Pontryagin maximum principle and second order optimality conditions for optimal control problems governed by 2D nonlocal Cahn–Hilliard–Navier–Stokes equations

In this paper, we formulate a distributed optimal control problem related to the evolution of two isothermal, incompressible, immiscible fluids in a two-dimensional bounded domain. The distributed optimal control problem is framed as the minimization of a suitable cost functional subject to the cont...

Full description

Saved in:
Bibliographic Details
Published inAnalysis (Wiesbaden) Vol. 40; no. 3; pp. 127 - 150
Main Authors Biswas, Tania, Dharmatti, Sheetal, Mohan, Manil T.
Format Journal Article
LanguageEnglish
Published De Gruyter Oldenbourg 01.08.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we formulate a distributed optimal control problem related to the evolution of two isothermal, incompressible, immiscible fluids in a two-dimensional bounded domain. The distributed optimal control problem is framed as the minimization of a suitable cost functional subject to the controlled nonlocal Cahn–Hilliard–Navier–Stokes equations. We describe the first order necessary conditions of optimality via the Pontryagin minimum principle and prove second order necessary and sufficient conditions of optimality for the problem.
AbstractList In this paper, we formulate a distributed optimal control problem related to the evolution of two isothermal, incompressible, immiscible fluids in a two-dimensional bounded domain. The distributed optimal control problem is framed as the minimization of a suitable cost functional subject to the controlled nonlocal Cahn–Hilliard–Navier–Stokes equations. We describe the first order necessary conditions of optimality via the Pontryagin minimum principle and prove second order necessary and sufficient conditions of optimality for the problem.
Author Biswas, Tania
Dharmatti, Sheetal
Mohan, Manil T.
Author_xml – sequence: 1
  givenname: Tania
  surname: Biswas
  fullname: Biswas, Tania
  email: tania9114@iisertvm.ac.in
  organization: School of Mathematics, Indian Institute of Science Education and Research, Trivandrum (IISER-TVM), Maruthamala PO, Vithura, Thiruvananthapuram, Kerala, 695 551, India
– sequence: 2
  givenname: Sheetal
  orcidid: 0000-0001-7011-4108
  surname: Dharmatti
  fullname: Dharmatti, Sheetal
  email: sheetal@iisertvm.ac.in
  organization: School of Mathematics, Indian Institute of Science Education and Research, Trivandrum (IISER-TVM), Maruthamala PO, Vithura, Thiruvananthapuram, Kerala, 695 551, India
– sequence: 3
  givenname: Manil T.
  orcidid: 0000-0003-3197-1136
  surname: Mohan
  fullname: Mohan, Manil T.
  email: maniltmohan@ma.iitr.ac.in
  organization: Department of Mathematics, Indian Institute of Technology (IIT), Roorkee, Haridwar Highway, Roorkee, Uttarakhand 247667, India
BookMark eNp1kM9O3DAQxi1EJRbKlbNfINSOnTiWuFTbFiqhthJwjrz2ZDE49tb2Arn1HfoKPBlPggNVD0ic5tPMfPPnt492ffCA0BElx7ShzSfl3VTVhMqKEC530KKmsq1a0bBdtCBU8IoLLvbQfko3paOVpF6gx1_B5ziptfV4VA923I54E63XduMAK29wAh1KCNFAxGGT7aiczROeszbb4BMewv_KnM4xuDIkrByMCa_DHUQPBq8mXH_B5WgXdGlcqmv_9OfvmXXOqmiK_KHuLMQiLnK4hYTh91a9LPiIPgzKJTj8Fw_Q1bevl8uz6vzn6ffl5_NK10SIqqNEt4MeZGdo-Y8IwkBw3nSdNkZJCQxYTUGvGAHZdtBpAgIMl3SlaGMYO0D8da6OIaUIQ69tfjkhR2VdT0k_k-5n0v1Mup9JF9vxG1shOKo4vW84eTXcK5ehgF3H7VREfxO20ZcP3zFywmgt2DO2VJ94
CitedBy_id crossref_primary_10_3233_ASY_201650
