Dual‐Stimuli Chromogenic Membranes for Optical Security: Photochromic and Halochromic Anti‐Counterfeiting Applications
A dual‐stimuli chromogenic platform based on spiropyran‐functionalized anodic aluminum oxide (SP‐ t ‐AAO) membranes with reversible photochromic and halochromic switching is reported. Surface characterization by electronic images confirms the well‐preserved nanoporous morphology, while Energy‐disper...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) p. e07008 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
04.08.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A dual‐stimuli chromogenic platform based on spiropyran‐functionalized anodic aluminum oxide (SP‐ t ‐AAO) membranes with reversible photochromic and halochromic switching is reported. Surface characterization by electronic images confirms the well‐preserved nanoporous morphology, while Energy‐dispersive X‐ray spectroscopy (EDS) scans reveal uniform grafting to micrometer depths. Grazing incidence X‐ray photoelectron spectroscopy (GIXPS) and time‐of‐flight secondary ion mass Spectrometry (TOF‐SIMS) further confirm successful surface chemical modification and pattern fidelity. Orthogonal functionalization is achieved via thiol‐yne chemistry and spatially controlled photopatterning using Chinese seasonal‐themed photomasks. Upon UV irradiation, the membrane exhibits a pale‐to‐magenta color change because of spiropyran‐merocyanine isomerization; acid exposure further switches the color from magenta to yellow. Both transitions are fully reversible under white light or base treatment. Video analysis reveals rapid halochromic switching kinetics (0.4–4 s), highlighting excellent optical responsiveness. The membrane also demonstrates the chelation toward heavy metal ions such as Cu 2+ and Fe 2+ . Moreover, thermal cycling test shows moderate durability, and a 20‐day ambient test confirms excellent chromogenic stability. This work offers high‐speed responsiveness, spatial precision, and long‐term stability for anti‐counterfeiting and sensing applications. |
---|---|
AbstractList | A dual-stimuli chromogenic platform based on spiropyran-functionalized anodic aluminum oxide (SP-t-AAO) membranes with reversible photochromic and halochromic switching is reported. Surface characterization by electronic images confirms the well-preserved nanoporous morphology, while Energy-dispersive X-ray spectroscopy (EDS) scans reveal uniform grafting to micrometer depths. Grazing incidence X-ray photoelectron spectroscopy (GIXPS) and time-of-flight secondary ion mass Spectrometry (TOF-SIMS) further confirm successful surface chemical modification and pattern fidelity. Orthogonal functionalization is achieved via thiol-yne chemistry and spatially controlled photopatterning using Chinese seasonal-themed photomasks. Upon UV irradiation, the membrane exhibits a pale-to-magenta color change because of spiropyran-merocyanine isomerization; acid exposure further switches the color from magenta to yellow. Both transitions are fully reversible under white light or base treatment. Video analysis reveals rapid halochromic switching kinetics (0.4-4 s), highlighting excellent optical responsiveness. The membrane also demonstrates the chelation toward heavy metal ions such as Cu2+ and Fe2+. Moreover, thermal cycling test shows moderate durability, and a 20-day ambient test confirms excellent chromogenic stability. This work offers high-speed responsiveness, spatial precision, and long-term stability for anti-counterfeiting and sensing applications.A dual-stimuli chromogenic platform based on spiropyran-functionalized anodic aluminum oxide (SP-t-AAO) membranes with reversible photochromic and halochromic switching is reported. Surface characterization by electronic images confirms the well-preserved nanoporous morphology, while Energy-dispersive X-ray spectroscopy (EDS) scans reveal uniform grafting to micrometer depths. Grazing incidence X-ray photoelectron spectroscopy (GIXPS) and time-of-flight secondary ion mass Spectrometry (TOF-SIMS) further confirm successful surface chemical modification and pattern fidelity. Orthogonal functionalization is achieved via thiol-yne chemistry and spatially controlled photopatterning using Chinese seasonal-themed photomasks. Upon UV irradiation, the membrane exhibits a pale-to-magenta color change because of spiropyran-merocyanine isomerization; acid exposure further switches the color from magenta to yellow. Both transitions are fully reversible under white light or base treatment. Video analysis reveals rapid halochromic switching kinetics (0.4-4 s), highlighting excellent optical responsiveness. The membrane also demonstrates the chelation toward heavy metal ions such as Cu2+ and Fe2+. Moreover, thermal cycling test shows moderate durability, and a 20-day ambient test confirms excellent chromogenic stability. This work offers high-speed responsiveness, spatial precision, and long-term stability for anti-counterfeiting and sensing applications. A dual-stimuli chromogenic platform based on spiropyran-functionalized anodic aluminum oxide (SP-t-AAO) membranes with reversible photochromic and halochromic switching is reported. Surface characterization by electronic images confirms the well-preserved nanoporous morphology, while Energy-dispersive X-ray spectroscopy (EDS) scans reveal uniform grafting to micrometer depths. Grazing incidence X-ray photoelectron spectroscopy (GIXPS) and time-of-flight secondary ion mass Spectrometry (TOF-SIMS) further confirm successful surface chemical modification and pattern fidelity. Orthogonal functionalization is achieved via thiol-yne chemistry and spatially controlled photopatterning using Chinese seasonal-themed photomasks. Upon UV irradiation, the membrane exhibits a pale-to-magenta color change because of spiropyran-merocyanine isomerization; acid exposure further switches the color from magenta to yellow. Both transitions are fully reversible under white light or base treatment. Video analysis reveals rapid halochromic switching kinetics (0.4-4 s), highlighting excellent optical responsiveness. The membrane also demonstrates the chelation toward heavy metal ions such as Cu and Fe . Moreover, thermal cycling test shows moderate durability, and a 20-day ambient test confirms excellent chromogenic stability. This work offers high-speed responsiveness, spatial precision, and long-term stability for anti-counterfeiting and sensing applications. A dual‐stimuli chromogenic platform based on spiropyran‐functionalized anodic aluminum oxide (SP‐ t ‐AAO) membranes with reversible photochromic and halochromic switching is reported. Surface characterization by electronic images confirms the well‐preserved nanoporous morphology, while Energy‐dispersive X‐ray spectroscopy (EDS) scans reveal uniform grafting to micrometer depths. Grazing incidence X‐ray photoelectron spectroscopy (GIXPS) and time‐of‐flight secondary ion mass Spectrometry (TOF‐SIMS) further confirm successful surface chemical modification and pattern fidelity. Orthogonal functionalization is achieved via thiol‐yne chemistry and spatially controlled photopatterning using Chinese seasonal‐themed photomasks. Upon UV irradiation, the membrane exhibits a pale‐to‐magenta color change because of spiropyran‐merocyanine isomerization; acid exposure further switches the color from magenta to yellow. Both transitions are fully reversible under white light or base treatment. Video analysis reveals rapid halochromic switching kinetics (0.4–4 s), highlighting excellent optical responsiveness. The membrane also demonstrates the chelation toward heavy metal ions such as Cu 2+ and Fe 2+ . Moreover, thermal cycling test shows moderate durability, and a 20‐day ambient test confirms excellent chromogenic stability. This work offers high‐speed responsiveness, spatial precision, and long‐term stability for anti‐counterfeiting and sensing applications. |
