSCI_0290_21_2021
crossref_primary_10_1016_j_bcp_2023_115413
crossref_primary_10_1017_S104795112300447X
crossref_primary_10_1038_s41467_024_44989_7
crossref_primary_10_4236_jbm_2024_123007
crossref_primary_10_1038_s41398_023_02535_x
crossref_primary_10_1016_j_tips_2022_03_001
crossref_primary_10_3389_fgeed_2021_630600
crossref_primary_10_1016_j_isci_2020_101100
crossref_primary_10_1038_s41531_022_00366_z
crossref_primary_10_3389_fneur_2023_1280348
crossref_primary_10_1021_acschemneuro_0c00583
crossref_primary_10_1016_j_mcn_2020_103535
crossref_primary_10_1016_j_cub_2022_06_075
crossref_primary_10_1038_s41380_021_01281_0
crossref_primary_10_1080_17460441_2023_2150164
crossref_primary_10_3390_jcm11010267
crossref_primary_10_1016_j_celrep_2020_108303
crossref_primary_10_1016_j_bmcl_2022_129013
crossref_primary_10_3389_fnins_2023_1282201
crossref_primary_10_1002_jnr_24747
crossref_primary_10_1016_j_bmc_2023_117487
crossref_primary_10_1016_j_scr_2022_102899
crossref_primary_10_1016_j_tips_2021_05_003
crossref_primary_10_1096_fj_201902366R
crossref_primary_10_1016_j_celrep_2024_113904
crossref_primary_10_1038_s41598_020_60028_z
crossref_primary_10_3390_metabo14020084
crossref_primary_10_3390_molecules29112437
crossref_primary_10_3390_biology11020316
crossref_primary_10_1021_acsmedchemlett_0c00675
crossref_primary_10_3390_ijms22179315
crossref_primary_10_3390_ijms21020482
crossref_primary_10_3389_fpsyt_2020_00713
ContentType Journal Article
Copyright Copyright © 2019 the authors.
Copyright_xml – notice: Copyright © 2019 the authors.
DBID NPM
AAYXX
CITATION
DOI 10.1523/JNEUROSCI.1628-18.2019
DatabaseName PubMed
CrossRef
DatabaseTitle PubMed
CrossRef
DatabaseTitleList PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1529-2401
EndPage 7449
ExternalDocumentID 10_1523_JNEUROSCI_1628_18_2019
31350261
Genre Journal Article
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: R01 NS102239
– fundername: NCATS NIH HHS
  grantid: UL1 TR001863
GroupedDBID ---
-DZ
-~X
.55
18M
2WC
34G
39C
53G
5GY
5RE
5VS
AAFWJ
ABBAR
ABIVO
ACGUR
ACNCT
ADBBV
ADCOW
AENEX
AFCFT
AFHIN
AFOSN
AHWXS
AIZTS
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
GX1
HYE
H~9
KQ8
L7B
NPM
OK1
P0W
P2P
QZG
R.V
RHF
RHI
RPM
TFN
TR2
W8F
WH7
WOQ
X7M
YBU
YHG
YKV
YNH
YSK
ZA5
AAYXX
CITATION
H13
ID FETCH-LOGICAL-c208t-382a7de559d39b6e9521ec8b9337add206757fc8faf6b1f049838a68b7cb0d4f3
ISSN 0270-6474
IngestDate Fri Aug 23 01:36:17 EDT 2024
Thu May 23 23:45:02 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 37
Keywords EIMFS
seizures
action potential
potassium channels
epileptic encephalopathy
MMPSI
Language English
License Copyright © 2019 the authors.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c208t-382a7de559d39b6e9521ec8b9337add206757fc8faf6b1f049838a68b7cb0d4f3
ORCID 0000-0001-5128-6326
0000-0003-2859-7446
PMID 31350261
PageCount 12
ParticipantIDs crossref_primary_10_1523_JNEUROSCI_1628_18_2019
pubmed_primary_31350261
PublicationCentury 2000
PublicationDate 2019-Sep-11
2019-09-11
PublicationDateYYYYMMDD 2019-09-11
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-Sep-11
  day: 11
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of neuroscience
PublicationTitleAlternate J Neurosci
PublicationYear 2019
SSID ssj0007017
Score 2.5454476
Snippet Mutations in the KCNT1 (Slack, K 1.1) sodium-activated potassium channel produce severe epileptic encephalopathies. Expression in heterologous systems has...
SourceID crossref
pubmed
SourceType Aggregation Database
Index Database
StartPage 7438
Title An Epilepsy-Associated KCNT1 Mutation Enhances Excitability of Human iPSC-Derived Neurons by Increasing Slack K Na Currents
URI https://www.ncbi.nlm.nih.gov/pubmed/31350261
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9NAFB6FcuGCgLKUApoD4mI5jT22xz5GISht1KhVU6mcLM8GOdSJGqci8OP4a7xZvBQiRLlYkWU_jed9edt88wah90rGmtud-HFBpB9lIvaZgpwng1RMEMWJEHq_8-ksmVxGJ1fxVa_3s8Na2lSsz7_v3FfyP1qFe6BXvUv2HppthMIN-A36hStoGK7_pONh6Y1X8Lderbd-Pc8QQE5Hs3ngnW4ckXBcftWqXXvjb3xR2b7c27aAvzi7GPkfYbi38Krp1VGudVAKlkMT1k3Hbl3l8zSz2XP9nNbdoLbdXmYC206LzAY155sbfc6zoQ4cX4N_9Cb9prija5KmCgvjXLQl8vKLLc5O4Qu9s-bxpsT9WbMyu1WLwNCynFW1xi2kkLZG9oSevnTGNzSrPUHXOttWRw6Ftj-Ms7UQ-6Qdv00j2_v0D58Qm94UJzNNjbwYHfeDJITE2dD6stYL1iv_vznHhrKokyWQlDdyci0nD9Jcy3mAHoY0i3X2Pz1v29XTgTnyuflYt0Ud5BztHs-d6OhOnmPinfkT9NjpEw8t6p6iniyfof1hWVTL6y3-gA112KzJ7KMfwxLvACI2QMQ1EHENRNwFIl4qbICIu0DEDoiYbXELRGyAiKd4VuAaiM_R5afxfDTx3akePg8HaeWTNCyokJDJCpKxRGYQQEqesowQCs5WHycQU8VTVaiEBQoy2JSkRZIyytlARIq8QHvlspSvEE54oiKm6EAqSKMzwQIRUC7BZwnCIdA_QEf1bOYr27wl_7seD9BLO-nN8yQgsa5TvL63rEP0qEX-G7RX3WzkW4hgK_bOoOQXrZKX_A
link.rule.ids 315,786,790,27957,27958
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Epilepsy-Associated+KCNT1+Mutation+Enhances+Excitability+of+Human+iPSC-Derived+Neurons+by+Increasing+Slack+K+Na+Currents&rft.jtitle=The+Journal+of+neuroscience&rft.au=Quraishi%2C+Imran+H.&rft.au=Stern%2C+Shani&rft.au=Mangan%2C+Kile+P.&rft.au=Zhang%2C+Yalan&rft.date=2019-09-11&rft.issn=0270-6474&rft.eissn=1529-2401&rft.volume=39&rft.issue=37&rft.spage=7438&rft.epage=7449&rft_id=info:doi/10.1523%2FJNEUROSCI.1628-18.2019&rft.externalDBID=n%2Fa&rft.externalDocID=10_1523_JNEUROSCI_1628_18_2019
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-6474&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-6474&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-6474&client=summon