crossref_primary_10_1007_s10440_022_00495_w
crossref_primary_10_1007_s10957_024_02499_y
crossref_primary_10_3934_mcrf_2020045
crossref_primary_10_3934_eect_2021020
Cites_doi 10.1088/1361-6544/aa6e5f
10.1137/1.9781611971415
10.1137/120865628
10.3934/Math.2016.3.225
10.1016/S0252-9602(06)60099-4
10.3934/eect.2017003
10.1007/978-3-319-64489-9_7
10.1007/s00021-020-00493-8
10.1007/s00032-012-0181-z
10.1051/cocv/2018006
10.1007/978-1-4612-0895-2
10.1090/chel/369
10.1090/mmono/187
10.1137/S1052623400367698
10.1007/s00332-016-9292-y
10.1016/j.jmaa.2011.08.008
10.1137/15M1025128
10.1515/9783110430417-003
10.1016/j.jmaa.2005.12.048
10.1016/j.na.2011.06.015
10.1137/140984749
10.1007/BF00271794
10.1137/1.9780898718720
10.1007/s10883-014-9259-y
10.1112/blms/4.2.236
10.1137/140969269
10.1051/cocv:2005029
10.1007/s00245-018-9524-7
10.3934/cpaa.2016028
10.1137/140994800
10.1137/050628726
10.1016/j.jde.2013.07.016
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1515/anly-2019-0049
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 2196-6753
EndPage 150
ExternalDocumentID 10_1515_anly_2019_0049
10_1515_anly_2019_0049403127
GrantInformation_xml – fundername: Department of Biotechnology , Ministry of Science and Technology
  grantid: IFA17-MA110
  funderid: https://doi.org/10.13039/501100001409
GroupedDBID 0R~
4.4
6FP
AAAEU
AADQG
AAFPC
AAGVJ
AAILP
AAJBH
AALGR
AAOUV
AAPJK
AARVR
AASOL
AASQH
AAWFC
AAXCG
ABAOT
ABAQN
ABFKT
ABIQR
ABJNI
ABMBZ
ABPLS
ABSOE
ABUVI
ABWLS
ABXMZ
ABYKJ
ACDEB
ACEFL
ACGFS
ACPMA
ACUND
ADEQT
ADGQD
ADGYE
ADJVZ
ADOZN
AECWL
AEDGQ
AEGVQ
AEICA
AEMOE
AEQDQ
AERZL
AEXIE
AFBAA
AFBDD
AFBQV
AFQUK
AFYRI
AGBEV
AHVWV
AHXUK
AIERV
AIWOI
AJATJ
AKXKS
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ASYPN
BAKPI
BBCWN
BCIFA
CFGNV
CS3
DASCH
EBS
HZ~
IY9
KDIRW
O9-
QD8
SA.
SLJYH
UK5
WTRAM
AAYXX
CITATION
ID FETCH-LOGICAL-c2077-810c6fcf98d10460703e744588cdda99e3e321ecb30e968e8c0e7ed491ba15d33
ISSN 0174-4747
IngestDate Thu Apr 24 22:55:17 EDT 2025
Tue Jul 01 04:27:23 EDT 2025
Thu Jul 10 10:37:07 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2077-810c6fcf98d10460703e744588cdda99e3e321ecb30e968e8c0e7ed491ba15d33
ORCID 0000-0001-7011-4108
0000-0003-3197-1136
PageCount 24
ParticipantIDs crossref_citationtrail_10_1515_anly_2019_0049
crossref_primary_10_1515_anly_2019_0049
walterdegruyter_journals_10_1515_anly_2019_0049403127
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-08-01
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-01
  day: 01
PublicationDecade 2020
PublicationTitle Analysis (Wiesbaden)
PublicationYear 2020
Publisher De Gruyter Oldenbourg
Publisher_xml – name: De Gruyter Oldenbourg
References Doboszczak, S.; Mohan, M. T.; Sritharan, S. S. (j_anly-2019-0049_ref_015)
Wang, L.; He, P. (j_anly-2019-0049_ref_038) 2006; 26
Colli, P.; Gilardi, G.; Sprekels, J. (j_anly-2019-0049_ref_011) 2016; 1
Hintermüller, M.; Keil, T.; Wegner, D. (j_anly-2019-0049_ref_026) 2017; 55
Zhao, X.; Liu, C. (j_anly-2019-0049_ref_039) 2011; 74
Tachim Medjo, T. (j_anly-2019-0049_ref_034) 2016; 15
Colli, P.; Gilardi, G.; Sprekels, J. (j_anly-2019-0049_ref_012) 2017; 6
Frigeri, S.; Gal, C. G.; Grasselli, M. (j_anly-2019-0049_ref_018) 2016; 26
Frigeri, S.; Rocca, E.; Sprekels, J. (j_anly-2019-0049_ref_021) 2016; 54
Hintermüller, M.; Wegner, D. (j_anly-2019-0049_ref_027) 2014; 52
Raymond, J. P. (j_anly-2019-0049_ref_030) 2006; 45
Boyer, F. (j_anly-2019-0049_ref_005) 1999; 20