Author | Fan, Po‐Xin Liu, Yu‐Chun Chang, Ming‐Hsuan Lin, Yu‐Chun Chang, Chun‐Chi Chen, Yi‐Fan Chen, Jiun‐Tai Lee, Lin‐Ruei |
Author_xml | – sequence: 1 givenname: Lin‐Ruei surname: Lee fullname: Lee, Lin‐Ruei organization: Department of Applied Chemistry National Yang Ming Chiao Tung University Hsinchu 300093 Taiwan – sequence: 2 givenname: Yi‐Fan surname: Chen fullname: Chen, Yi‐Fan organization: Department of Applied Chemistry National Yang Ming Chiao Tung University Hsinchu 300093 Taiwan – sequence: 3 givenname: Po‐Xin surname: Fan fullname: Fan, Po‐Xin organization: Department of Applied Chemistry National Yang Ming Chiao Tung University Hsinchu 300093 Taiwan – sequence: 4 givenname: Yu‐Chun surname: Lin fullname: Lin, Yu‐Chun organization: Department of Applied Chemistry National Yang Ming Chiao Tung University Hsinchu 300093 Taiwan – sequence: 5 givenname: Ming‐Hsuan surname: Chang fullname: Chang, Ming‐Hsuan organization: Department of Applied Chemistry National Yang Ming Chiao Tung University Hsinchu 300093 Taiwan – sequence: 6 givenname: Yu‐Chun surname: Liu fullname: Liu, Yu‐Chun organization: Department of Applied Chemistry National Yang Ming Chiao Tung University Hsinchu 300093 Taiwan – sequence: 7 givenname: Chun‐Chi surname: Chang fullname: Chang, Chun‐Chi organization: Department of Applied Chemistry National Yang Ming Chiao Tung University Hsinchu 300093 Taiwan – sequence: 8 givenname: Jiun‐Tai orcidid: 0000-0002-0662-782X surname: Chen fullname: Chen, Jiun‐Tai organization: Department of Applied Chemistry National Yang Ming Chiao Tung University Hsinchu 300093 Taiwan, Center for Emergent Functional Matter Science National Yang Ming Chiao Tung University Hsinchu 300093 Taiwan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40757902$$D View this record in MEDLINE/PubMed |
BookMark | eNo9kctOwzAQRS1URB-wZYmyZJMydlI7ZVeVR5GKilRYR47jtEaOHWxnUVZ8At_Il5Cq0MVoZqQzV7pzh6hnrJEIXWIYYwBy42utxwTIBBhAdoIGmOIkphmZ9o4zhj4aev8OkGCSsjPUT4FN2BTIAH3etVz_fH2vg6pbraL51tnabqRRInqWdeG4kT6qrItWTVCC62gtRetU2N1GL1sbrNgfdDA3ZbTg-rjPTFCd7ty2JkhXSRWU2USzptGdSlDW-HN0WnHt5cVfH6G3h_vX-SJerh6f5rNlLAiwLMaUpowUCctIKmWJecXLjBaEMpZynlZMcFKRAmMgAHjKRDad8AmVVUnLLM1wMkLXB93G2Y9W-pDXygupdWfNtj5PSEJJV4x06NUf2ha1LPPGqZq7Xf7_rw4YHwDhrPdOVkcEQ74PJN8Hkh8DSX4B5FCBNA |
Cites_doi | 10.1016/j.cej.2022.138922 10.1039/C3CS60181A 10.1038/s41428-021-00576-x 10.1021/acsenergylett.4c03011 10.1021/acsanm.3c04051 10.1016/j.elspec.2009.12.001 10.1021/la049649y 10.1016/j.progpolymsci.2016.09.005 10.1021/acsomega.4c01607 10.1002/chem.201501101 10.1016/S0031-3203(00)00023-6 10.1021/acs.langmuir.5b02392 10.1038/s41377-020-0243-x 10.1039/c3tc32228a 10.1021/acsami.2c06965 10.1039/D0NR07582E 10.3139/146.111237 10.1021/la061456i 10.1021/acsapm.4c02164 10.3390/polym9110630 10.1039/D1RA02262H 10.1021/ja502366r 10.1016/S0010-938X(01)00052-X 10.1002/adma.201104536 10.1016/j.aca.2020.01.057 10.1021/acsapm.4c04086 10.1021/jacs.0c02201 10.1016/j.colsurfa.2022.130808 10.1038/nmeth.2019 10.1021/acsami.4c09040 10.1021/jacs.2c13108 10.1039/D3CS00753G 10.3390/jfb11010010 10.1149/2.0651803jes 10.1007/s10570-022-05034-2 10.1039/C8CC08099B 10.1038/s41428-020-0330-0 10.1016/S0300-9440(98)00015-0 10.1007/s12117-017-9308-5 10.1016/j.carbpol.2022.120321 10.1021/acsomega.3c01604 10.1038/s41598-017-18147-7 10.1080/15583724.2022.2065299 10.1021/acsomega.9b01402 10.1108/03090560910935451 10.1016/j.dyepig.2025.112654 10.1021/acsomega.0c03795 10.3390/coatings10010030 10.1002/app.25485 10.1039/D0RA04445H 10.1021/acsnano.4c08801 10.1016/j.ijoes.2024.100487 10.1007/s00396-020-04734-0 10.1002/marc.202400841 10.1007/978-1-60761-670-2_3 10.1016/j.matdes.2005.02.018 10.1111/jmi.13148 10.1021/acs.jpcc.9b05889 10.1038/s41598-017-00036-8 10.1002/anie.201306709 10.1002/macp.202300092 10.1021/la902220a 10.1039/C9PY00962K 10.1002/anie.201000401 10.1016/S0022-1139(00)80740-X 10.1021/cr980078m 10.1016/j.tsf.2007.04.120 10.1021/jacs.7b07738 10.1021/acs.jpcc.0c01129 10.1039/C9CS00203K 10.1039/C7TC02232H 10.1016/j.bushor.2008.01.002 |
