Pontryagin maximum principle and second order optimality conditions for optimal control problems governed by 2D nonlocal Cahn–Hilliard–Navier–Stokes equations
In this paper, we formulate a distributed optimal control problem related to the evolution of two isothermal, incompressible, immiscible fluids in a two-dimensional bounded domain. The distributed optimal control problem is framed as the minimization of a suitable cost functional subject to the cont...
Saved in:
Published in | Analysis (Wiesbaden) Vol. 40; no. 3; pp. 127 - 150 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
De Gruyter Oldenbourg
01.08.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, we formulate a distributed optimal control problem related to the evolution of two isothermal, incompressible, immiscible fluids in a two-dimensional bounded domain. The distributed optimal control problem is framed as the minimization of a suitable cost functional subject to the controlled nonlocal Cahn–Hilliard–Navier–Stokes equations. We describe the first order necessary conditions of optimality via the Pontryagin minimum principle and prove second order necessary and sufficient conditions of optimality for the problem. |
---|---|
AbstractList | In this paper, we formulate a distributed optimal control problem related to the evolution of two isothermal, incompressible, immiscible fluids in a two-dimensional bounded domain. The distributed optimal control problem is framed as the minimization of a suitable cost functional subject to the controlled nonlocal Cahn–Hilliard–Navier–Stokes equations. We describe the first order necessary conditions of optimality via the Pontryagin minimum principle and prove second order necessary and sufficient conditions of optimality for the problem. |
Author | Biswas, Tania Dharmatti, Sheetal Mohan, Manil T. |
Author_xml | – sequence: 1 givenname: Tania surname: Biswas fullname: Biswas, Tania email: tania9114@iisertvm.ac.in organization: School of Mathematics, Indian Institute of Science Education and Research, Trivandrum (IISER-TVM), Maruthamala PO, Vithura, Thiruvananthapuram, Kerala, 695 551, India – sequence: 2 givenname: Sheetal orcidid: 0000-0001-7011-4108 surname: Dharmatti fullname: Dharmatti, Sheetal email: sheetal@iisertvm.ac.in organization: School of Mathematics, Indian Institute of Science Education and Research, Trivandrum (IISER-TVM), Maruthamala PO, Vithura, Thiruvananthapuram, Kerala, 695 551, India – sequence: 3 givenname: Manil T. orcidid: 0000-0003-3197-1136 surname: Mohan fullname: Mohan, Manil T. email: maniltmohan@ma.iitr.ac.in organization: Department of Mathematics, Indian Institute of Technology (IIT), Roorkee, Haridwar Highway, Roorkee, Uttarakhand 247667, India |
BookMark | eNp1kM9O3DAQxi1EJRbKlbNfINSOnTiWuFTbFiqhthJwjrz2ZDE49tb2Arn1HfoKPBlPggNVD0ic5tPMfPPnt492ffCA0BElx7ShzSfl3VTVhMqKEC530KKmsq1a0bBdtCBU8IoLLvbQfko3paOVpF6gx1_B5ziptfV4VA923I54E63XduMAK29wAh1KCNFAxGGT7aiczROeszbb4BMewv_KnM4xuDIkrByMCa_DHUQPBq8mXH_B5WgXdGlcqmv_9OfvmXXOqmiK_KHuLMQiLnK4hYTh91a9LPiIPgzKJTj8Fw_Q1bevl8uz6vzn6ffl5_NK10SIqqNEt4MeZGdo-Y8IwkBw3nSdNkZJCQxYTUGvGAHZdtBpAgIMl3SlaGMYO0D8da6OIaUIQ69tfjkhR2VdT0k_k-5n0v1Mup9JF9vxG1shOKo4vW84eTXcK5ehgF3H7VREfxO20ZcP3zFywmgt2DO2VJ94 |
CitedBy_id | crossref_primary_10_3233_ASY_201650 crossref_primary_10_1007_s10440_022_00495_w crossref_primary_10_1007_s10957_024_02499_y crossref_primary_10_3934_mcrf_2020045 crossref_primary_10_3934_eect_2021020 |
Cites_doi | 10.1088/1361-6544/aa6e5f 10.1137/1.9781611971415 10.1137/120865628 10.3934/Math.2016.3.225 10.1016/S0252-9602(06)60099-4 10.3934/eect.2017003 10.1007/978-3-319-64489-9_7 10.1007/s00021-020-00493-8 10.1007/s00032-012-0181-z 10.1051/cocv/2018006 10.1007/978-1-4612-0895-2 10.1090/chel/369 10.1090/mmono/187 10.1137/S1052623400367698 10.1007/s00332-016-9292-y 10.1016/j.jmaa.2011.08.008 10.1137/15M1025128 10.1515/9783110430417-003 10.1016/j.jmaa.2005.12.048 10.1016/j.na.2011.06.015 10.1137/140984749 10.1007/BF00271794 10.1137/1.9780898718720 10.1007/s10883-014-9259-y 10.1112/blms/4.2.236 10.1137/140969269 10.1051/cocv:2005029 10.1007/s00245-018-9524-7 10.3934/cpaa.2016028 10.1137/140994800 10.1137/050628726 10.1016/j.jde.2013.07.016 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1515/anly-2019-0049 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 2196-6753 |
EndPage | 150 |
ExternalDocumentID | 10_1515_anly_2019_0049 10_1515_anly_2019_0049403127 |
GrantInformation_xml | – fundername: Department of Biotechnology , Ministry of Science and Technology grantid: IFA17-MA110 funderid: https://doi.org/10.13039/501100001409 |
GroupedDBID | 0R~ 4.4 6FP AAAEU AADQG AAFPC AAGVJ AAILP AAJBH AALGR AAOUV AAPJK AARVR AASOL AASQH AAWFC AAXCG ABAOT ABAQN ABFKT ABIQR ABJNI ABMBZ ABPLS ABSOE ABUVI ABWLS ABXMZ ABYKJ ACDEB ACEFL ACGFS ACPMA ACUND ADEQT ADGQD ADGYE ADJVZ ADOZN AECWL AEDGQ AEGVQ AEICA AEMOE AEQDQ AERZL AEXIE AFBAA AFBDD AFBQV AFQUK AFYRI AGBEV AHVWV AHXUK AIERV AIWOI AJATJ AKXKS ALMA_UNASSIGNED_HOLDINGS AMVHM ASYPN BAKPI BBCWN BCIFA CFGNV CS3 DASCH EBS HZ~ IY9 KDIRW O9- QD8 SA. SLJYH UK5 WTRAM AAYXX CITATION |
ID | FETCH-LOGICAL-c2077-810c6fcf98d10460703e744588cdda99e3e321ecb30e968e8c0e7ed491ba15d33 |
ISSN | 0174-4747 |
IngestDate | Thu Apr 24 22:55:17 EDT 2025 Tue Jul 01 04:27:23 EDT 2025 Thu Jul 10 10:37:07 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c2077-810c6fcf98d10460703e744588cdda99e3e321ecb30e968e8c0e7ed491ba15d33 |
ORCID | 0000-0001-7011-4108 0000-0003-3197-1136 |
PageCount | 24 |
ParticipantIDs | crossref_citationtrail_10_1515_anly_2019_0049 crossref_primary_10_1515_anly_2019_0049 walterdegruyter_journals_10_1515_anly_2019_0049403127 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-08-01 |
PublicationDateYYYYMMDD | 2020-08-01 |
PublicationDate_xml | – month: 08 year: 2020 text: 2020-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Analysis (Wiesbaden) |
PublicationYear | 2020 |
Publisher | De Gruyter Oldenbourg |
Publisher_xml | – name: De Gruyter Oldenbourg |
References | Doboszczak, S.; Mohan, M. T.; Sritharan, S. S. (j_anly-2019-0049_ref_015) Wang, L.; He, P. (j_anly-2019-0049_ref_038) 2006; 26 Colli, P.; Gilardi, G.; Sprekels, J. (j_anly-2019-0049_ref_011) 2016; 1 Hintermüller, M.; Keil, T.; Wegner, D. (j_anly-2019-0049_ref_026) 2017; 55 Zhao, X.; Liu, C. (j_anly-2019-0049_ref_039) 2011; 74 Tachim Medjo, T. (j_anly-2019-0049_ref_034) 2016; 15 Colli, P.; Gilardi, G.; Sprekels, J. (j_anly-2019-0049_ref_012) 2017; 6 Frigeri, S.; Gal, C. G.; Grasselli, M. (j_anly-2019-0049_ref_018) 2016; 26 Frigeri, S.; Rocca, E.; Sprekels, J. (j_anly-2019-0049_ref_021) 2016; 54 Hintermüller, M.; Wegner, D. (j_anly-2019-0049_ref_027) 2014; 52 Raymond, J. P. (j_anly-2019-0049_ref_030) 2006; 45 Boyer, F. (j_anly-2019-0049_ref_005) 1999; 20 Edmunds, D. E. (j_anly-2019-0049_ref_016) 1972; 4 Colli, P.; Gilardi, G.; Rocca, E.; Sprekels, J. (j_anly-2019-0049_ref_009) 2017; 30 Wachsmuth, D. (j_anly-2019-0049_ref_037) 2006; 319 Zheng, J.; Wang, Y. (j_anly-2019-0049_ref_040) 2015; 21 Abergel, F.; Temam, R. (j_anly-2019-0049_ref_001) 1990; 1 Biswas, T.; Dharmatti, S.; Mohan, M. T. (j_anly-2019-0049_ref_004) 2020; 22 Frigeri, S.; Grasselli, M.; Sprekels, J. (j_anly-2019-0049_ref_020) 2020; 81 Frigeri, S.; Grasselli, M.; Krejčí, P. (j_anly-2019-0049_ref_019) 2013; 255 Tröltzsch, F.; Wachsmuth, D. (j_anly-2019-0049_ref_036) 2006; 12 Colli, P.; Gilardi, G.; Sprekels, J. (j_anly-2019-0049_ref_010) 2012; 80 Casas, E.; Tröltzsch, F. (j_anly-2019-0049_ref_006) 2002; 13 Colli, P.; Frigeri, S.; Grasselli, M. (j_anly-2019-0049_ref_008) 2012; 386 Garcke, H.; Hecht, C.; Hinze, M.; Kahle, C. (j_anly-2019-0049_ref_023) 2015; 37 Colli, P.; Farshbaf-Shaker, M. H.; Gilardi, G.; Sprekels, J. (j_anly-2019-0049_ref_007) 2015; 53 Tachim Medjo, T. (j_anly-2019-0049_ref_033) 2015; 22 Garcke, H.; Hinze, M.; Kahle, C. (j_anly-2019-0049_ref_024) 2019; 25 2023033113374467044_j_anly-2019-0049_ref_006_w2aab3b7d274b1b6b1ab2b1b6Aa 2023033113374467044_j_anly-2019-0049_ref_011_w2aab3b7d274b1b6b1ab2b1c11Aa 2023033113374467044_j_anly-2019-0049_ref_016_w2aab3b7d274b1b6b1ab2b1c16Aa 2023033113374467044_j_anly-2019-0049_ref_020_w2aab3b7d274b1b6b1ab2b1c20Aa 2023033113374467044_j_anly-2019-0049_ref_025_w2aab3b7d274b1b6b1ab2b1c25Aa 2023033113374467044_j_anly-2019-0049_ref_001_w2aab3b7d274b1b6b1ab2b1b1Aa 2023033113374467044_j_anly-2019-0049_ref_021_w2aab3b7d274b1b6b1ab2b1c21Aa 2023033113374467044_j_anly-2019-0049_ref_026_w2aab3b7d274b1b6b1ab2b1c26Aa 2023033113374467044_j_anly-2019-0049_ref_030_w2aab3b7d274b1b6b1ab2b1c30Aa 2023033113374467044_j_anly-2019-0049_ref_035_w2aab3b7d274b1b6b1ab2b1c35Aa 2023033113374467044_j_anly-2019-0049_ref_010_w2aab3b7d274b1b6b1ab2b1c10Aa 2023033113374467044_j_anly-2019-0049_ref_015_w2aab3b7d274b1b6b1ab2b1c15Aa 2023033113374467044_j_anly-2019-0049_ref_024_w2aab3b7d274b1b6b1ab2b1c24Aa 2023033113374467044_j_anly-2019-0049_ref_029_w2aab3b7d274b1b6b1ab2b1c29Aa 2023033113374467044_j_anly-2019-0049_ref_003_w2aab3b7d274b1b6b1ab2b1b3Aa 2023033113374467044_j_anly-2019-0049_ref_033_w2aab3b7d274b1b6b1ab2b1c33Aa 2023033113374467044_j_anly-2019-0049_ref_034_w2aab3b7d274b1b6b1ab2b1c34Aa 2023033113374467044_j_anly-2019-0049_ref_039_w2aab3b7d274b1b6b1ab2b1c39Aa 2023033113374467044_j_anly-2019-0049_ref_007_w2aab3b7d274b1b6b1ab2b1b7Aa 2023033113374467044_j_anly-2019-0049_ref_023_w2aab3b7d274b1b6b1ab2b1c23Aa 2023033113374467044_j_anly-2019-0049_ref_028_w2aab3b7d274b1b6b1ab2b1c28Aa 2023033113374467044_j_anly-2019-0049_ref_032_w2aab3b7d274b1b6b1ab2b1c32Aa 2023033113374467044_j_anly-2019-0049_ref_037_w2aab3b7d274b1b6b1ab2b1c37Aa 2023033113374467044_j_anly-2019-0049_ref_004_w2aab3b7d274b1b6b1ab2b1b4Aa 2023033113374467044_j_anly-2019-0049_ref_038_w2aab3b7d274b1b6b1ab2b1c38Aa 2023033113374467044_j_anly-2019-0049_ref_014_w2aab3b7d274b1b6b1ab2b1c14Aa 2023033113374467044_j_anly-2019-0049_ref_019_w2aab3b7d274b1b6b1ab2b1c19Aa 2023033113374467044_j_anly-2019-0049_ref_008_w2aab3b7d274b1b6b1ab2b1b8Aa 2023033113374467044_j_anly-2019-0049_ref_031_w2aab3b7d274b1b6b1ab2b1c31Aa 2023033113374467044_j_anly-2019-0049_ref_005_w2aab3b7d274b1b6b1ab2b1b5Aa 2023033113374467044_j_anly-2019-0049_ref_036_w2aab3b7d274b1b6b1ab2b1c36Aa 2023033113374467044_j_anly-2019-0049_ref_040_w2aab3b7d274b1b6b1ab2b1c40Aa 2023033113374467044_j_anly-2019-0049_ref_012_w2aab3b7d274b1b6b1ab2b1c12Aa 2023033113374467044_j_anly-2019-0049_ref_017_w2aab3b7d274b1b6b1ab2b1c17Aa 2023033113374467044_j_anly-2019-0049_ref_009_w2aab3b7d274b1b6b1ab2b1b9Aa 2023033113374467044_j_anly-2019-0049_ref_013_w2aab3b7d274b1b6b1ab2b1c13Aa 2023033113374467044_j_anly-2019-0049_ref_018_w2aab3b7d274b1b6b1ab2b1c18Aa 2023033113374467044_j_anly-2019-0049_ref_002_w2aab3b7d274b1b6b1ab2b1b2Aa 2023033113374467044_j_anly-2019-0049_ref_022_w2aab3b7d274b1b6b1ab2b1c22Aa 2023033113374467044_j_anly-2019-0049_ref_027_w2aab3b7d274b1b6b1ab2b1c27Aa |
References_xml | – volume: 386 start-page: 428 issue: 1 year: 2012 end-page: 444 ident: j_anly-2019-0049_ref_008 article-title: Global existence of weak solutions to a nonlocal Cahn–Hilliard–Navier–Stokes system publication-title: J. Math. Anal. Appl. – volume: 1 start-page: 225 issue: 3 year: 2016 end-page: 260 ident: j_anly-2019-0049_ref_011 article-title: Distributed optimal control of a nonstandard nonlocal phase field system publication-title: AIMS Math. – volume: 53 start-page: 2696 issue: 4 year: 2015 end-page: 2721 ident: j_anly-2019-0049_ref_007 article-title: Optimal boundary control of a viscous Cahn–Hilliard system with dynamic boundary condition and double obstacle potentials publication-title: SIAM J. Control Optim. – volume: 4 start-page: 236 issue: 2 year: 1972 end-page: 237 ident: j_anly-2019-0049_ref_016 article-title: Optimal control of systems governed by partial differential equations publication-title: Bull. Lond. Math. Soc. – volume: 25 year: 2019 ident: j_anly-2019-0049_ref_024 article-title: Optimal control of time-discrete two-phase flow driven by a diffuse-interface model publication-title: ESAIM Control Optim. Calc. Var. – volume: 22 year: 2020 ident: j_anly-2019-0049_ref_004 article-title: Maximum principle and data assimilation problem for the optimal control problems governed by 2D nonlocal Cahn–Hilliard–Navier–Stokes equations publication-title: Journal of Mathematical Fluid Mechanics – volume: 52 start-page: 747 issue: 1 year: 2014 end-page: 772 ident: j_anly-2019-0049_ref_027 article-title: Optimal control of a semidiscrete Cahn–Hilliard–Navier–Stokes system publication-title: SIAM J. Control Optim. – volume: 45 start-page: 790 issue: 3 year: 2006 end-page: 828 ident: j_anly-2019-0049_ref_030 article-title: Feedback boundary stabilization of the two-dimensional Navier–Stokes equations publication-title: SIAM J. Control Optim. – volume: 74 start-page: 6348 issue: 17 year: 2011 end-page: 6357 ident: j_anly-2019-0049_ref_039 article-title: Optimal control problem for viscous Cahn–Hilliard equation publication-title: Nonlinear Anal. – volume: 13 start-page: 406 issue: 2 year: 2002 end-page: 431 ident: j_anly-2019-0049_ref_006 article-title: Second-order necessary and sufficient optimality conditions for optimization problems and applications to control theory publication-title: SIAM J. Optim. – volume: 37 start-page: A1846 issue: 4 year: 2015 end-page: A1871 ident: j_anly-2019-0049_ref_023 article-title: Numerical approximation of phase field based shape and topology optimization for fluids publication-title: SIAM J. Sci. Comput. – volume: 21 start-page: 257 issue: 2 year: 2015 end-page: 272 ident: j_anly-2019-0049_ref_040 article-title: Optimal control problem for Cahn–Hilliard equations with state constraint publication-title: J. Dyn. Control Syst. – volume: 30 start-page: 2518 issue: 6 year: 2017 end-page: 2546 ident: j_anly-2019-0049_ref_009 article-title: Optimal distributed control of a diffuse interface model of tumor growth publication-title: Nonlinearity – volume: 22 start-page: 1135 issue: 4 year: 2015 end-page: 1172 ident: j_anly-2019-0049_ref_033 article-title: Optimal control of a Cahn–Hilliard–Navier–Stokes model with state constraints publication-title: J. Convex Anal. – volume: 26 start-page: 729 issue: 4 year: 2006 end-page: 734 ident: j_anly-2019-0049_ref_038 article-title: Second-order optimality conditions for optimal control problems governed by 3-dimensional Navier–Stokes equations publication-title: Acta Math. Sci. Ser. B (Engl. Ed.) – volume: 81 start-page: 899 issue: 3 year: 2020 end-page: 931 ident: j_anly-2019-0049_ref_020 article-title: Optimal distributed control of two-dimensional nonlocal Cahn–Hilliard–Navier–Stokes systems with degenerate mobility and singular potential publication-title: Appl. Math. Optim. – volume: 1 start-page: 303 year: 1990 end-page: 325 ident: j_anly-2019-0049_ref_001 article-title: On some control problems in fluid mechanics publication-title: Theoret. Comput. Fluid Dynam. – volume: 12 start-page: 93 issue: 1 year: 2006 end-page: 119 ident: j_anly-2019-0049_ref_036 article-title: Second-order sufficient optimality conditions for the optimal control of Navier–Stokes equations publication-title: ESAIM Control Optim. Calc. Var. – volume: 20 start-page: 175 issue: 2 year: 1999 end-page: 212 ident: j_anly-2019-0049_ref_005 article-title: Mathematical study of multi-phase flow under shear through order parameter formulation publication-title: Asymptot. Anal. – volume: 255 start-page: 2587 issue: 9 year: 2013 end-page: 2614 ident: j_anly-2019-0049_ref_019 article-title: Strong solutions for two-dimensional nonlocal Cahn–Hilliard–Navier–Stokes systems publication-title: J. Differential Equations – volume: 54 start-page: 221 issue: 1 year: 2016 end-page: 250 ident: j_anly-2019-0049_ref_021 article-title: Optimal distributed control of a nonlocal Cahn–Hilliard/Navier–Stokes system in two dimensions publication-title: SIAM J. Control Optim. – volume: 26 start-page: 847 issue: 4 year: 2016 end-page: 893 ident: j_anly-2019-0049_ref_018 article-title: On nonlocal Cahn–Hilliard–Navier–Stokes systems in two dimensions publication-title: J. Nonlinear Sci. – volume: 55 start-page: 1954 issue: 3 year: 2017 end-page: 1989 ident: j_anly-2019-0049_ref_026 article-title: Optimal control of a semidiscrete Cahn–Hilliard–Navier–Stokes system with nonmatched fluid densities publication-title: SIAM J. Control Optim. – volume: 15 start-page: 2075 issue: 6 year: 2016 end-page: 2101 ident: j_anly-2019-0049_ref_034 article-title: Robust control of a Cahn–Hilliard–Navier–Stokes model publication-title: Commun. Pure Appl. Anal. – ident: j_anly-2019-0049_ref_015 article-title: Necessary conditions for distributed optimal control of linearized compressible Navier–Stokes equations publication-title: Miscellaneous – volume: 319 start-page: 228 issue: 1 year: 2006 end-page: 247 ident: j_anly-2019-0049_ref_037 article-title: Sufficient second-order optimality conditions for convex control constraints publication-title: J. Math. Anal. Appl. – volume: 80 start-page: 119 issue: 1 year: 2012 end-page: 149 ident: j_anly-2019-0049_ref_010 article-title: Analysis and optimal boundary control of a nonstandard system of phase field equations publication-title: Milan J. Math. – volume: 6 start-page: 35 issue: 1 year: 2017 end-page: 58 ident: j_anly-2019-0049_ref_012 article-title: Distributed optimal control of a nonstandard nonlocal phase field system with double obstacle potential publication-title: Evol. Equ. Control Theory – ident: 2023033113374467044_j_anly-2019-0049_ref_009_w2aab3b7d274b1b6b1ab2b1b9Aa doi: 10.1088/1361-6544/aa6e5f – ident: 2023033113374467044_j_anly-2019-0049_ref_032_w2aab3b7d274b1b6b1ab2b1c32Aa doi: 10.1137/1.9781611971415 – ident: 2023033113374467044_j_anly-2019-0049_ref_017_w2aab3b7d274b1b6b1ab2b1c17Aa – ident: 2023033113374467044_j_anly-2019-0049_ref_027_w2aab3b7d274b1b6b1ab2b1c27Aa doi: 10.1137/120865628 – ident: 2023033113374467044_j_anly-2019-0049_ref_031_w2aab3b7d274b1b6b1ab2b1c31Aa – ident: 2023033113374467044_j_anly-2019-0049_ref_011_w2aab3b7d274b1b6b1ab2b1c11Aa doi: 10.3934/Math.2016.3.225 – ident: 2023033113374467044_j_anly-2019-0049_ref_029_w2aab3b7d274b1b6b1ab2b1c29Aa – ident: 2023033113374467044_j_anly-2019-0049_ref_038_w2aab3b7d274b1b6b1ab2b1c38Aa doi: 10.1016/S0252-9602(06)60099-4 – ident: 2023033113374467044_j_anly-2019-0049_ref_012_w2aab3b7d274b1b6b1ab2b1c12Aa doi: 10.3934/eect.2017003 – ident: 2023033113374467044_j_anly-2019-0049_ref_013_w2aab3b7d274b1b6b1ab2b1c13Aa doi: 10.1007/978-3-319-64489-9_7 – ident: 2023033113374467044_j_anly-2019-0049_ref_004_w2aab3b7d274b1b6b1ab2b1b4Aa doi: 10.1007/s00021-020-00493-8 – ident: 2023033113374467044_j_anly-2019-0049_ref_010_w2aab3b7d274b1b6b1ab2b1c10Aa doi: 10.1007/s00032-012-0181-z – ident: 2023033113374467044_j_anly-2019-0049_ref_024_w2aab3b7d274b1b6b1ab2b1c24Aa doi: 10.1051/cocv/2018006 – ident: 2023033113374467044_j_anly-2019-0049_ref_014_w2aab3b7d274b1b6b1ab2b1c14Aa doi: 10.1007/978-1-4612-0895-2 – ident: 2023033113374467044_j_anly-2019-0049_ref_035_w2aab3b7d274b1b6b1ab2b1c35Aa – ident: 2023033113374467044_j_anly-2019-0049_ref_002_w2aab3b7d274b1b6b1ab2b1b2Aa doi: 10.1090/chel/369 – ident: 2023033113374467044_j_anly-2019-0049_ref_022_w2aab3b7d274b1b6b1ab2b1c22Aa doi: 10.1090/mmono/187 – ident: 2023033113374467044_j_anly-2019-0049_ref_006_w2aab3b7d274b1b6b1ab2b1b6Aa doi: 10.1137/S1052623400367698 – ident: 2023033113374467044_j_anly-2019-0049_ref_018_w2aab3b7d274b1b6b1ab2b1c18Aa doi: 10.1007/s00332-016-9292-y – ident: 2023033113374467044_j_anly-2019-0049_ref_008_w2aab3b7d274b1b6b1ab2b1b8Aa doi: 10.1016/j.jmaa.2011.08.008 – ident: 2023033113374467044_j_anly-2019-0049_ref_026_w2aab3b7d274b1b6b1ab2b1c26Aa doi: 10.1137/15M1025128 – ident: 2023033113374467044_j_anly-2019-0049_ref_028_w2aab3b7d274b1b6b1ab2b1c28Aa doi: 10.1515/9783110430417-003 – ident: 2023033113374467044_j_anly-2019-0049_ref_037_w2aab3b7d274b1b6b1ab2b1c37Aa doi: 10.1016/j.jmaa.2005.12.048 – ident: 2023033113374467044_j_anly-2019-0049_ref_015_w2aab3b7d274b1b6b1ab2b1c15Aa – ident: 2023033113374467044_j_anly-2019-0049_ref_039_w2aab3b7d274b1b6b1ab2b1c39Aa doi: 10.1016/j.na.2011.06.015 – ident: 2023033113374467044_j_anly-2019-0049_ref_007_w2aab3b7d274b1b6b1ab2b1b7Aa doi: 10.1137/140984749 – ident: 2023033113374467044_j_anly-2019-0049_ref_005_w2aab3b7d274b1b6b1ab2b1b5Aa – ident: 2023033113374467044_j_anly-2019-0049_ref_001_w2aab3b7d274b1b6b1ab2b1b1Aa doi: 10.1007/BF00271794 – ident: 2023033113374467044_j_anly-2019-0049_ref_025_w2aab3b7d274b1b6b1ab2b1c25Aa doi: 10.1137/1.9780898718720 – ident: 2023033113374467044_j_anly-2019-0049_ref_040_w2aab3b7d274b1b6b1ab2b1c40Aa doi: 10.1007/s10883-014-9259-y – ident: 2023033113374467044_j_anly-2019-0049_ref_003_w2aab3b7d274b1b6b1ab2b1b3Aa – ident: 2023033113374467044_j_anly-2019-0049_ref_033_w2aab3b7d274b1b6b1ab2b1c33Aa – ident: 2023033113374467044_j_anly-2019-0049_ref_016_w2aab3b7d274b1b6b1ab2b1c16Aa doi: 10.1112/blms/4.2.236 – ident: 2023033113374467044_j_anly-2019-0049_ref_023_w2aab3b7d274b1b6b1ab2b1c23Aa doi: 10.1137/140969269 – ident: 2023033113374467044_j_anly-2019-0049_ref_036_w2aab3b7d274b1b6b1ab2b1c36Aa doi: 10.1051/cocv:2005029 – ident: 2023033113374467044_j_anly-2019-0049_ref_020_w2aab3b7d274b1b6b1ab2b1c20Aa doi: 10.1007/s00245-018-9524-7 – ident: 2023033113374467044_j_anly-2019-0049_ref_034_w2aab3b7d274b1b6b1ab2b1c34Aa doi: 10.3934/cpaa.2016028 – ident: 2023033113374467044_j_anly-2019-0049_ref_021_w2aab3b7d274b1b6b1ab2b1c21Aa doi: 10.1137/140994800 – ident: 2023033113374467044_j_anly-2019-0049_ref_030_w2aab3b7d274b1b6b1ab2b1c30Aa doi: 10.1137/050628726 – ident: 2023033113374467044_j_anly-2019-0049_ref_019_w2aab3b7d274b1b6b1ab2b1c19Aa doi: 10.1016/j.jde.2013.07.016 |
SSID | ssj0046902 |
Score | 2.1632228 |
Snippet | In this paper, we formulate a distributed optimal control problem related to the evolution of two isothermal, incompressible, immiscible fluids in a... |
SourceID | crossref walterdegruyter |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 127 |
SubjectTerms | 35Q35 49J20 76D03 necessary and sufficient optimality conditions nonlocal Cahn–Hilliard–Navier–Stokes systems Optimal control Pontryagin maximum principle |
Title | Pontryagin maximum principle and second order optimality conditions for optimal control problems governed by 2D nonlocal Cahn–Hilliard–Navier–Stokes equations |
URI | https://www.degruyter.com/doi/10.1515/anly-2019-0049 |
Volume | 40 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtNAFB2FdMOmvEV5aRZILCwHe_yKl21TiJBaITWF7qyxfdNETZwSOyphxT_wC_wP_8CXcOfhsVNaqbCxnLFn7OSe3NfcOUPI64ylMGaQ214Ome1HTmbHaejZOeTgBGMvAi7ykIdH4fDE_3AanHY6v1pVS6sq7WXfrl1X8j9SxTaUq1gl-w-SNYNiA56jfPGIEsbjrWT8UdSZr8U-Q9acf53OV3Prok6ey1mBUoS7uSX5Na0Faoe5crtFq6rVkmWG-oqpW9e7zJTWmdyJVzmpbGAVi0LaPmufT4q6TMIbypTNMjcNR1wYW_PxuFqcQ2nBl1UrO2j4mzUnCjq6nzFoT7nUgyY7sTctL9WSsxEvpsaEDCThdqVKEY4nABVv6hsXE5XUPcQeM2vUayc2WFNWZ3KdkY_oUYScPZBtqF9DG2Mcr63AFd-TBqrX0sYui1qG3VUMt3_ZjEDSa_BitkZwiSVdjiJR3STnvmI0TSmjCKJwhET0T0T_RPS_Q7YYxi2sS7Z23-8dfKqdA5GMkBNb9XfTPKI4wtvNN9jwk7YvZe1EDmfL1bqq5-qlCzS6T7Z17EJ3FRAfkA4UD8k9HcdQbSXKR-Rng0uqcUkNLinikipcUolL2uCSNrikiMv6CtW4pDUuaY1Lmq4pG9Aal1Tg8vf3HzUi8VRhEU8UCqlB4WNy8u5gtD-09W4gdsacCF0p18nCcTaO-7moSxCmCiJfLLTO8pzHMXjgMRey1HMgDvvQzxyIIPdjN-VukHveE9LF14GnhEZjDx19HoETMp-76BVnGLeP45RFAcT9_g6x698-yTRVvtixZZZcL-0d8sbcf6FIYm68M7giykTrk_KGHj5aXRY9u_UTnpO7zZ_pBelWyxW8RL-5Sl9pLP4Bo0DMnA |
linkProvider | Walter de Gruyter |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZge4BLy68ovz4gcUo3sZM4OZbSskC7QqJFvUWOPWlRN9mySQTLiXfgFXgynoSZxFmVol7gFiV24mjsmW_G428Ye25EDoUA60kLxguVb7w0j6VnwYIfFVKBpjjkwTSeHIVvj6PjC2dhKK3SwsmiXTY9Q-rYzk1LgbIV1wBa4LGuZksUMB3AQYg7Pm3K2XW2loTor4zY2vbrl7sfB31M_l-3l4DYGwcTKkfd-Pdr_jBN61-67erVWC5Ynb0NZobx9skmZ1ttk2-Zb5eoHP_vh26xdQdK-XY_i26za1DdYRsOoHK3_Ou77Od7SmxfUmEjXuqvn8q25OdDtJ7ryvKa_GvLO0JPPkd1VHY4n9PdPjmMI0oennCXKM9dWZuan3Slf_Gj-ZKLV7yaV52x5Tv6tPr1_cekiw4tLF5ONVl0vPjQzM-g5vC5Jy2v77Gjvd3DnYnnyjx4RvgKbWTgm7gwRZpY2nAmHQQqpBO0xlqdpiBBigBMLn1I4wQS44MCG6ZBroPISnmfjXA48IBxVUhEcFqBH4tQBwh3DDpkRZoLFUGaJJvMGyScGceBTqU4Zhn5QiiHjOSQkRwyksMme7Fqf96zf1zZMro0YTKnDOoreoSoToV6-I_9nrEbk8OD_Wz_zfTdI3ZTUBSgS0t8zEbNooUnCJWa_KlbC78B_lAZAw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZgKyEuLb-iLT9zQOKUbmIncXIsbZflb1UJirhFjj0pVbvZ7SYRbE99B16BJ-NJGCfOCop6gVuU2ImjsWe-GY-_Yey55jkWHI0nDGovlL720jwWnkGDflQIicrGId9P4vFR-OZz1GcTVi6t0uDxolnWHUPq0Mx0YwNlK64BssBDVZ4tScD2AA5B3OHcFDfZWhKSLzNga7uvXh586tWxdf_arQSC3jSWUDrmxr_f8odlWv_a7lavhvKb0RltsLwfbpdrcrrT1PmOvrjC5Phf_3OHrTtICrvdHLrLbmB5j204eApu8Vf32Y9Dm9a-tGWNYKq-nUybKcz7WD2o0kBlvWsDLZ0nzEgZTVuUD_ZulxoGhJH7J-DS5MEVtanguC38Sx_Nl8D3oZyVramFPfWl_Hn5fdzGhhaGLifK2nO6-FDPTrECPO8oy6sH7Gh08HFv7LkiD57mviQLGfg6LnSRJsZuN1sNhDK052e1MSpNUaDgAepc-JjGCSbaR4kmTINcBZER4iEb0HDwEQNZCMJvSqIf81AFBHY0uWNFmnMZYZokm8zrBZxpx4BuC3GcZdYTIjFkVgyZFUNmxbDJXqzazzvuj2tbRlfmS-ZUQXVNj5CUKZdb_9jvGbt1uD_K3r2evN1mt7kNAbQ5iY_ZoF40-IRwUp0_dSvhF7GNF6o |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pontryagin+maximum+principle+and+second+order+optimality+conditions+for+optimal+control+problems+governed+by+2D+nonlocal+Cahn%E2%80%93Hilliard%E2%80%93Navier%E2%80%93Stokes+equations&rft.jtitle=Analysis+%28Wiesbaden%29&rft.au=Biswas%2C+Tania&rft.au=Dharmatti%2C+Sheetal&rft.au=Mohan%2C+Manil+T.&rft.date=2020-08-01&rft.issn=0174-4747&rft.eissn=2196-6753&rft.volume=40&rft.issue=3&rft.spage=127&rft.epage=150&rft_id=info:doi/10.1515%2Fanly-2019-0049&rft.externalDBID=n%2Fa&rft.externalDocID=10_1515_anly_2019_0049 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0174-4747&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0174-4747&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0174-4747&client=summon |