Edmunds, D. E. (j_anly-2019-0049_ref_016) 1972; 4
Colli, P.; Gilardi, G.; Rocca, E.; Sprekels, J. (j_anly-2019-0049_ref_009) 2017; 30
Wachsmuth, D. (j_anly-2019-0049_ref_037) 2006; 319
Zheng, J.; Wang, Y. (j_anly-2019-0049_ref_040) 2015; 21
Abergel, F.; Temam, R. (j_anly-2019-0049_ref_001) 1990; 1
Biswas, T.; Dharmatti, S.; Mohan, M. T. (j_anly-2019-0049_ref_004) 2020; 22
Frigeri, S.; Grasselli, M.; Sprekels, J. (j_anly-2019-0049_ref_020) 2020; 81
Frigeri, S.; Grasselli, M.; Krejčí, P. (j_anly-2019-0049_ref_019) 2013; 255
Tröltzsch, F.; Wachsmuth, D. (j_anly-2019-0049_ref_036) 2006; 12
Colli, P.; Gilardi, G.; Sprekels, J. (j_anly-2019-0049_ref_010) 2012; 80
Casas, E.; Tröltzsch, F. (j_anly-2019-0049_ref_006) 2002; 13
Colli, P.; Frigeri, S.; Grasselli, M. (j_anly-2019-0049_ref_008) 2012; 386
Garcke, H.; Hecht, C.; Hinze, M.; Kahle, C. (j_anly-2019-0049_ref_023) 2015; 37
Colli, P.; Farshbaf-Shaker, M. H.; Gilardi, G.; Sprekels, J. (j_anly-2019-0049_ref_007) 2015; 53
Tachim Medjo, T. (j_anly-2019-0049_ref_033) 2015; 22
Garcke, H.; Hinze, M.; Kahle, C. (j_anly-2019-0049_ref_024) 2019; 25
2023033113374467044_j_anly-2019-0049_ref_006_w2aab3b7d274b1b6b1ab2b1b6Aa
2023033113374467044_j_anly-2019-0049_ref_011_w2aab3b7d274b1b6b1ab2b1c11Aa
2023033113374467044_j_anly-2019-0049_ref_016_w2aab3b7d274b1b6b1ab2b1c16Aa
2023033113374467044_j_anly-2019-0049_ref_020_w2aab3b7d274b1b6b1ab2b1c20Aa
2023033113374467044_j_anly-2019-0049_ref_025_w2aab3b7d274b1b6b1ab2b1c25Aa
2023033113374467044_j_anly-2019-0049_ref_001_w2aab3b7d274b1b6b1ab2b1b1Aa
2023033113374467044_j_anly-2019-0049_ref_021_w2aab3b7d274b1b6b1ab2b1c21Aa
2023033113374467044_j_anly-2019-0049_ref_026_w2aab3b7d274b1b6b1ab2b1c26Aa
2023033113374467044_j_anly-2019-0049_ref_030_w2aab3b7d274b1b6b1ab2b1c30Aa
2023033113374467044_j_anly-2019-0049_ref_035_w2aab3b7d274b1b6b1ab2b1c35Aa
2023033113374467044_j_anly-2019-0049_ref_010_w2aab3b7d274b1b6b1ab2b1c10Aa
2023033113374467044_j_anly-2019-0049_ref_015_w2aab3b7d274b1b6b1ab2b1c15Aa
2023033113374467044_j_anly-2019-0049_ref_024_w2aab3b7d274b1b6b1ab2b1c24Aa
2023033113374467044_j_anly-2019-0049_ref_029_w2aab3b7d274b1b6b1ab2b1c29Aa
2023033113374467044_j_anly-2019-0049_ref_003_w2aab3b7d274b1b6b1ab2b1b3Aa
2023033113374467044_j_anly-2019-0049_ref_033_w2aab3b7d274b1b6b1ab2b1c33Aa
2023033113374467044_j_anly-2019-0049_ref_034_w2aab3b7d274b1b6b1ab2b1c34Aa
2023033113374467044_j_anly-2019-0049_ref_039_w2aab3b7d274b1b6b1ab2b1c39Aa
2023033113374467044_j_anly-2019-0049_ref_007_w2aab3b7d274b1b6b1ab2b1b7Aa
2023033113374467044_j_anly-2019-0049_ref_023_w2aab3b7d274b1b6b1ab2b1c23Aa
2023033113374467044_j_anly-2019-0049_ref_028_w2aab3b7d274b1b6b1ab2b1c28Aa
2023033113374467044_j_anly-2019-0049_ref_032_w2aab3b7d274b1b6b1ab2b1c32Aa
2023033113374467044_j_anly-2019-0049_ref_037_w2aab3b7d274b1b6b1ab2b1c37Aa
2023033113374467044_j_anly-2019-0049_ref_004_w2aab3b7d274b1b6b1ab2b1b4Aa
2023033113374467044_j_anly-2019-0049_ref_038_w2aab3b7d274b1b6b1ab2b1c38Aa
2023033113374467044_j_anly-2019-0049_ref_014_w2aab3b7d274b1b6b1ab2b1c14Aa
2023033113374467044_j_anly-2019-0049_ref_019_w2aab3b7d274b1b6b1ab2b1c19Aa
2023033113374467044_j_anly-2019-0049_ref_008_w2aab3b7d274b1b6b1ab2b1b8Aa
2023033113374467044_j_anly-2019-0049_ref_031_w2aab3b7d274b1b6b1ab2b1c31Aa
2023033113374467044_j_anly-2019-0049_ref_005_w2aab3b7d274b1b6b1ab2b1b5Aa
2023033113374467044_j_anly-2019-0049_ref_036_w2aab3b7d274b1b6b1ab2b1c36Aa
2023033113374467044_j_anly-2019-0049_ref_040_w2aab3b7d274b1b6b1ab2b1c40Aa
2023033113374467044_j_anly-2019-0049_ref_012_w2aab3b7d274b1b6b1ab2b1c12Aa
2023033113374467044_j_anly-2019-0049_ref_017_w2aab3b7d274b1b6b1ab2b1c17Aa
2023033113374467044_j_anly-2019-0049_ref_009_w2aab3b7d274b1b6b1ab2b1b9Aa
2023033113374467044_j_anly-2019-0049_ref_013_w2aab3b7d274b1b6b1ab2b1c13Aa
2023033113374467044_j_anly-2019-0049_ref_018_w2aab3b7d274b1b6b1ab2b1c18Aa
2023033113374467044_j_anly-2019-0049_ref_002_w2aab3b7d274b1b6b1ab2b1b2Aa
2023033113374467044_j_anly-2019-0049_ref_022_w2aab3b7d274b1b6b1ab2b1c22Aa
2023033113374467044_j_anly-2019-0049_ref_027_w2aab3b7d274b1b6b1ab2b1c27Aa
References_xml – volume: 386
  start-page: 428
  issue: 1
  year: 2012
  end-page: 444
  ident: j_anly-2019-0049_ref_008
  article-title: Global existence of weak solutions to a nonlocal Cahn–Hilliard–Navier–Stokes system
  publication-title: J. Math. Anal. Appl.
– volume: 1
  start-page: 225
  issue: 3
  year: 2016
  end-page: 260
  ident: j_anly-2019-0049_ref_011
  article-title: Distributed optimal control of a nonstandard nonlocal phase field system
  publication-title: AIMS Math.
– volume: 53
  start-page: 2696
  issue: 4
  year: 2015
  end-page: 2721
  ident: j_anly-2019-0049_ref_007
  article-title: Optimal boundary control of a viscous Cahn–Hilliard system with dynamic boundary condition and double obstacle potentials
  publication-title: SIAM J. Control Optim.
– volume: 4
  start-page: 236
  issue: 2
  year: 1972
  end-page: 237
  ident: j_anly-2019-0049_ref_016
  article-title: Optimal control of systems governed by partial differential equations
  publication-title: Bull. Lond. Math. Soc.
– volume: 25
  year: 2019
  ident: j_anly-2019-0049_ref_024
  article-title: Optimal control of time-discrete two-phase flow driven by a diffuse-interface model
  publication-title: ESAIM Control Optim. Calc. Var.
– volume: 22
  year: 2020
  ident: j_anly-2019-0049_ref_004
  article-title: Maximum principle and data assimilation problem for the optimal control problems governed by 2D nonlocal Cahn–Hilliard–Navier–Stokes equations
  publication-title: Journal of Mathematical Fluid Mechanics
– volume: 52
  start-page: 747
  issue: 1
  year: 2014
  end-page: 772
  ident: j_anly-2019-0049_ref_027
  article-title: Optimal control of a semidiscrete Cahn–Hilliard–Navier–Stokes system
  publication-title: SIAM J. Control Optim.
– volume: 45
  start-page: 790
  issue: 3
  year: 2006
  end-page: 828
  ident: j_anly-2019-0049_ref_030
  article-title: Feedback boundary stabilization of the two-dimensional Navier–Stokes equations
  publication-title: SIAM J. Control Optim.
– volume: 74
  start-page: 6348
  issue: 17
  year: 2011
  end-page: 6357
  ident: j_anly-2019-0049_ref_039
  article-title: Optimal control problem for viscous Cahn–Hilliard equation
  publication-title: Nonlinear Anal.
– volume: 13
  start-page: 406
  issue: 2
  year: 2002
  end-page: 431
  ident: j_anly-2019-0049_ref_006
  article-title: Second-order necessary and sufficient optimality conditions for optimization problems and applications to control theory
  publication-title: SIAM J. Optim.
– volume: 37
  start-page: A1846
  issue: 4
  year: 2015
  end-page: A1871
  ident: j_anly-2019-0049_ref_023
  article-title: Numerical approximation of phase field based shape and topology optimization for fluids
  publication-title: SIAM J. Sci. Comput.
– volume: 21
  start-page: 257
  issue: 2
  year: 2015
  end-page: 272
  ident: j_anly-2019-0049_ref_040
  article-title: Optimal control problem for Cahn–Hilliard equations with state constraint
  publication-title: J. Dyn. Control Syst.
– volume: 30
  start-page: 2518
  issue: 6
  year: 2017
  end-page: 2546
  ident: j_anly-2019-0049_ref_009
  article-title: Optimal distributed control of a diffuse interface model of tumor growth
  publication-title: Nonlinearity
– volume: 22
  start-page: 1135
  issue: 4
  year: 2015
  end-page: 1172
  ident: j_anly-2019-0049_ref_033
  article-title: Optimal control of a Cahn–Hilliard–Navier–Stokes model with state constraints
  publication-title: J. Convex Anal.
– volume: 26
  start-page: 729
  issue: 4
  year: 2006
  end-page: 734
  ident: j_anly-2019-0049_ref_038
  article-title: Second-order optimality conditions for optimal control problems governed by 3-dimensional Navier–Stokes equations
  publication-title: Acta Math. Sci. Ser. B (Engl. Ed.)
– volume: 81
  start-page: 899
  issue: 3
  year: 2020
  end-page: 931
  ident: j_anly-2019-0049_ref_020
  article-title: Optimal distributed control of two-dimensional nonlocal Cahn–Hilliard–Navier–Stokes systems with degenerate mobility and singular potential
  publication-title: Appl. Math. Optim.
– volume: 1
  start-page: 303
  year: 1990
  end-page: 325
  ident: j_anly-2019-0049_ref_001
  article-title: On some control problems in fluid mechanics
  publication-title: Theoret. Comput. Fluid Dynam.
– volume: 12
  start-page: 93
  issue: 1
  year: 2006
  end-page: 119
  ident: j_anly-2019-0049_ref_036
  article-title: Second-order sufficient optimality conditions for the optimal control of Navier–Stokes equations
  publication-title: ESAIM Control Optim. Calc. Var.
– volume: 20
  start-page: 175
  issue: 2
  year: 1999
  end-page: 212
  ident: j_anly-2019-0049_ref_005
  article-title: Mathematical study of multi-phase flow under shear through order parameter formulation
  publication-title: Asymptot. Anal.
– volume: 255
  start-page: 2587
  issue: 9
  year: 2013
  end-page: 2614
  ident: j_anly-2019-0049_ref_019
  article-title: Strong solutions for two-dimensional nonlocal Cahn–Hilliard–Navier–Stokes systems
  publication-title: J. Differential Equations
– volume: 54
  start-page: 221
  issue: 1
  year: 2016
  end-page: 250
  ident: j_anly-2019-0049_ref_021
  article-title: Optimal distributed control of a nonlocal Cahn–Hilliard/Navier–Stokes system in two dimensions
  publication-title: SIAM J. Control Optim.
– volume: 26
  start-page: 847
  issue: 4
  year: 2016
  end-page: 893
  ident: j_anly-2019-0049_ref_018
  article-title: On nonlocal Cahn–Hilliard–Navier–Stokes systems in two dimensions
  publication-title: J. Nonlinear Sci.
– volume: 55
  start-page: 1954
  issue: 3
  year: 2017
  end-page: 1989
  ident: j_anly-2019-0049_ref_026
  article-title: Optimal control of a semidiscrete Cahn–Hilliard–Navier–Stokes system with nonmatched fluid densities
  publication-title: SIAM J. Control Optim.
– volume: 15
  start-page: 2075
  issue: 6
  year: 2016
  end-page: 2101
  ident: j_anly-2019-0049_ref_034
  article-title: Robust control of a Cahn–Hilliard–Navier–Stokes model
  publication-title: Commun. Pure Appl. Anal.
– ident: j_anly-2019-0049_ref_015
  article-title: Necessary conditions for distributed optimal control of linearized compressible Navier–Stokes equations
  publication-title: Miscellaneous
– volume: 319
  start-page: 228
  issue: 1
  year: 2006
  end-page: 247
  ident: j_anly-2019-0049_ref_037
  article-title: Sufficient second-order optimality conditions for convex control constraints
  publication-title: J. Math. Anal. Appl.
– volume: 80
  start-page: 119
  issue: 1
  year: 2012
  end-page: 149
  ident: j_anly-2019-0049_ref_010
  article-title: Analysis and optimal boundary control of a nonstandard system of phase field equations
  publication-title: Milan J. Math.
– volume: 6
  start-page: 35
  issue: 1
  year: 2017
  end-page: 58
  ident: j_anly-2019-0049_ref_012
  article-title: Distributed optimal control of a nonstandard nonlocal phase field system with double obstacle potential
  publication-title: Evol. Equ. Control Theory
– ident: 2023033113374467044_j_anly-2019-0049_ref_009_w2aab3b7d274b1b6b1ab2b1b9Aa
  doi: 10.1088/1361-6544/aa6e5f
– ident: 2023033113374467044_j_anly-2019-0049_ref_032_w2aab3b7d274b1b6b1ab2b1c32Aa
  doi: 10.1137/1.9781611971415
– ident: 2023033113374467044_j_anly-2019-0049_ref_017_w2aab3b7d274b1b6b1ab2b1c17Aa
– ident: 2023033113374467044_j_anly-2019-0049_ref_027_w2aab3b7d274b1b6b1ab2b1c27Aa
  doi: 10.1137/120865628
– ident: 2023033113374467044_j_anly-2019-0049_ref_031_w2aab3b7d274b1b6b1ab2b1c31Aa
– ident: 2023033113374467044_j_anly-2019-0049_ref_011_w2aab3b7d274b1b6b1ab2b1c11Aa
  doi: 10.3934/Math.2016.3.225
– ident: 2023033113374467044_j_anly-2019-0049_ref_029_w2aab3b7d274b1b6b1ab2b1c29Aa
– ident: 2023033113374467044_j_anly-2019-0049_ref_038_w2aab3b7d274b1b6b1ab2b1c38Aa
  doi: 10.1016/S0252-9602(06)60099-4
– ident: 2023033113374467044_j_anly-2019-0049_ref_012_w2aab3b7d274b1b6b1ab2b1c12Aa
  doi: 10.3934/eect.2017003
– ident: 2023033113374467044_j_anly-2019-0049_ref_013_w2aab3b7d274b1b6b1ab2b1c13Aa
  doi: 10.1007/978-3-319-64489-9_7
– ident: 2023033113374467044_j_anly-2019-0049_ref_004_w2aab3b7d274b1b6b1ab2b1b4Aa
  doi: 10.1007/s00021-020-00493-8
– ident: 2023033113374467044_j_anly-2019-0049_ref_010_w2aab3b7d274b1b6b1ab2b1c10Aa
  doi: 10.1007/s00032-012-0181-z
– ident: 2023033113374467044_j_anly-2019-0049_ref_024_w2aab3b7d274b1b6b1ab2b1c24Aa
  doi: 10.1051/cocv/2018006
– ident: 2023033113374467044_j_anly-2019-0049_ref_014_w2aab3b7d274b1b6b1ab2b1c14Aa
  doi: 10.1007/978-1-4612-0895-2
– ident: 2023033113374467044_j_anly-2019-0049_ref_035_w2aab3b7d274b1b6b1ab2b1c35Aa
– ident: 2023033113374467044_j_anly-2019-0049_ref_002_w2aab3b7d274b1b6b1ab2b1b2Aa
  doi: 10.1090/chel/369
– ident: 2023033113374467044_j_anly-2019-0049_ref_022_w2aab3b7d274b1b6b1ab2b1c22Aa
  doi: 10.1090/mmono/187
– ident: 2023033113374467044_j_anly-2019-0049_ref_006_w2aab3b7d274b1b6b1ab2b1b6Aa
  doi: 10.1137/S1052623400367698
– ident: 2023033113374467044_j_anly-2019-0049_ref_018_w2aab3b7d274b1b6b1ab2b1c18Aa
  doi: 10.1007/s00332-016-9292-y
– ident: 2023033113374467044_j_anly-2019-0049_ref_008_w2aab3b7d274b1b6b1ab2b1b8Aa
  doi: 10.1016/j.jmaa.2011.08.008
– ident: 2023033113374467044_j_anly-2019-0049_ref_026_w2aab3b7d274b1b6b1ab2b1c26Aa
  doi: 10.1137/15M1025128
– ident: 2023033113374467044_j_anly-2019-0049_ref_028_w2aab3b7d274b1b6b1ab2b1c28Aa
  doi: 10.1515/9783110430417-003
– ident: 2023033113374467044_j_anly-2019-0049_ref_037_w2aab3b7d274b1b6b1ab2b1c37Aa
  doi: 10.1016/j.jmaa.2005.12.048
– ident: 2023033113374467044_j_anly-2019-0049_ref_015_w2aab3b7d274b1b6b1ab2b1c15Aa
– ident: 2023033113374467044_j_anly-2019-0049_ref_039_w2aab3b7d274b1b6b1ab2b1c39Aa
  doi: 10.1016/j.na.2011.06.015
– ident: 2023033113374467044_j_anly-2019-0049_ref_007_w2aab3b7d274b1b6b1ab2b1b7Aa
  doi: 10.1137/140984749
– ident: 2023033113374467044_j_anly-2019-0049_ref_005_w2aab3b7d274b1b6b1ab2b1b5Aa
– ident: 2023033113374467044_j_anly-2019-0049_ref_001_w2aab3b7d274b1b6b1ab2b1b1Aa
  doi: 10.1007/BF00271794
– ident: 2023033113374467044_j_anly-2019-0049_ref_025_w2aab3b7d274b1b6b1ab2b1c25Aa
  doi: 10.1137/1.9780898718720
– ident: 2023033113374467044_j_anly-2019-0049_ref_040_w2aab3b7d274b1b6b1ab2b1c40Aa
  doi: 10.1007/s10883-014-9259-y
– ident: 2023033113374467044_j_anly-2019-0049_ref_003_w2aab3b7d274b1b6b1ab2b1b3Aa
– ident: 2023033113374467044_j_anly-2019-0049_ref_033_w2aab3b7d274b1b6b1ab2b1c33Aa
– ident: 2023033113374467044_j_anly-2019-0049_ref_016_w2aab3b7d274b1b6b1ab2b1c16Aa
  doi: 10.1112/blms/4.2.236
– ident: 2023033113374467044_j_anly-2019-0049_ref_023_w2aab3b7d274b1b6b1ab2b1c23Aa
  doi: 10.1137/140969269
– ident: 2023033113374467044_j_anly-2019-0049_ref_036_w2aab3b7d274b1b6b1ab2b1c36Aa
  doi: 10.1051/cocv:2005029
– ident: 2023033113374467044_j_anly-2019-0049_ref_020_w2aab3b7d274b1b6b1ab2b1c20Aa
  doi: 10.1007/s00245-018-9524-7
– ident: 2023033113374467044_j_anly-2019-0049_ref_034_w2aab3b7d274b1b6b1ab2b1c34Aa
  doi: 10.3934/cpaa.2016028
– ident: 2023033113374467044_j_anly-2019-0049_ref_021_w2aab3b7d274b1b6b1ab2b1c21Aa
  doi: 10.1137/140994800
– ident: 2023033113374467044_j_anly-2019-0049_ref_030_w2aab3b7d274b1b6b1ab2b1c30Aa
  doi: 10.1137/050628726
– ident: 2023033113374467044_j_anly-2019-0049_ref_019_w2aab3b7d274b1b6b1ab2b1c19Aa
  doi: 10.1016/j.jde.2013.07.016
SSID ssj0046902
Score 2.1632228
Snippet In this paper, we formulate a distributed optimal control problem related to the evolution of two isothermal, incompressible, immiscible fluids in a...
SourceID crossref
walterdegruyter
SourceType Enrichment Source
Index Database
Publisher
StartPage 127
SubjectTerms 35Q35
49J20
76D03
necessary and sufficient optimality conditions
nonlocal Cahn–Hilliard–Navier–Stokes systems
Optimal control
Pontryagin maximum principle
Title Pontryagin maximum principle and second order optimality conditions for optimal control problems governed by 2D nonlocal Cahn–Hilliard–Navier–Stokes equations
URI https://www.degruyter.com/doi/10.1515/anly-2019-0049
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtNAFB2FdMOmvEV5aRZILCwHe_yKl21TiJBaITWF7qyxfdNETZwSOyphxT_wC_wP_8CXcOfhsVNaqbCxnLFn7OSe3NfcOUPI64ylMGaQ214Ome1HTmbHaejZOeTgBGMvAi7ykIdH4fDE_3AanHY6v1pVS6sq7WXfrl1X8j9SxTaUq1gl-w-SNYNiA56jfPGIEsbjrWT8UdSZr8U-Q9acf53OV3Prok6ey1mBUoS7uSX5Na0Faoe5crtFq6rVkmWG-oqpW9e7zJTWmdyJVzmpbGAVi0LaPmufT4q6TMIbypTNMjcNR1wYW_PxuFqcQ2nBl1UrO2j4mzUnCjq6nzFoT7nUgyY7sTctL9WSsxEvpsaEDCThdqVKEY4nABVv6hsXE5XUPcQeM2vUayc2WFNWZ3KdkY_oUYScPZBtqF9DG2Mcr63AFd-TBqrX0sYui1qG3VUMt3_ZjEDSa_BitkZwiSVdjiJR3STnvmI0TSmjCKJwhET0T0T_RPS_Q7YYxi2sS7Z23-8dfKqdA5GMkBNb9XfTPKI4wtvNN9jwk7YvZe1EDmfL1bqq5-qlCzS6T7Z17EJ3FRAfkA4UD8k9HcdQbSXKR-Rng0uqcUkNLinikipcUolL2uCSNrikiMv6CtW4pDUuaY1Lmq4pG9Aal1Tg8vf3HzUi8VRhEU8UCqlB4WNy8u5gtD-09W4gdsacCF0p18nCcTaO-7moSxCmCiJfLLTO8pzHMXjgMRey1HMgDvvQzxyIIPdjN-VukHveE9LF14GnhEZjDx19HoETMp-76BVnGLeP45RFAcT9_g6x698-yTRVvtixZZZcL-0d8sbcf6FIYm68M7giykTrk_KGHj5aXRY9u_UTnpO7zZ_pBelWyxW8RL-5Sl9pLP4Bo0DMnA
linkProvider Walter de Gruyter
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZge4BLy68ovz4gcUo3sZM4OZbSskC7QqJFvUWOPWlRN9mySQTLiXfgFXgynoSZxFmVol7gFiV24mjsmW_G428Ye25EDoUA60kLxguVb7w0j6VnwYIfFVKBpjjkwTSeHIVvj6PjC2dhKK3SwsmiXTY9Q-rYzk1LgbIV1wBa4LGuZksUMB3AQYg7Pm3K2XW2loTor4zY2vbrl7sfB31M_l-3l4DYGwcTKkfd-Pdr_jBN61-67erVWC5Ynb0NZobx9skmZ1ttk2-Zb5eoHP_vh26xdQdK-XY_i26za1DdYRsOoHK3_Ou77Od7SmxfUmEjXuqvn8q25OdDtJ7ryvKa_GvLO0JPPkd1VHY4n9PdPjmMI0oennCXKM9dWZuan3Slf_Gj-ZKLV7yaV52x5Tv6tPr1_cekiw4tLF5ONVl0vPjQzM-g5vC5Jy2v77Gjvd3DnYnnyjx4RvgKbWTgm7gwRZpY2nAmHQQqpBO0xlqdpiBBigBMLn1I4wQS44MCG6ZBroPISnmfjXA48IBxVUhEcFqBH4tQBwh3DDpkRZoLFUGaJJvMGyScGceBTqU4Zhn5QiiHjOSQkRwyksMme7Fqf96zf1zZMro0YTKnDOoreoSoToV6-I_9nrEbk8OD_Wz_zfTdI3ZTUBSgS0t8zEbNooUnCJWa_KlbC78B_lAZAw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZgKyEuLb-iLT9zQOKUbmIncXIsbZflb1UJirhFjj0pVbvZ7SYRbE99B16BJ-NJGCfOCop6gVuU2ImjsWe-GY-_Yey55jkWHI0nDGovlL720jwWnkGDflQIicrGId9P4vFR-OZz1GcTVi6t0uDxolnWHUPq0Mx0YwNlK64BssBDVZ4tScD2AA5B3OHcFDfZWhKSLzNga7uvXh586tWxdf_arQSC3jSWUDrmxr_f8odlWv_a7lavhvKb0RltsLwfbpdrcrrT1PmOvrjC5Phf_3OHrTtICrvdHLrLbmB5j204eApu8Vf32Y9Dm9a-tGWNYKq-nUybKcz7WD2o0kBlvWsDLZ0nzEgZTVuUD_ZulxoGhJH7J-DS5MEVtanguC38Sx_Nl8D3oZyVramFPfWl_Hn5fdzGhhaGLifK2nO6-FDPTrECPO8oy6sH7Gh08HFv7LkiD57mviQLGfg6LnSRJsZuN1sNhDK052e1MSpNUaDgAepc-JjGCSbaR4kmTINcBZER4iEb0HDwEQNZCMJvSqIf81AFBHY0uWNFmnMZYZokm8zrBZxpx4BuC3GcZdYTIjFkVgyZFUNmxbDJXqzazzvuj2tbRlfmS-ZUQXVNj5CUKZdb_9jvGbt1uD_K3r2evN1mt7kNAbQ5iY_ZoF40-IRwUp0_dSvhF7GNF6o
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pontryagin+maximum+principle+and+second+order+optimality+conditions+for+optimal+control+problems+governed+by+2D+nonlocal+Cahn%E2%80%93Hilliard%E2%80%93Navier%E2%80%93Stokes+equations&rft.jtitle=Analysis+%28Wiesbaden%29&rft.au=Biswas%2C+Tania&rft.au=Dharmatti%2C+Sheetal&rft.au=Mohan%2C+Manil+T.&rft.date=2020-08-01&rft.issn=0174-4747&rft.eissn=2196-6753&rft.volume=40&rft.issue=3&rft.spage=127&rft.epage=150&rft_id=info:doi/10.1515%2Fanly-2019-0049&rft.externalDBID=n%2Fa&rft.externalDocID=10_1515_anly_2019_0049
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0174-4747&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0174-4747&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0174-4747&client=summon