ContentType | Journal Article |
Copyright | 2025 The Author(s). Small published by Wiley‐VCH GmbH. |
Copyright_xml | – notice: 2025 The Author(s). Small published by Wiley‐VCH GmbH. |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1002/smll.202507008 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
ExternalDocumentID | 40757902 10_1002_smll_202507008 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Higher Education Sprout Project by the Ministry of Education – fundername: Cross-Generation Young Scholars Program of the National Science and Technology Council – fundername: Center for Emergent Functional Matter Science of National Yang Ming Chiao Tung University – fundername: Featured Areas Research Center Program – fundername: National Science and Technology Council grantid: NSTC 113-2628-E-A49-006 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 5VS 66C 8-0 8-1 8UM AAESR AAEVG AAHQN AAIHA AAMMB AAMNL AANLZ AAONW AAXRX AAYCA AAYXX AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CITATION CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W QRW R.K RIWAO RNS ROL RX1 RYL SUPJJ V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ XV2 Y6R ZZTAW ~S- NPM 7X8 |
ID | FETCH-LOGICAL-c2078-166472b37824eed1afad86b26774aa4f7ca2f2b110200197c895a56efd6d84813 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Mon Aug 04 16:30:49 EDT 2025 Tue Aug 05 01:31:10 EDT 2025 Thu Aug 07 06:00:25 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | spiropyran anodic aluminum oxide (AAO) anti‐counterfeiting thiol‐yne chemistry photochromism |
Language | English |
License | 2025 The Author(s). Small published by Wiley‐VCH GmbH. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c2078-166472b37824eed1afad86b26774aa4f7ca2f2b110200197c895a56efd6d84813 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-0662-782X |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdf/10.1002/smll.202507008 |
PMID | 40757902 |
PQID | 3236223672 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_3236223672 pubmed_primary_40757902 crossref_primary_10_1002_smll_202507008 |
PublicationCentury | 2000 |
PublicationDate | 2025-Aug-04 |
PublicationDateYYYYMMDD | 2025-08-04 |
PublicationDate_xml | – month: 08 year: 2025 text: 2025-Aug-04 day: 04 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2025 |
References | He H. (e_1_2_8_74_1) 2017; 7 Kinashi K. (e_1_2_8_96_1) 2008; 516 Li J. A. (e_1_2_8_20_1) 2023; 62 Kameda M. (e_1_2_8_98_1) 2004; 20 Li Y. W. (e_1_2_8_77_1) 2021; 11 Tian W. G. (e_1_2_8_11_1) 2018; 28 Calkovsky M. (e_1_2_8_84_1) 2023; 289 Dong G. (e_1_2_8_25_1) 2024; 10 Hong T. (e_1_2_8_53_1) 2002; 44 (e_1_2_8_2_1) 2017; 20 Choi J. (e_1_2_8_52_1) 2020; 5 Duan H. T. (e_1_2_8_43_1) 2022; 14 Guo J. X. (e_1_2_8_81_1) 2021; 347 Abdollahi A. (e_1_2_8_35_1) 2017; 5 Wyszecki G. (e_1_2_8_89_1) 2000 Heidari F. (e_1_2_8_31_1) 2025; 7 Liu Q. H. (e_1_2_8_33_1) 2023; 63 Luo S. (e_1_2_8_30_1) 2025; 510 Jeong C. (e_1_2_8_54_1) 2015; 31 Lee L. R. (e_1_2_8_76_1) 2023; 6 Peng H. (e_1_2_8_16_1) 2014; 136 Samoladas A. (e_1_2_8_91_1) 2007; 105 Guan X. Y. (e_1_2_8_67_1) 2018; 54 Guo Q. (e_1_2_8_5_1) 2023; 145 Trygg J. (e_1_2_8_85_1) 2016; 50 Qi Q. K. (e_1_2_8_38_1) 2017; 139 Staake T. (e_1_2_8_1_1) 2009; 43 Lin S. S. (e_1_2_8_15_1) 2020; 9 Hu H. B. (e_1_2_8_19_1) 2014; 2 Zhu H. (e_1_2_8_57_1) 2024; 19 Li X. (e_1_2_8_44_1) 2023; 33 Guragain S. (e_1_2_8_34_1) 2015; 21 Kawai J. (e_1_2_8_69_1) 2010; 178 Nag R. (e_1_2_8_95_1) 2019; 4 Pujari S. P. (e_1_2_8_58_1) 2014; 53 Sun Y. (e_1_2_8_8_1) 2022; 34 Berman B. (e_1_2_8_3_1) 2008; 51 Zhou B. K. (e_1_2_8_72_1) 2024; 9 Zhang J. Y. (e_1_2_8_13_1) 2022; 61 Lou K. (e_1_2_8_7_1) 2022; 32 Delaire J. A. (e_1_2_8_97_1) 2000; 100 Ye W. M. (e_1_2_8_18_1) 2016; 7 Zhu X. Y. (e_1_2_8_27_1) 2024; 20 Hoogenboom R. (e_1_2_8_60_1) 2010; 49 Manzoor S. (e_1_2_8_48_1) 2023; 135 Ding L. J. (e_1_2_8_92_1) 2001; 34 Ambat R. (e_1_2_8_51_1); 42 Chen Y. F. (e_1_2_8_68_1) 2024; 18 Cui C. C. (e_1_2_8_70_1) 2022; 253 Wang M. (e_1_2_8_101_1) 2023; 659 Ji X. F. (e_1_2_8_12_1) 2018; 30 Ruiz‐Clavijo A. (e_1_2_8_49_1) 2021; 13 Shen Y. (e_1_2_8_6_1) 2024; 53 Kumar S. (e_1_2_8_90_1) 2019; 123 Ding S. (e_1_2_8_4_1) 2024; 29 Zhang M. H. (e_1_2_8_79_1) 2012; 24 Groult H. (e_1_2_8_71_1) 1992; 58 Wang D. L. (e_1_2_8_22_1) 2017; 64 Schindelin J. (e_1_2_8_93_1) 2012; 9 Li X. F. (e_1_2_8_14_1) 2024; 18 Fischer M. J. E. (e_1_2_8_64_1) 2010 Lin Y. C. (e_1_2_8_29_1) 2025; 21 Ruffato G. (e_1_2_8_17_1) 2017; 7 Ghorbani M. (e_1_2_8_46_1) 2006; 27 Shi H. H. (e_1_2_8_10_1) 2022; 34 Kortekaas L. (e_1_2_8_36_1) 2019; 48 Yusa S. (e_1_2_8_28_1) 2022; 54 Rad J. K. (e_1_2_8_39_1) 2022; 51 Huang X. (e_1_2_8_47_1) 2021; 299 Zhang A. (e_1_2_8_50_1) 2018; 165 Shen X. Y. (e_1_2_8_86_1) 2023; 30 Feng W. Q. (e_1_2_8_59_1) 2014; 1 Mutluturk E. (e_1_2_8_94_1) 2025; 7 Chen Y. J. (e_1_2_8_32_1) 2020; 6 Sam S. (e_1_2_8_66_1) 2010; 26 Ohno Y. (e_1_2_8_87_1) 2000 Miculescu F. (e_1_2_8_75_1) 2020; 11 Francis J. T. (e_1_2_8_78_1) 2006; 22 Barsi D. (e_1_2_8_83_1) 2023; 224 Lee L. R. (e_1_2_8_65_1) 2020; 124 Zhang G. F. (e_1_2_8_41_1) 2013; 33 Hu L. L. (e_1_2_8_100_1) 2024; 46 Yan J. Y. (e_1_2_8_9_1) 2023; 451 Kotsuchibashi Y. (e_1_2_8_26_1) 2020; 52 Dadras S. (e_1_2_8_45_1) 2015; 106 Ali A. A. (e_1_2_8_80_1) 2020; 1110 Tong H. (e_1_2_8_21_1) 2025; 46 Li C. (e_1_2_8_37_1) 2020; 142 Liang H. (e_1_2_8_62_1) 2023; 301 Lee L. R. (e_1_2_8_61_1) 2024; 16 Klajn R. (e_1_2_8_23_1) 2014; 43 Yang Y. H. (e_1_2_8_42_1) 2023; 8 Liu X. R. (e_1_2_8_82_1) 2023; 14 Zhang P. (e_1_2_8_88_1) 2022; 132 Ahmed S. A. (e_1_2_8_99_1) 2017; 9 Roppolo I. (e_1_2_8_73_1) 2019; 10 Liu C. W. (e_1_2_8_24_1) 2023; 35 Wang Y. Q. (e_1_2_8_40_1) 2025; 238 Twite R. L. (e_1_2_8_56_1) 1998; 33 Cheng F. (e_1_2_8_63_1) 2020; 10 Martínez‐Viademonte M. P. (e_1_2_8_55_1) 2020; 10 |
References_xml | – volume: 33 start-page: 10 year: 2023 ident: e_1_2_8_44_1 publication-title: Adv. Funct. Mater. – volume: 451 year: 2023 ident: e_1_2_8_9_1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.138922 – volume: 43 start-page: 148 year: 2014 ident: e_1_2_8_23_1 publication-title: Chem. Soc. Rev. doi: 10.1039/C3CS60181A – volume: 54 start-page: 235 year: 2022 ident: e_1_2_8_28_1 publication-title: Polym. J. doi: 10.1038/s41428-021-00576-x – volume: 10 start-page: 484 year: 2024 ident: e_1_2_8_25_1 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.4c03011 – volume: 33 start-page: 927 year: 2013 ident: e_1_2_8_41_1 publication-title: J. Org. Chem. – volume: 6 year: 2023 ident: e_1_2_8_76_1 publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.3c04051 – volume: 178 start-page: 268 year: 2010 ident: e_1_2_8_69_1 publication-title: J. Electron Spectrosc. Relat. Phenom. doi: 10.1016/j.elspec.2009.12.001 – volume: 20 start-page: 9315 year: 2004 ident: e_1_2_8_98_1 publication-title: Langmuir doi: 10.1021/la049649y – volume: 64 start-page: 114 year: 2017 ident: e_1_2_8_22_1 publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2016.09.005 – volume: 9 year: 2024 ident: e_1_2_8_72_1 publication-title: ACS Omega doi: 10.1021/acsomega.4c01607 – volume: 21 year: 2015 ident: e_1_2_8_34_1 publication-title: Chem.‐Eur. J. doi: 10.1002/chem.201501101 – volume: 34 start-page: 721 year: 2001 ident: e_1_2_8_92_1 publication-title: Pattern Recognit. doi: 10.1016/S0031-3203(00)00023-6 – volume: 31 year: 2015 ident: e_1_2_8_54_1 publication-title: Langmuir doi: 10.1021/acs.langmuir.5b02392 – volume: 50 start-page: 557 year: 2016 ident: e_1_2_8_85_1 publication-title: Cell. Chem. Technol. – volume: 9 start-page: 10 year: 2020 ident: e_1_2_8_15_1 publication-title: Light‐Sci. Appl. doi: 10.1038/s41377-020-0243-x – volume: 2 start-page: 3695 year: 2014 ident: e_1_2_8_19_1 publication-title: J. Mater. Chem. C doi: 10.1039/c3tc32228a – volume: 14 year: 2022 ident: e_1_2_8_43_1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.2c06965 – volume: 13 start-page: 2227 year: 2021 ident: e_1_2_8_49_1 publication-title: Nanoscale doi: 10.1039/D0NR07582E – volume: 106 start-page: 902 year: 2015 ident: e_1_2_8_45_1 publication-title: Int. J. Mater. Res. doi: 10.3139/146.111237 – volume: 22 start-page: 9244 year: 2006 ident: e_1_2_8_78_1 publication-title: Langmuir doi: 10.1021/la061456i – volume: 7 start-page: 4099 year: 2025 ident: e_1_2_8_94_1 publication-title: ACS Appl. Polym. Mater doi: 10.1021/acsapm.4c02164 – volume: 9 start-page: 630 year: 2017 ident: e_1_2_8_99_1 publication-title: Polymers doi: 10.3390/polym9110630 – volume: 61 start-page: 9 year: 2022 ident: e_1_2_8_13_1 publication-title: Angew. Chem.‐Int. Edit. – volume: 11 year: 2021 ident: e_1_2_8_77_1 publication-title: RSC Adv. doi: 10.1039/D1RA02262H – volume: 136 start-page: 8855 year: 2014 ident: e_1_2_8_16_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja502366r – volume: 18 start-page: 8 year: 2024 ident: e_1_2_8_14_1 publication-title: Laser Photon. Rev. – volume: 44 start-page: 101 year: 2002 ident: e_1_2_8_53_1 publication-title: Corrosion Sci doi: 10.1016/S0010-938X(01)00052-X – volume: 24 start-page: 2424 year: 2012 ident: e_1_2_8_79_1 publication-title: Adv. Mater. doi: 10.1002/adma.201104536 – volume: 42 start-page: 1433 ident: e_1_2_8_51_1 publication-title: Corrosion Sci. 2000 – volume: 1110 start-page: 199 year: 2020 ident: e_1_2_8_80_1 publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2020.01.057 – volume: 7 start-page: 4228 year: 2025 ident: e_1_2_8_31_1 publication-title: ACS Appl. Polym. Mater doi: 10.1021/acsapm.4c04086 – volume: 1 start-page: 6 year: 2014 ident: e_1_2_8_59_1 publication-title: Adv. Mater. Interfaces – volume: 35 start-page: 11 year: 2023 ident: e_1_2_8_24_1 publication-title: Adv. Mater. – volume: 142 start-page: 8447 year: 2020 ident: e_1_2_8_37_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c02201 – volume: 132 start-page: 11 year: 2022 ident: e_1_2_8_88_1 publication-title: J. Appl. Phys. – volume: 659 year: 2023 ident: e_1_2_8_101_1 publication-title: Colloid Surf. A‐Physicochem. Eng. Asp. doi: 10.1016/j.colsurfa.2022.130808 – volume: 34 start-page: 11 year: 2022 ident: e_1_2_8_10_1 publication-title: Adv. Mater. – volume: 253 start-page: 10 year: 2022 ident: e_1_2_8_70_1 publication-title: Polymer – volume: 20 start-page: 9 year: 2024 ident: e_1_2_8_27_1 publication-title: Small – volume: 34 start-page: 22 year: 2022 ident: e_1_2_8_8_1 publication-title: Adv. Mater. – start-page: 540 volume-title: International Conference on Digital Printing Technologies year: 2000 ident: e_1_2_8_87_1 – volume: 9 start-page: 676 year: 2012 ident: e_1_2_8_93_1 publication-title: Nat. Methods doi: 10.1038/nmeth.2019 – volume: 16 year: 2024 ident: e_1_2_8_61_1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.4c09040 – volume: 145 start-page: 4246 year: 2023 ident: e_1_2_8_5_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.2c13108 – volume: 53 start-page: 606 year: 2024 ident: e_1_2_8_6_1 publication-title: Chem. Soc. Rev. doi: 10.1039/D3CS00753G – volume: 11 start-page: 10 year: 2020 ident: e_1_2_8_75_1 publication-title: J. Func. Biomater. doi: 10.3390/jfb11010010 – volume: 165 start-page: D129 year: 2018 ident: e_1_2_8_50_1 publication-title: J. Electrochem. Soc. doi: 10.1149/2.0651803jes – volume: 30 start-page: 2181 year: 2023 ident: e_1_2_8_86_1 publication-title: Cellulose doi: 10.1007/s10570-022-05034-2 – volume: 54 year: 2018 ident: e_1_2_8_67_1 publication-title: Chem. Commun. doi: 10.1039/C8CC08099B – volume: 32 start-page: 27 year: 2022 ident: e_1_2_8_7_1 publication-title: Adv. Funct. Mater. – volume: 52 start-page: 681 year: 2020 ident: e_1_2_8_26_1 publication-title: Polym. J. doi: 10.1038/s41428-020-0330-0 – volume: 33 start-page: 91 year: 1998 ident: e_1_2_8_56_1 publication-title: Prog. Org. Coat. doi: 10.1016/S0300-9440(98)00015-0 – volume: 20 start-page: 383 year: 2017 ident: e_1_2_8_2_1 publication-title: Trends Organ. Crime doi: 10.1007/s12117-017-9308-5 – volume: 46 start-page: 9 year: 2024 ident: e_1_2_8_100_1 publication-title: Surf. Interfaces – volume: 301 year: 2023 ident: e_1_2_8_62_1 publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2022.120321 – volume: 8 year: 2023 ident: e_1_2_8_42_1 publication-title: ACS Omega doi: 10.1021/acsomega.3c01604 – volume: 510 start-page: 8 year: 2025 ident: e_1_2_8_30_1 publication-title: Chem. Eng. J. – volume: 7 start-page: 13 year: 2017 ident: e_1_2_8_17_1 publication-title: Sci. Rep. doi: 10.1038/s41598-017-18147-7 – volume: 63 start-page: 289 year: 2023 ident: e_1_2_8_33_1 publication-title: Polym. Rev. doi: 10.1080/15583724.2022.2065299 – start-page: 968 volume-title: Color Science: Concepts and Methods, Quantitative Data and Formulae year: 2000 ident: e_1_2_8_89_1 – volume: 62 start-page: 7 year: 2023 ident: e_1_2_8_20_1 publication-title: Angew. Chem.‐Int. Edit. – volume: 51 start-page: 65 year: 2022 ident: e_1_2_8_39_1 publication-title: J. Photochem. Photobiol. C‐Photochem. Rev. – volume: 28 start-page: 8 year: 2018 ident: e_1_2_8_11_1 publication-title: Adv. Funct. Mater. – volume: 4 year: 2019 ident: e_1_2_8_95_1 publication-title: ACS Omega doi: 10.1021/acsomega.9b01402 – volume: 6 start-page: 8 year: 2020 ident: e_1_2_8_32_1 publication-title: Sci. Adv. – volume: 43 start-page: 320 year: 2009 ident: e_1_2_8_1_1 publication-title: Eur. J. Market. doi: 10.1108/03090560910935451 – volume: 238 year: 2025 ident: e_1_2_8_40_1 publication-title: Dyes Pigment doi: 10.1016/j.dyepig.2025.112654 – volume: 5 year: 2020 ident: e_1_2_8_52_1 publication-title: ACS Omega doi: 10.1021/acsomega.0c03795 – volume: 10 start-page: 30 year: 2020 ident: e_1_2_8_55_1 publication-title: Coatings doi: 10.3390/coatings10010030 – volume: 105 start-page: 3623 year: 2007 ident: e_1_2_8_91_1 publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.25485 – volume: 10 year: 2020 ident: e_1_2_8_63_1 publication-title: RSC Adv. doi: 10.1039/D0RA04445H – volume: 18 year: 2024 ident: e_1_2_8_68_1 publication-title: ACS Nano doi: 10.1021/acsnano.4c08801 – volume: 19 year: 2024 ident: e_1_2_8_57_1 publication-title: Int. J. Electrochem. Sci. doi: 10.1016/j.ijoes.2024.100487 – volume: 299 start-page: 325 year: 2021 ident: e_1_2_8_47_1 publication-title: Colloid Polym. Sci. doi: 10.1007/s00396-020-04734-0 – volume: 46 start-page: 9 year: 2025 ident: e_1_2_8_21_1 publication-title: Macromol. Rapid Commun. doi: 10.1002/marc.202400841 – start-page: 55 volume-title: Surface Plasmon Resonance: Methods and Protocols year: 2010 ident: e_1_2_8_64_1 doi: 10.1007/978-1-60761-670-2_3 – volume: 27 start-page: 983 year: 2006 ident: e_1_2_8_46_1 publication-title: Mater. Des. doi: 10.1016/j.matdes.2005.02.018 – volume: 289 start-page: 32 year: 2023 ident: e_1_2_8_84_1 publication-title: J. Microsc. doi: 10.1111/jmi.13148 – volume: 123 year: 2019 ident: e_1_2_8_90_1 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.9b05889 – volume: 21 start-page: 12 year: 2025 ident: e_1_2_8_29_1 publication-title: Small – volume: 7 start-page: 10 year: 2017 ident: e_1_2_8_74_1 publication-title: Sci. Rep. doi: 10.1038/s41598-017-00036-8 – volume: 347 start-page: 6 year: 2021 ident: e_1_2_8_81_1 publication-title: Sens. Actuator B‐Chem. – volume: 53 start-page: 6322 year: 2014 ident: e_1_2_8_58_1 publication-title: Angew. Chem.‐Int. Edit. doi: 10.1002/anie.201306709 – volume: 224 start-page: 11 year: 2023 ident: e_1_2_8_83_1 publication-title: Macromol. Chem. Phys. doi: 10.1002/macp.202300092 – volume: 26 start-page: 809 year: 2010 ident: e_1_2_8_66_1 publication-title: Langmuir doi: 10.1021/la902220a – volume: 10 start-page: 5950 year: 2019 ident: e_1_2_8_73_1 publication-title: Polym. Chem. doi: 10.1039/C9PY00962K – volume: 49 start-page: 3415 year: 2010 ident: e_1_2_8_60_1 publication-title: Angew. Chem.‐Int. Edit. doi: 10.1002/anie.201000401 – volume: 58 start-page: 284 year: 1992 ident: e_1_2_8_71_1 publication-title: J. Fluorine Chem. doi: 10.1016/S0022-1139(00)80740-X – volume: 29 start-page: 21 year: 2024 ident: e_1_2_8_4_1 publication-title: Molecules – volume: 135 start-page: 1007 year: 2023 ident: e_1_2_8_48_1 publication-title: CMES‐Comp. Model. Eng. Sci. – volume: 100 start-page: 1817 year: 2000 ident: e_1_2_8_97_1 publication-title: Chem. Rev. doi: 10.1021/cr980078m – volume: 516 start-page: 2532 year: 2008 ident: e_1_2_8_96_1 publication-title: Thin Solid Films doi: 10.1016/j.tsf.2007.04.120 – volume: 7 start-page: 7 year: 2016 ident: e_1_2_8_18_1 publication-title: Nat. Commun. – volume: 139 year: 2017 ident: e_1_2_8_38_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b07738 – volume: 124 year: 2020 ident: e_1_2_8_65_1 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.0c01129 – volume: 14 start-page: 13 year: 2023 ident: e_1_2_8_82_1 publication-title: Forests – volume: 48 start-page: 3406 year: 2019 ident: e_1_2_8_36_1 publication-title: Chem. Soc. Rev. doi: 10.1039/C9CS00203K – volume: 5 start-page: 6588 year: 2017 ident: e_1_2_8_35_1 publication-title: J. Mater. Chem. C doi: 10.1039/C7TC02232H – volume: 30 start-page: 6 year: 2018 ident: e_1_2_8_12_1 publication-title: Adv. Mater. – volume: 51 start-page: 191 year: 2008 ident: e_1_2_8_3_1 publication-title: Business Horizons doi: 10.1016/j.bushor.2008.01.002 |
SSID | ssj0031247 |
Score | 2.4765942 |
SecondaryResourceType | online_first |
Snippet | A dual‐stimuli chromogenic platform based on spiropyran‐functionalized anodic aluminum oxide (SP‐ t ‐AAO) membranes with reversible photochromic and... A dual-stimuli chromogenic platform based on spiropyran-functionalized anodic aluminum oxide (SP-t-AAO) membranes with reversible photochromic and halochromic... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database |
StartPage | e07008 |
Title | Dual‐Stimuli Chromogenic Membranes for Optical Security: Photochromic and Halochromic Anti‐Counterfeiting Applications |
URI | https://www.ncbi.nlm.nih.gov/pubmed/40757902 https://www.proquest.com/docview/3236223672 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKkND2gMbX6BjISEg8TIbMTZxkb9VGqZAG07qJ7ilyEodGapJqTRDw1-8uzocHmwS8RKnzJd39ev7d-XxHyBtpeb6AmYoBlYiZ7cYWk27kMycJEyFUYskY45Ann8X0wv40d-aDwQ8ja6kqw3fRr1v3lfyPVmEM9Iq7ZP9Bs91LYQDOQb9wBA3D8a90fFzJJZuVKaY4YZmAIivg3jTaP1EZeMFgxeoswi8rHbCeNb3qMApwuijKIsJHmoKtU7nsfo_zMmW4Wx17WKu0zoweGyvdJqOdZbi4DTz1q0rzhUqx5cZ-XFdevPqGcZS1bt34EaeA_KcReWhygMAbZmeVSvtEA20JL1M26aE70YHa04LN0z6LSBdAuKzY0aLKzQAGd-r0OR1EUNroAqVgwmu-rw2pAlNUF3z408brmrHrbIkrR8Dgfr8RhLjKao2Ds-q4vsX7ua7LQGwv3SP3OTgY2Pvi-KwrPDYC1uO2JT4t_v7mxzbJg_bxm2zmDhelpirn2-Rh42PQsQbMIzJQ-WOyZVSefEK-m9ChBnRoBx0K0KENdGgLnUNqAocCcKgBHHoLcKgJnKfkYvLh_GjKmhYcLOIWxhcEthcIR8AjbWBTBzKRsSdCLsBrkNJO3EjyhIfAITE3z3cjz3ekA__xWMTYqGH0jGzkRa6eE-oo4UQeD4EhSlt4kX8A1gAGHK4wDhAPydtWlMFKV1oJdE1tHqD8g07-Q_K6lXQAxhBXuEAsRbUORhz4GNYk5EOyo1XQvatV2e6dV16QzR6fe2SjvKrUS6CcZfiqRsc1EkKBsw |
linkProvider | Wiley-Blackwell |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dual-Stimuli+Chromogenic+Membranes+for+Optical+Security%3A+Photochromic+and+Halochromic+Anti-Counterfeiting+Applications&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Lee%2C+Lin-Ruei&rft.au=Chen%2C+Yi-Fan&rft.au=Fan%2C+Po-Xin&rft.au=Lin%2C+Yu-Chun&rft.date=2025-08-04&rft.eissn=1613-6829&rft.spage=e07008&rft_id=info:doi/10.1002%2Fsmll.202507008&rft_id=info%3Apmid%2F40757902&rft.externalDocID=40757902 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |