Dual‐Stimuli Chromogenic Membranes for Optical Security: Photochromic and Halochromic Anti‐Counterfeiting Applications

A dual‐stimuli chromogenic platform based on spiropyran‐functionalized anodic aluminum oxide (SP‐ t ‐AAO) membranes with reversible photochromic and halochromic switching is reported. Surface characterization by electronic images confirms the well‐preserved nanoporous morphology, while Energy‐disper...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) p. e07008
Main Authors Lee, Lin‐Ruei, Chen, Yi‐Fan, Fan, Po‐Xin, Lin, Yu‐Chun, Chang, Ming‐Hsuan, Liu, Yu‐Chun, Chang, Chun‐Chi, Chen, Jiun‐Tai
Format Journal Article
LanguageEnglish
Published Germany 04.08.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A dual‐stimuli chromogenic platform based on spiropyran‐functionalized anodic aluminum oxide (SP‐ t ‐AAO) membranes with reversible photochromic and halochromic switching is reported. Surface characterization by electronic images confirms the well‐preserved nanoporous morphology, while Energy‐dispersive X‐ray spectroscopy (EDS) scans reveal uniform grafting to micrometer depths. Grazing incidence X‐ray photoelectron spectroscopy (GIXPS) and time‐of‐flight secondary ion mass Spectrometry (TOF‐SIMS) further confirm successful surface chemical modification and pattern fidelity. Orthogonal functionalization is achieved via thiol‐yne chemistry and spatially controlled photopatterning using Chinese seasonal‐themed photomasks. Upon UV irradiation, the membrane exhibits a pale‐to‐magenta color change because of spiropyran‐merocyanine isomerization; acid exposure further switches the color from magenta to yellow. Both transitions are fully reversible under white light or base treatment. Video analysis reveals rapid halochromic switching kinetics (0.4–4 s), highlighting excellent optical responsiveness. The membrane also demonstrates the chelation toward heavy metal ions such as Cu 2+ and Fe 2+ . Moreover, thermal cycling test shows moderate durability, and a 20‐day ambient test confirms excellent chromogenic stability. This work offers high‐speed responsiveness, spatial precision, and long‐term stability for anti‐counterfeiting and sensing applications.
AbstractList A dual-stimuli chromogenic platform based on spiropyran-functionalized anodic aluminum oxide (SP-t-AAO) membranes with reversible photochromic and halochromic switching is reported. Surface characterization by electronic images confirms the well-preserved nanoporous morphology, while Energy-dispersive X-ray spectroscopy (EDS) scans reveal uniform grafting to micrometer depths. Grazing incidence X-ray photoelectron spectroscopy (GIXPS) and time-of-flight secondary ion mass Spectrometry (TOF-SIMS) further confirm successful surface chemical modification and pattern fidelity. Orthogonal functionalization is achieved via thiol-yne chemistry and spatially controlled photopatterning using Chinese seasonal-themed photomasks. Upon UV irradiation, the membrane exhibits a pale-to-magenta color change because of spiropyran-merocyanine isomerization; acid exposure further switches the color from magenta to yellow. Both transitions are fully reversible under white light or base treatment. Video analysis reveals rapid halochromic switching kinetics (0.4-4 s), highlighting excellent optical responsiveness. The membrane also demonstrates the chelation toward heavy metal ions such as Cu2+ and Fe2+. Moreover, thermal cycling test shows moderate durability, and a 20-day ambient test confirms excellent chromogenic stability. This work offers high-speed responsiveness, spatial precision, and long-term stability for anti-counterfeiting and sensing applications.A dual-stimuli chromogenic platform based on spiropyran-functionalized anodic aluminum oxide (SP-t-AAO) membranes with reversible photochromic and halochromic switching is reported. Surface characterization by electronic images confirms the well-preserved nanoporous morphology, while Energy-dispersive X-ray spectroscopy (EDS) scans reveal uniform grafting to micrometer depths. Grazing incidence X-ray photoelectron spectroscopy (GIXPS) and time-of-flight secondary ion mass Spectrometry (TOF-SIMS) further confirm successful surface chemical modification and pattern fidelity. Orthogonal functionalization is achieved via thiol-yne chemistry and spatially controlled photopatterning using Chinese seasonal-themed photomasks. Upon UV irradiation, the membrane exhibits a pale-to-magenta color change because of spiropyran-merocyanine isomerization; acid exposure further switches the color from magenta to yellow. Both transitions are fully reversible under white light or base treatment. Video analysis reveals rapid halochromic switching kinetics (0.4-4 s), highlighting excellent optical responsiveness. The membrane also demonstrates the chelation toward heavy metal ions such as Cu2+ and Fe2+. Moreover, thermal cycling test shows moderate durability, and a 20-day ambient test confirms excellent chromogenic stability. This work offers high-speed responsiveness, spatial precision, and long-term stability for anti-counterfeiting and sensing applications.
A dual-stimuli chromogenic platform based on spiropyran-functionalized anodic aluminum oxide (SP-t-AAO) membranes with reversible photochromic and halochromic switching is reported. Surface characterization by electronic images confirms the well-preserved nanoporous morphology, while Energy-dispersive X-ray spectroscopy (EDS) scans reveal uniform grafting to micrometer depths. Grazing incidence X-ray photoelectron spectroscopy (GIXPS) and time-of-flight secondary ion mass Spectrometry (TOF-SIMS) further confirm successful surface chemical modification and pattern fidelity. Orthogonal functionalization is achieved via thiol-yne chemistry and spatially controlled photopatterning using Chinese seasonal-themed photomasks. Upon UV irradiation, the membrane exhibits a pale-to-magenta color change because of spiropyran-merocyanine isomerization; acid exposure further switches the color from magenta to yellow. Both transitions are fully reversible under white light or base treatment. Video analysis reveals rapid halochromic switching kinetics (0.4-4 s), highlighting excellent optical responsiveness. The membrane also demonstrates the chelation toward heavy metal ions such as Cu and Fe . Moreover, thermal cycling test shows moderate durability, and a 20-day ambient test confirms excellent chromogenic stability. This work offers high-speed responsiveness, spatial precision, and long-term stability for anti-counterfeiting and sensing applications.
A dual‐stimuli chromogenic platform based on spiropyran‐functionalized anodic aluminum oxide (SP‐ t ‐AAO) membranes with reversible photochromic and halochromic switching is reported. Surface characterization by electronic images confirms the well‐preserved nanoporous morphology, while Energy‐dispersive X‐ray spectroscopy (EDS) scans reveal uniform grafting to micrometer depths. Grazing incidence X‐ray photoelectron spectroscopy (GIXPS) and time‐of‐flight secondary ion mass Spectrometry (TOF‐SIMS) further confirm successful surface chemical modification and pattern fidelity. Orthogonal functionalization is achieved via thiol‐yne chemistry and spatially controlled photopatterning using Chinese seasonal‐themed photomasks. Upon UV irradiation, the membrane exhibits a pale‐to‐magenta color change because of spiropyran‐merocyanine isomerization; acid exposure further switches the color from magenta to yellow. Both transitions are fully reversible under white light or base treatment. Video analysis reveals rapid halochromic switching kinetics (0.4–4 s), highlighting excellent optical responsiveness. The membrane also demonstrates the chelation toward heavy metal ions such as Cu 2+ and Fe 2+ . Moreover, thermal cycling test shows moderate durability, and a 20‐day ambient test confirms excellent chromogenic stability. This work offers high‐speed responsiveness, spatial precision, and long‐term stability for anti‐counterfeiting and sensing applications.
Author Fan, Po‐Xin
Liu, Yu‐Chun
Chang, Ming‐Hsuan
Lin, Yu‐Chun
Chang, Chun‐Chi
Chen, Yi‐Fan
Chen, Jiun‐Tai
Lee, Lin‐Ruei
Author_xml – sequence: 1
  givenname: Lin‐Ruei
  surname: Lee
  fullname: Lee, Lin‐Ruei
  organization: Department of Applied Chemistry National Yang Ming Chiao Tung University Hsinchu 300093 Taiwan
– sequence: 2
  givenname: Yi‐Fan
  surname: Chen
  fullname: Chen, Yi‐Fan
  organization: Department of Applied Chemistry National Yang Ming Chiao Tung University Hsinchu 300093 Taiwan
– sequence: 3
  givenname: Po‐Xin
  surname: Fan
  fullname: Fan, Po‐Xin
  organization: Department of Applied Chemistry National Yang Ming Chiao Tung University Hsinchu 300093 Taiwan
– sequence: 4
  givenname: Yu‐Chun
  surname: Lin
  fullname: Lin, Yu‐Chun
  organization: Department of Applied Chemistry National Yang Ming Chiao Tung University Hsinchu 300093 Taiwan
– sequence: 5
  givenname: Ming‐Hsuan
  surname: Chang
  fullname: Chang, Ming‐Hsuan
  organization: Department of Applied Chemistry National Yang Ming Chiao Tung University Hsinchu 300093 Taiwan
– sequence: 6
  givenname: Yu‐Chun
  surname: Liu
  fullname: Liu, Yu‐Chun
  organization: Department of Applied Chemistry National Yang Ming Chiao Tung University Hsinchu 300093 Taiwan
– sequence: 7
  givenname: Chun‐Chi
  surname: Chang
  fullname: Chang, Chun‐Chi
  organization: Department of Applied Chemistry National Yang Ming Chiao Tung University Hsinchu 300093 Taiwan
– sequence: 8
  givenname: Jiun‐Tai
  orcidid: 0000-0002-0662-782X
  surname: Chen
  fullname: Chen, Jiun‐Tai
  organization: Department of Applied Chemistry National Yang Ming Chiao Tung University Hsinchu 300093 Taiwan, Center for Emergent Functional Matter Science National Yang Ming Chiao Tung University Hsinchu 300093 Taiwan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40757902$$D View this record in MEDLINE/PubMed
BookMark eNo9kctOwzAQRS1URB-wZYmyZJMydlI7ZVeVR5GKilRYR47jtEaOHWxnUVZ8At_Il5Cq0MVoZqQzV7pzh6hnrJEIXWIYYwBy42utxwTIBBhAdoIGmOIkphmZ9o4zhj4aev8OkGCSsjPUT4FN2BTIAH3etVz_fH2vg6pbraL51tnabqRRInqWdeG4kT6qrItWTVCC62gtRetU2N1GL1sbrNgfdDA3ZbTg-rjPTFCd7ty2JkhXSRWU2USzptGdSlDW-HN0WnHt5cVfH6G3h_vX-SJerh6f5rNlLAiwLMaUpowUCctIKmWJecXLjBaEMpZynlZMcFKRAmMgAHjKRDad8AmVVUnLLM1wMkLXB93G2Y9W-pDXygupdWfNtj5PSEJJV4x06NUf2ha1LPPGqZq7Xf7_rw4YHwDhrPdOVkcEQ74PJN8Hkh8DSX4B5FCBNA
Cites_doi 10.1016/j.cej.2022.138922
10.1039/C3CS60181A
10.1038/s41428-021-00576-x
10.1021/acsenergylett.4c03011
10.1021/acsanm.3c04051
10.1016/j.elspec.2009.12.001
10.1021/la049649y
10.1016/j.progpolymsci.2016.09.005
10.1021/acsomega.4c01607
10.1002/chem.201501101
10.1016/S0031-3203(00)00023-6
10.1021/acs.langmuir.5b02392
10.1038/s41377-020-0243-x
10.1039/c3tc32228a
10.1021/acsami.2c06965
10.1039/D0NR07582E
10.3139/146.111237
10.1021/la061456i
10.1021/acsapm.4c02164
10.3390/polym9110630
10.1039/D1RA02262H
10.1021/ja502366r
10.1016/S0010-938X(01)00052-X
10.1002/adma.201104536
10.1016/j.aca.2020.01.057
10.1021/acsapm.4c04086
10.1021/jacs.0c02201
10.1016/j.colsurfa.2022.130808
10.1038/nmeth.2019
10.1021/acsami.4c09040
10.1021/jacs.2c13108
10.1039/D3CS00753G
10.3390/jfb11010010
10.1149/2.0651803jes
10.1007/s10570-022-05034-2
10.1039/C8CC08099B
10.1038/s41428-020-0330-0
10.1016/S0300-9440(98)00015-0
10.1007/s12117-017-9308-5
10.1016/j.carbpol.2022.120321
10.1021/acsomega.3c01604
10.1038/s41598-017-18147-7
10.1080/15583724.2022.2065299
10.1021/acsomega.9b01402
10.1108/03090560910935451
10.1016/j.dyepig.2025.112654
10.1021/acsomega.0c03795
10.3390/coatings10010030
10.1002/app.25485
10.1039/D0RA04445H
10.1021/acsnano.4c08801
10.1016/j.ijoes.2024.100487
10.1007/s00396-020-04734-0
10.1002/marc.202400841
10.1007/978-1-60761-670-2_3
10.1016/j.matdes.2005.02.018
10.1111/jmi.13148
10.1021/acs.jpcc.9b05889
10.1038/s41598-017-00036-8
10.1002/anie.201306709
10.1002/macp.202300092
10.1021/la902220a
10.1039/C9PY00962K
10.1002/anie.201000401
10.1016/S0022-1139(00)80740-X
10.1021/cr980078m
10.1016/j.tsf.2007.04.120
10.1021/jacs.7b07738
10.1021/acs.jpcc.0c01129
10.1039/C9CS00203K
10.1039/C7TC02232H
10.1016/j.bushor.2008.01.002
ContentType Journal Article
Copyright 2025 The Author(s). Small published by Wiley‐VCH GmbH.
Copyright_xml – notice: 2025 The Author(s). Small published by Wiley‐VCH GmbH.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1002/smll.202507008
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
ExternalDocumentID 40757902
10_1002_smll_202507008
Genre Journal Article
GrantInformation_xml – fundername: Higher Education Sprout Project by the Ministry of Education
– fundername: Cross-Generation Young Scholars Program of the National Science and Technology Council
– fundername: Center for Emergent Functional Matter Science of National Yang Ming Chiao Tung University
– fundername: Featured Areas Research Center Program
– fundername: National Science and Technology Council
  grantid: NSTC 113-2628-E-A49-006
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
5VS
66C
8-0
8-1
8UM
AAESR
AAEVG
AAHQN
AAIHA
AAMMB
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAYXX
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CITATION
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
QRW
R.K
RIWAO
RNS
ROL
RX1
RYL
SUPJJ
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
XV2
Y6R
ZZTAW
~S-
NPM
7X8
ID FETCH-LOGICAL-c2078-166472b37824eed1afad86b26774aa4f7ca2f2b110200197c895a56efd6d84813
ISSN 1613-6810
1613-6829
IngestDate Mon Aug 04 16:30:49 EDT 2025
Tue Aug 05 01:31:10 EDT 2025
Thu Aug 07 06:00:25 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords spiropyran
anodic aluminum oxide (AAO)
anti‐counterfeiting
thiol‐yne chemistry
photochromism
Language English
License 2025 The Author(s). Small published by Wiley‐VCH GmbH.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2078-166472b37824eed1afad86b26774aa4f7ca2f2b110200197c895a56efd6d84813
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0662-782X
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdf/10.1002/smll.202507008
PMID 40757902
PQID 3236223672
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3236223672
pubmed_primary_40757902
crossref_primary_10_1002_smll_202507008
PublicationCentury 2000
PublicationDate 2025-Aug-04
PublicationDateYYYYMMDD 2025-08-04
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-Aug-04
  day: 04
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2025
References He H. (e_1_2_8_74_1) 2017; 7
Kinashi K. (e_1_2_8_96_1) 2008; 516
Li J. A. (e_1_2_8_20_1) 2023; 62
Kameda M. (e_1_2_8_98_1) 2004; 20
Li Y. W. (e_1_2_8_77_1) 2021; 11
Tian W. G. (e_1_2_8_11_1) 2018; 28
Calkovsky M. (e_1_2_8_84_1) 2023; 289
Dong G. (e_1_2_8_25_1) 2024; 10
Hong T. (e_1_2_8_53_1) 2002; 44
(e_1_2_8_2_1) 2017; 20
Choi J. (e_1_2_8_52_1) 2020; 5
Duan H. T. (e_1_2_8_43_1) 2022; 14
Guo J. X. (e_1_2_8_81_1) 2021; 347
Abdollahi A. (e_1_2_8_35_1) 2017; 5
Wyszecki G. (e_1_2_8_89_1) 2000
Heidari F. (e_1_2_8_31_1) 2025; 7
Liu Q. H. (e_1_2_8_33_1) 2023; 63
Luo S. (e_1_2_8_30_1) 2025; 510
Jeong C. (e_1_2_8_54_1) 2015; 31
Lee L. R. (e_1_2_8_76_1) 2023; 6
Peng H. (e_1_2_8_16_1) 2014; 136
Samoladas A. (e_1_2_8_91_1) 2007; 105
Guan X. Y. (e_1_2_8_67_1) 2018; 54
Guo Q. (e_1_2_8_5_1) 2023; 145
Trygg J. (e_1_2_8_85_1) 2016; 50
Qi Q. K. (e_1_2_8_38_1) 2017; 139
Staake T. (e_1_2_8_1_1) 2009; 43
Lin S. S. (e_1_2_8_15_1) 2020; 9
Hu H. B. (e_1_2_8_19_1) 2014; 2
Zhu H. (e_1_2_8_57_1) 2024; 19
Li X. (e_1_2_8_44_1) 2023; 33
Guragain S. (e_1_2_8_34_1) 2015; 21
Kawai J. (e_1_2_8_69_1) 2010; 178
Nag R. (e_1_2_8_95_1) 2019; 4
Pujari S. P. (e_1_2_8_58_1) 2014; 53
Sun Y. (e_1_2_8_8_1) 2022; 34
Berman B. (e_1_2_8_3_1) 2008; 51
Zhou B. K. (e_1_2_8_72_1) 2024; 9
Zhang J. Y. (e_1_2_8_13_1) 2022; 61
Lou K. (e_1_2_8_7_1) 2022; 32
Delaire J. A. (e_1_2_8_97_1) 2000; 100
Ye W. M. (e_1_2_8_18_1) 2016; 7
Zhu X. Y. (e_1_2_8_27_1) 2024; 20
Hoogenboom R. (e_1_2_8_60_1) 2010; 49
Manzoor S. (e_1_2_8_48_1) 2023; 135
Ding L. J. (e_1_2_8_92_1) 2001; 34
Ambat R. (e_1_2_8_51_1); 42
Chen Y. F. (e_1_2_8_68_1) 2024; 18
Cui C. C. (e_1_2_8_70_1) 2022; 253
Wang M. (e_1_2_8_101_1) 2023; 659
Ji X. F. (e_1_2_8_12_1) 2018; 30
Ruiz‐Clavijo A. (e_1_2_8_49_1) 2021; 13
Shen Y. (e_1_2_8_6_1) 2024; 53
Kumar S. (e_1_2_8_90_1) 2019; 123
Ding S. (e_1_2_8_4_1) 2024; 29
Zhang M. H. (e_1_2_8_79_1) 2012; 24
Groult H. (e_1_2_8_71_1) 1992; 58
Wang D. L. (e_1_2_8_22_1) 2017; 64
Schindelin J. (e_1_2_8_93_1) 2012; 9
Li X. F. (e_1_2_8_14_1) 2024; 18
Fischer M. J. E. (e_1_2_8_64_1) 2010
Lin Y. C. (e_1_2_8_29_1) 2025; 21
Ruffato G. (e_1_2_8_17_1) 2017; 7
Ghorbani M. (e_1_2_8_46_1) 2006; 27
Shi H. H. (e_1_2_8_10_1) 2022; 34
Kortekaas L. (e_1_2_8_36_1) 2019; 48
Yusa S. (e_1_2_8_28_1) 2022; 54
Rad J. K. (e_1_2_8_39_1) 2022; 51
Huang X. (e_1_2_8_47_1) 2021; 299
Zhang A. (e_1_2_8_50_1) 2018; 165
Shen X. Y. (e_1_2_8_86_1) 2023; 30
Feng W. Q. (e_1_2_8_59_1) 2014; 1
Mutluturk E. (e_1_2_8_94_1) 2025; 7
Chen Y. J. (e_1_2_8_32_1) 2020; 6
Sam S. (e_1_2_8_66_1) 2010; 26
Ohno Y. (e_1_2_8_87_1) 2000
Miculescu F. (e_1_2_8_75_1) 2020; 11
Francis J. T. (e_1_2_8_78_1) 2006; 22
Barsi D. (e_1_2_8_83_1) 2023; 224
Lee L. R. (e_1_2_8_65_1) 2020; 124
Zhang G. F. (e_1_2_8_41_1) 2013; 33
Hu L. L. (e_1_2_8_100_1) 2024; 46
Yan J. Y. (e_1_2_8_9_1) 2023; 451
Kotsuchibashi Y. (e_1_2_8_26_1) 2020; 52
Dadras S. (e_1_2_8_45_1) 2015; 106
Ali A. A. (e_1_2_8_80_1) 2020; 1110
Tong H. (e_1_2_8_21_1) 2025; 46
Li C. (e_1_2_8_37_1) 2020; 142
Liang H. (e_1_2_8_62_1) 2023; 301
Lee L. R. (e_1_2_8_61_1) 2024; 16
Klajn R. (e_1_2_8_23_1) 2014; 43
Yang Y. H. (e_1_2_8_42_1) 2023; 8
Liu X. R. (e_1_2_8_82_1) 2023; 14
Zhang P. (e_1_2_8_88_1) 2022; 132
Ahmed S. A. (e_1_2_8_99_1) 2017; 9
Roppolo I. (e_1_2_8_73_1) 2019; 10
Liu C. W. (e_1_2_8_24_1) 2023; 35
Wang Y. Q. (e_1_2_8_40_1) 2025; 238
Twite R. L. (e_1_2_8_56_1) 1998; 33
Cheng F. (e_1_2_8_63_1) 2020; 10
Martínez‐Viademonte M. P. (e_1_2_8_55_1) 2020; 10
References_xml – volume: 33
  start-page: 10
  year: 2023
  ident: e_1_2_8_44_1
  publication-title: Adv. Funct. Mater.
– volume: 451
  year: 2023
  ident: e_1_2_8_9_1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.138922
– volume: 43
  start-page: 148
  year: 2014
  ident: e_1_2_8_23_1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C3CS60181A
– volume: 54
  start-page: 235
  year: 2022
  ident: e_1_2_8_28_1
  publication-title: Polym. J.
  doi: 10.1038/s41428-021-00576-x
– volume: 10
  start-page: 484
  year: 2024
  ident: e_1_2_8_25_1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.4c03011
– volume: 33
  start-page: 927
  year: 2013
  ident: e_1_2_8_41_1
  publication-title: J. Org. Chem.
– volume: 6
  year: 2023
  ident: e_1_2_8_76_1
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.3c04051
– volume: 178
  start-page: 268
  year: 2010
  ident: e_1_2_8_69_1
  publication-title: J. Electron Spectrosc. Relat. Phenom.
  doi: 10.1016/j.elspec.2009.12.001
– volume: 20
  start-page: 9315
  year: 2004
  ident: e_1_2_8_98_1
  publication-title: Langmuir
  doi: 10.1021/la049649y
– volume: 64
  start-page: 114
  year: 2017
  ident: e_1_2_8_22_1
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/j.progpolymsci.2016.09.005
– volume: 9
  year: 2024
  ident: e_1_2_8_72_1
  publication-title: ACS Omega
  doi: 10.1021/acsomega.4c01607
– volume: 21
  year: 2015
  ident: e_1_2_8_34_1
  publication-title: Chem.‐Eur. J.
  doi: 10.1002/chem.201501101
– volume: 34
  start-page: 721
  year: 2001
  ident: e_1_2_8_92_1
  publication-title: Pattern Recognit.
  doi: 10.1016/S0031-3203(00)00023-6
– volume: 31
  year: 2015
  ident: e_1_2_8_54_1
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.5b02392
– volume: 50
  start-page: 557
  year: 2016
  ident: e_1_2_8_85_1
  publication-title: Cell. Chem. Technol.
– volume: 9
  start-page: 10
  year: 2020
  ident: e_1_2_8_15_1
  publication-title: Light‐Sci. Appl.
  doi: 10.1038/s41377-020-0243-x
– volume: 2
  start-page: 3695
  year: 2014
  ident: e_1_2_8_19_1
  publication-title: J. Mater. Chem. C
  doi: 10.1039/c3tc32228a
– volume: 14
  year: 2022
  ident: e_1_2_8_43_1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.2c06965
– volume: 13
  start-page: 2227
  year: 2021
  ident: e_1_2_8_49_1
  publication-title: Nanoscale
  doi: 10.1039/D0NR07582E
– volume: 106
  start-page: 902
  year: 2015
  ident: e_1_2_8_45_1
  publication-title: Int. J. Mater. Res.
  doi: 10.3139/146.111237
– volume: 22
  start-page: 9244
  year: 2006
  ident: e_1_2_8_78_1
  publication-title: Langmuir
  doi: 10.1021/la061456i
– volume: 7
  start-page: 4099
  year: 2025
  ident: e_1_2_8_94_1
  publication-title: ACS Appl. Polym. Mater
  doi: 10.1021/acsapm.4c02164
– volume: 9
  start-page: 630
  year: 2017
  ident: e_1_2_8_99_1
  publication-title: Polymers
  doi: 10.3390/polym9110630
– volume: 61
  start-page: 9
  year: 2022
  ident: e_1_2_8_13_1
  publication-title: Angew. Chem.‐Int. Edit.
– volume: 11
  year: 2021
  ident: e_1_2_8_77_1
  publication-title: RSC Adv.
  doi: 10.1039/D1RA02262H
– volume: 136
  start-page: 8855
  year: 2014
  ident: e_1_2_8_16_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja502366r
– volume: 18
  start-page: 8
  year: 2024
  ident: e_1_2_8_14_1
  publication-title: Laser Photon. Rev.
– volume: 44
  start-page: 101
  year: 2002
  ident: e_1_2_8_53_1
  publication-title: Corrosion Sci
  doi: 10.1016/S0010-938X(01)00052-X
– volume: 24
  start-page: 2424
  year: 2012
  ident: e_1_2_8_79_1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201104536
– volume: 42
  start-page: 1433
  ident: e_1_2_8_51_1
  publication-title: Corrosion Sci. 2000
– volume: 1110
  start-page: 199
  year: 2020
  ident: e_1_2_8_80_1
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2020.01.057
– volume: 7
  start-page: 4228
  year: 2025
  ident: e_1_2_8_31_1
  publication-title: ACS Appl. Polym. Mater
  doi: 10.1021/acsapm.4c04086
– volume: 1
  start-page: 6
  year: 2014
  ident: e_1_2_8_59_1
  publication-title: Adv. Mater. Interfaces
– volume: 35
  start-page: 11
  year: 2023
  ident: e_1_2_8_24_1
  publication-title: Adv. Mater.
– volume: 142
  start-page: 8447
  year: 2020
  ident: e_1_2_8_37_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c02201
– volume: 132
  start-page: 11
  year: 2022
  ident: e_1_2_8_88_1
  publication-title: J. Appl. Phys.
– volume: 659
  year: 2023
  ident: e_1_2_8_101_1
  publication-title: Colloid Surf. A‐Physicochem. Eng. Asp.
  doi: 10.1016/j.colsurfa.2022.130808
– volume: 34
  start-page: 11
  year: 2022
  ident: e_1_2_8_10_1
  publication-title: Adv. Mater.
– volume: 253
  start-page: 10
  year: 2022
  ident: e_1_2_8_70_1
  publication-title: Polymer
– volume: 20
  start-page: 9
  year: 2024
  ident: e_1_2_8_27_1
  publication-title: Small
– volume: 34
  start-page: 22
  year: 2022
  ident: e_1_2_8_8_1
  publication-title: Adv. Mater.
– start-page: 540
  volume-title: International Conference on Digital Printing Technologies
  year: 2000
  ident: e_1_2_8_87_1
– volume: 9
  start-page: 676
  year: 2012
  ident: e_1_2_8_93_1
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2019
– volume: 16
  year: 2024
  ident: e_1_2_8_61_1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.4c09040
– volume: 145
  start-page: 4246
  year: 2023
  ident: e_1_2_8_5_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c13108
– volume: 53
  start-page: 606
  year: 2024
  ident: e_1_2_8_6_1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D3CS00753G
– volume: 11
  start-page: 10
  year: 2020
  ident: e_1_2_8_75_1
  publication-title: J. Func. Biomater.
  doi: 10.3390/jfb11010010
– volume: 165
  start-page: D129
  year: 2018
  ident: e_1_2_8_50_1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0651803jes
– volume: 30
  start-page: 2181
  year: 2023
  ident: e_1_2_8_86_1
  publication-title: Cellulose
  doi: 10.1007/s10570-022-05034-2
– volume: 54
  year: 2018
  ident: e_1_2_8_67_1
  publication-title: Chem. Commun.
  doi: 10.1039/C8CC08099B
– volume: 32
  start-page: 27
  year: 2022
  ident: e_1_2_8_7_1
  publication-title: Adv. Funct. Mater.
– volume: 52
  start-page: 681
  year: 2020
  ident: e_1_2_8_26_1
  publication-title: Polym. J.
  doi: 10.1038/s41428-020-0330-0
– volume: 33
  start-page: 91
  year: 1998
  ident: e_1_2_8_56_1
  publication-title: Prog. Org. Coat.
  doi: 10.1016/S0300-9440(98)00015-0
– volume: 20
  start-page: 383
  year: 2017
  ident: e_1_2_8_2_1
  publication-title: Trends Organ. Crime
  doi: 10.1007/s12117-017-9308-5
– volume: 46
  start-page: 9
  year: 2024
  ident: e_1_2_8_100_1
  publication-title: Surf. Interfaces
– volume: 301
  year: 2023
  ident: e_1_2_8_62_1
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2022.120321
– volume: 8
  year: 2023
  ident: e_1_2_8_42_1
  publication-title: ACS Omega
  doi: 10.1021/acsomega.3c01604
– volume: 510
  start-page: 8
  year: 2025
  ident: e_1_2_8_30_1
  publication-title: Chem. Eng. J.
– volume: 7
  start-page: 13
  year: 2017
  ident: e_1_2_8_17_1
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-18147-7
– volume: 63
  start-page: 289
  year: 2023
  ident: e_1_2_8_33_1
  publication-title: Polym. Rev.
  doi: 10.1080/15583724.2022.2065299
– start-page: 968
  volume-title: Color Science: Concepts and Methods, Quantitative Data and Formulae
  year: 2000
  ident: e_1_2_8_89_1
– volume: 62
  start-page: 7
  year: 2023
  ident: e_1_2_8_20_1
  publication-title: Angew. Chem.‐Int. Edit.
– volume: 51
  start-page: 65
  year: 2022
  ident: e_1_2_8_39_1
  publication-title: J. Photochem. Photobiol. C‐Photochem. Rev.
– volume: 28
  start-page: 8
  year: 2018
  ident: e_1_2_8_11_1
  publication-title: Adv. Funct. Mater.
– volume: 4
  year: 2019
  ident: e_1_2_8_95_1
  publication-title: ACS Omega
  doi: 10.1021/acsomega.9b01402
– volume: 6
  start-page: 8
  year: 2020
  ident: e_1_2_8_32_1
  publication-title: Sci. Adv.
– volume: 43
  start-page: 320
  year: 2009
  ident: e_1_2_8_1_1
  publication-title: Eur. J. Market.
  doi: 10.1108/03090560910935451
– volume: 238
  year: 2025
  ident: e_1_2_8_40_1
  publication-title: Dyes Pigment
  doi: 10.1016/j.dyepig.2025.112654
– volume: 5
  year: 2020
  ident: e_1_2_8_52_1
  publication-title: ACS Omega
  doi: 10.1021/acsomega.0c03795
– volume: 10
  start-page: 30
  year: 2020
  ident: e_1_2_8_55_1
  publication-title: Coatings
  doi: 10.3390/coatings10010030
– volume: 105
  start-page: 3623
  year: 2007
  ident: e_1_2_8_91_1
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.25485
– volume: 10
  year: 2020
  ident: e_1_2_8_63_1
  publication-title: RSC Adv.
  doi: 10.1039/D0RA04445H
– volume: 18
  year: 2024
  ident: e_1_2_8_68_1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.4c08801
– volume: 19
  year: 2024
  ident: e_1_2_8_57_1
  publication-title: Int. J. Electrochem. Sci.
  doi: 10.1016/j.ijoes.2024.100487
– volume: 299
  start-page: 325
  year: 2021
  ident: e_1_2_8_47_1
  publication-title: Colloid Polym. Sci.
  doi: 10.1007/s00396-020-04734-0
– volume: 46
  start-page: 9
  year: 2025
  ident: e_1_2_8_21_1
  publication-title: Macromol. Rapid Commun.
  doi: 10.1002/marc.202400841
– start-page: 55
  volume-title: Surface Plasmon Resonance: Methods and Protocols
  year: 2010
  ident: e_1_2_8_64_1
  doi: 10.1007/978-1-60761-670-2_3
– volume: 27
  start-page: 983
  year: 2006
  ident: e_1_2_8_46_1
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2005.02.018
– volume: 289
  start-page: 32
  year: 2023
  ident: e_1_2_8_84_1
  publication-title: J. Microsc.
  doi: 10.1111/jmi.13148
– volume: 123
  year: 2019
  ident: e_1_2_8_90_1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.9b05889
– volume: 21
  start-page: 12
  year: 2025
  ident: e_1_2_8_29_1
  publication-title: Small
– volume: 7
  start-page: 10
  year: 2017
  ident: e_1_2_8_74_1
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-00036-8
– volume: 347
  start-page: 6
  year: 2021
  ident: e_1_2_8_81_1
  publication-title: Sens. Actuator B‐Chem.
– volume: 53
  start-page: 6322
  year: 2014
  ident: e_1_2_8_58_1
  publication-title: Angew. Chem.‐Int. Edit.
  doi: 10.1002/anie.201306709
– volume: 224
  start-page: 11
  year: 2023
  ident: e_1_2_8_83_1
  publication-title: Macromol. Chem. Phys.
  doi: 10.1002/macp.202300092
– volume: 26
  start-page: 809
  year: 2010
  ident: e_1_2_8_66_1
  publication-title: Langmuir
  doi: 10.1021/la902220a
– volume: 10
  start-page: 5950
  year: 2019
  ident: e_1_2_8_73_1
  publication-title: Polym. Chem.
  doi: 10.1039/C9PY00962K
– volume: 49
  start-page: 3415
  year: 2010
  ident: e_1_2_8_60_1
  publication-title: Angew. Chem.‐Int. Edit.
  doi: 10.1002/anie.201000401
– volume: 58
  start-page: 284
  year: 1992
  ident: e_1_2_8_71_1
  publication-title: J. Fluorine Chem.
  doi: 10.1016/S0022-1139(00)80740-X
– volume: 29
  start-page: 21
  year: 2024
  ident: e_1_2_8_4_1
  publication-title: Molecules
– volume: 135
  start-page: 1007
  year: 2023
  ident: e_1_2_8_48_1
  publication-title: CMES‐Comp. Model. Eng. Sci.
– volume: 100
  start-page: 1817
  year: 2000
  ident: e_1_2_8_97_1
  publication-title: Chem. Rev.
  doi: 10.1021/cr980078m
– volume: 516
  start-page: 2532
  year: 2008
  ident: e_1_2_8_96_1
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2007.04.120
– volume: 7
  start-page: 7
  year: 2016
  ident: e_1_2_8_18_1
  publication-title: Nat. Commun.
– volume: 139
  year: 2017
  ident: e_1_2_8_38_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b07738
– volume: 124
  year: 2020
  ident: e_1_2_8_65_1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.0c01129
– volume: 14
  start-page: 13
  year: 2023
  ident: e_1_2_8_82_1
  publication-title: Forests
– volume: 48
  start-page: 3406
  year: 2019
  ident: e_1_2_8_36_1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C9CS00203K
– volume: 5
  start-page: 6588
  year: 2017
  ident: e_1_2_8_35_1
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C7TC02232H
– volume: 30
  start-page: 6
  year: 2018
  ident: e_1_2_8_12_1
  publication-title: Adv. Mater.
– volume: 51
  start-page: 191
  year: 2008
  ident: e_1_2_8_3_1
  publication-title: Business Horizons
  doi: 10.1016/j.bushor.2008.01.002
SSID ssj0031247
Score 2.4765942
SecondaryResourceType online_first
Snippet A dual‐stimuli chromogenic platform based on spiropyran‐functionalized anodic aluminum oxide (SP‐ t ‐AAO) membranes with reversible photochromic and...
A dual-stimuli chromogenic platform based on spiropyran-functionalized anodic aluminum oxide (SP-t-AAO) membranes with reversible photochromic and halochromic...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
StartPage e07008
Title Dual‐Stimuli Chromogenic Membranes for Optical Security: Photochromic and Halochromic Anti‐Counterfeiting Applications
URI https://www.ncbi.nlm.nih.gov/pubmed/40757902
https://www.proquest.com/docview/3236223672
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKkND2gMbX6BjISEg8TIbMTZxkb9VGqZAG07qJ7ilyEodGapJqTRDw1-8uzocHmwS8RKnzJd39ev7d-XxHyBtpeb6AmYoBlYiZ7cYWk27kMycJEyFUYskY45Ann8X0wv40d-aDwQ8ja6kqw3fRr1v3lfyPVmEM9Iq7ZP9Bs91LYQDOQb9wBA3D8a90fFzJJZuVKaY4YZmAIivg3jTaP1EZeMFgxeoswi8rHbCeNb3qMApwuijKIsJHmoKtU7nsfo_zMmW4Wx17WKu0zoweGyvdJqOdZbi4DTz1q0rzhUqx5cZ-XFdevPqGcZS1bt34EaeA_KcReWhygMAbZmeVSvtEA20JL1M26aE70YHa04LN0z6LSBdAuKzY0aLKzQAGd-r0OR1EUNroAqVgwmu-rw2pAlNUF3z408brmrHrbIkrR8Dgfr8RhLjKao2Ds-q4vsX7ua7LQGwv3SP3OTgY2Pvi-KwrPDYC1uO2JT4t_v7mxzbJg_bxm2zmDhelpirn2-Rh42PQsQbMIzJQ-WOyZVSefEK-m9ChBnRoBx0K0KENdGgLnUNqAocCcKgBHHoLcKgJnKfkYvLh_GjKmhYcLOIWxhcEthcIR8AjbWBTBzKRsSdCLsBrkNJO3EjyhIfAITE3z3cjz3ekA__xWMTYqGH0jGzkRa6eE-oo4UQeD4EhSlt4kX8A1gAGHK4wDhAPydtWlMFKV1oJdE1tHqD8g07-Q_K6lXQAxhBXuEAsRbUORhz4GNYk5EOyo1XQvatV2e6dV16QzR6fe2SjvKrUS6CcZfiqRsc1EkKBsw
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dual-Stimuli+Chromogenic+Membranes+for+Optical+Security%3A+Photochromic+and+Halochromic+Anti-Counterfeiting+Applications&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Lee%2C+Lin-Ruei&rft.au=Chen%2C+Yi-Fan&rft.au=Fan%2C+Po-Xin&rft.au=Lin%2C+Yu-Chun&rft.date=2025-08-04&rft.eissn=1613-6829&rft.spage=e07008&rft_id=info:doi/10.1002%2Fsmll.202507008&rft_id=info%3Apmid%2F40757902&rft.externalDocID=40757902
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon