Crown Ether–Peptide Rotaxanes

We report on the metal‐free active template synthesis of crown ether–peptide rotaxanes. A 24‐crown‐8 ring is sufficiently small that the side chains of canonical branched amino acids act as barriers that trap the macrocycle on the particular glycine residue used to assemble the rotaxane. The resulti...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition p. e202513115
Main Authors Wang, Peng‐Lai, Chen, Peng, Yang, Raorao, Tetlow, Daniel J., Zhang, Zhi‐Hui, Han, Jing, Fielden, Stephen D. P., Howlader, Prodip, Zhang, Liang, Leigh, David A.
Format Journal Article
LanguageEnglish
Published Germany 06.08.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We report on the metal‐free active template synthesis of crown ether–peptide rotaxanes. A 24‐crown‐8 ring is sufficiently small that the side chains of canonical branched amino acids act as barriers that trap the macrocycle on the particular glycine residue used to assemble the rotaxane. The resulting crown ether–tripeptide rotaxane can subsequently be extended from either or both N‐ and C‐termini of the axle. Three distinct positional isomers of a heptapeptide [2]rotaxane containing three glycine units were selectively synthesized, and in each case the unique position of the crown ether on the peptide axle was confirmed by 1 H nuclear magnetic resonance spectroscopy and tandem mass spectrometry. The three positional isomers adopt different conformations in the region adjacent to the trapped macrocycle, and have different chemical stabilities and secondary interactions in comparison to the unthreaded peptide axle. The crown ether does not inhibit enzymatic proteolysis over the entire length of the heptapeptide–axle rotaxanes, but rather provides significant protection from degradation for the three to four residues local to the encapsulated region. The strategy opens a pathway to new analogs of naturally occurring mechanically interlocked peptides.
AbstractList We report on the metal-free active template synthesis of crown ether-peptide rotaxanes. A 24-crown-8 ring is sufficiently small that the side chains of canonical branched amino acids act as barriers that trap the macrocycle on the particular glycine residue used to assemble the rotaxane. The resulting crown ether-tripeptide rotaxane can subsequently be extended from either or both N- and C-termini of the axle. Three distinct positional isomers of a heptapeptide [2]rotaxane containing three glycine units were selectively synthesized, and in each case the unique position of the crown ether on the peptide axle was confirmed by H nuclear magnetic resonance spectroscopy and tandem mass spectrometry. The three positional isomers adopt different conformations in the region adjacent to the trapped macrocycle, and have different chemical stabilities and secondary interactions in comparison to the unthreaded peptide axle. The crown ether does not inhibit enzymatic proteolysis over the entire length of the heptapeptide-axle rotaxanes, but rather provides significant protection from degradation for the three to four residues local to the encapsulated region. The strategy opens a pathway to new analogs of naturally occurring mechanically interlocked peptides.
We report on the metal‐free active template synthesis of crown ether–peptide rotaxanes. A 24‐crown‐8 ring is sufficiently small that the side chains of canonical branched amino acids act as barriers that trap the macrocycle on the particular glycine residue used to assemble the rotaxane. The resulting crown ether–tripeptide rotaxane can subsequently be extended from either or both N‐ and C‐termini of the axle. Three distinct positional isomers of a heptapeptide [2]rotaxane containing three glycine units were selectively synthesized, and in each case the unique position of the crown ether on the peptide axle was confirmed by 1 H nuclear magnetic resonance spectroscopy and tandem mass spectrometry. The three positional isomers adopt different conformations in the region adjacent to the trapped macrocycle, and have different chemical stabilities and secondary interactions in comparison to the unthreaded peptide axle. The crown ether does not inhibit enzymatic proteolysis over the entire length of the heptapeptide–axle rotaxanes, but rather provides significant protection from degradation for the three to four residues local to the encapsulated region. The strategy opens a pathway to new analogs of naturally occurring mechanically interlocked peptides.
We report on the metal-free active template synthesis of crown ether-peptide rotaxanes. A 24-crown-8 ring is sufficiently small that the side chains of canonical branched amino acids act as barriers that trap the macrocycle on the particular glycine residue used to assemble the rotaxane. The resulting crown ether-tripeptide rotaxane can subsequently be extended from either or both N- and C-termini of the axle. Three distinct positional isomers of a heptapeptide [2]rotaxane containing three glycine units were selectively synthesized, and in each case the unique position of the crown ether on the peptide axle was confirmed by 1H nuclear magnetic resonance spectroscopy and tandem mass spectrometry. The three positional isomers adopt different conformations in the region adjacent to the trapped macrocycle, and have different chemical stabilities and secondary interactions in comparison to the unthreaded peptide axle. The crown ether does not inhibit enzymatic proteolysis over the entire length of the heptapeptide-axle rotaxanes, but rather provides significant protection from degradation for the three to four residues local to the encapsulated region. The strategy opens a pathway to new analogs of naturally occurring mechanically interlocked peptides.We report on the metal-free active template synthesis of crown ether-peptide rotaxanes. A 24-crown-8 ring is sufficiently small that the side chains of canonical branched amino acids act as barriers that trap the macrocycle on the particular glycine residue used to assemble the rotaxane. The resulting crown ether-tripeptide rotaxane can subsequently be extended from either or both N- and C-termini of the axle. Three distinct positional isomers of a heptapeptide [2]rotaxane containing three glycine units were selectively synthesized, and in each case the unique position of the crown ether on the peptide axle was confirmed by 1H nuclear magnetic resonance spectroscopy and tandem mass spectrometry. The three positional isomers adopt different conformations in the region adjacent to the trapped macrocycle, and have different chemical stabilities and secondary interactions in comparison to the unthreaded peptide axle. The crown ether does not inhibit enzymatic proteolysis over the entire length of the heptapeptide-axle rotaxanes, but rather provides significant protection from degradation for the three to four residues local to the encapsulated region. The strategy opens a pathway to new analogs of naturally occurring mechanically interlocked peptides.
Author Yang, Raorao
Tetlow, Daniel J.
Leigh, David A.
Zhang, Liang
Howlader, Prodip
Zhang, Zhi‐Hui
Chen, Peng
Wang, Peng‐Lai
Han, Jing
Fielden, Stephen D. P.
Author_xml – sequence: 1
  givenname: Peng‐Lai
  orcidid: 0000-0002-2295-0096
  surname: Wang
  fullname: Wang, Peng‐Lai
  organization: School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 P.R. China, Department of Chemistry University of Manchester Oxford Road Manchester M13 9PL UK
– sequence: 2
  givenname: Peng
  surname: Chen
  fullname: Chen, Peng
  organization: School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 P.R. China
– sequence: 3
  givenname: Raorao
  surname: Yang
  fullname: Yang, Raorao
  organization: School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 P.R. China
– sequence: 4
  givenname: Daniel J.
  orcidid: 0000-0001-6323-3483
  surname: Tetlow
  fullname: Tetlow, Daniel J.
  organization: Department of Chemistry University of Manchester Oxford Road Manchester M13 9PL UK
– sequence: 5
  givenname: Zhi‐Hui
  orcidid: 0000-0001-8927-1154
  surname: Zhang
  fullname: Zhang, Zhi‐Hui
  organization: School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 P.R. China
– sequence: 6
  givenname: Jing
  surname: Han
  fullname: Han, Jing
  organization: School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 P.R. China
– sequence: 7
  givenname: Stephen D. P.
  orcidid: 0000-0001-7883-8135
  surname: Fielden
  fullname: Fielden, Stephen D. P.
  organization: Department of Chemistry University of Manchester Oxford Road Manchester M13 9PL UK
– sequence: 8
  givenname: Prodip
  orcidid: 0000-0001-6762-529X
  surname: Howlader
  fullname: Howlader, Prodip
  organization: Department of Chemistry University of Manchester Oxford Road Manchester M13 9PL UK
– sequence: 9
  givenname: Liang
  orcidid: 0009-0009-6035-6774
  surname: Zhang
  fullname: Zhang, Liang
  organization: School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 P.R. China
– sequence: 10
  givenname: David A.
  orcidid: 0000-0002-1202-4507
  surname: Leigh
  fullname: Leigh, David A.
  organization: School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 P.R. China, Department of Chemistry University of Manchester Oxford Road Manchester M13 9PL UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40767160$$D View this record in MEDLINE/PubMed
BookMark eNo90D1PwzAQBmALFdEPWBmhI0vKnS-20xFV5UOqBEIwW459FUFtUuJU0I3_wD_kl5CqpdPd8Oj03tsXnbIqWYhzhBECyGtXFjySIBUSojoSPVQSEzKGOu2eEiUmU9gV_RjfW59loE9ENwWjDWroictJXX2Ww2nzxvXv988Tr5oi8PC5atyXKzmeiuO5W0Q-28-BeL2dvkzuk9nj3cPkZpZ4CUYluQ4QFDmvxs6FXDs0Kg9Owdi1eSTrkKfAmUf0Pt0iQpl6nQJpRZ4DDcTV7u6qrj7WHBu7LKLnxaINUa2jJUkGQOkxtfRiT9f5koNd1cXS1Rv7_1QLRjvg6yrGmucHgmC3rdlta_bQGv0BDZ5eFw
Cites_doi 10.1021/acs.biomac.4c00257
10.1002/anie.202425134
10.1016/j.chempr.2023.01.009
10.2174/1389203003381315
10.1021/jacs.3c01202
10.1126/science.1109999
10.1002/anie.200353606
10.1126/science.aao1377
10.1016/j.peptides.2024.171317
10.1021/acs.jnatprod.2c00065
10.1038/s41557-022-01106-9
10.1039/D0OB01190H
10.1038/s41557-021-00770-7
10.1021/jo060389u
10.1038/d41586-025-00901-x
10.1021/ja056903f
10.1021/jacs.2c06807
10.1002/mas.1280140104
10.1021/ja036756q
10.1016/j.tig.2024.08.002
10.3390/molecules180911553
10.1038/s41570-017-0061
10.1039/D1SC02695J
10.1038/s41586-021-03575-3
10.1039/D0CS01386B
10.1351/pac200880092041
10.1002/anie.199707281
10.1039/D0SC05369D
10.1039/D4OB01028K
10.1111/jpy.13412
10.1038/s41557-022-00973-6
10.1021/ja0367703
10.1002/anie.202010995
10.1021/ja036677e
10.1021/acs.accounts.5b00156
10.1039/D4CS00430B
10.1002/anie.201600480
10.1038/s41467-020-14576-7
10.1021/ja1006838
10.1002/syst.202300048
10.1021/jacs.0c03447
10.1039/C8OB01304G
10.1515/bmc-2011-0061
10.1039/b804243h
10.3389/fbioe.2020.571165
10.1038/s41586-022-05305-9
10.1021/jacs.8b03394
10.1021/ja302345n
10.1021/jacs.7b05640
10.1039/C8CC10301A
10.1371/journal.pone.0234901
10.1002/anie.201901984
10.1002/anie.200903215
10.1039/c2np20070h
10.1039/D0SC05897A
10.1038/s41586-025-08723-7
10.1038/s41467-019-13594-4
10.1016/j.chempr.2019.12.009
10.1042/bj1160019
10.1016/j.chempr.2023.03.030
10.1021/ja302347q
10.1007/s11274-025-04374-y
ContentType Journal Article
Copyright 2025 The Author(s). Angewandte Chemie International Edition published by Wiley‐VCH GmbH.
Copyright_xml – notice: 2025 The Author(s). Angewandte Chemie International Edition published by Wiley‐VCH GmbH.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1002/anie.202513115
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
ExternalDocumentID 40767160
10_1002_anie_202513115
Genre Journal Article
GrantInformation_xml – fundername: China Scholarship Council
  grantid: 202108310032
– fundername: Engineering and Physical Sciences Research Council
  grantid: EP/P027067/1
– fundername: European Research Council
  grantid: 786630
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAYXX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEIGN
AEIMD
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGYGG
AHBTC
AHMBA
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CITATION
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
NPM
7X8
ID FETCH-LOGICAL-c2075-b6d0d53ac59aadb6a175bda509a5212e6db40e8c11cc4c59a3124c6403653ced3
ISSN 1433-7851
1521-3773
IngestDate Wed Aug 06 19:18:51 EDT 2025
Thu Aug 07 06:20:54 EDT 2025
Thu Aug 14 00:04:34 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Lasso peptides
Mechanically interlocked molecules
Active template synthesis
Rotaxanes
Language English
License 2025 The Author(s). Angewandte Chemie International Edition published by Wiley‐VCH GmbH.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2075-b6d0d53ac59aadb6a175bda509a5212e6db40e8c11cc4c59a3124c6403653ced3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6762-529X
0000-0002-1202-4507
0000-0001-6323-3483
0000-0001-8927-1154
0000-0001-7883-8135
0009-0009-6035-6774
0000-0002-2295-0096
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/anie.202513115
PMID 40767160
PQID 3237005693
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3237005693
pubmed_primary_40767160
crossref_primary_10_1002_anie_202513115
PublicationCentury 2000
PublicationDate 2025-Aug-06
PublicationDateYYYYMMDD 2025-08-06
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-Aug-06
  day: 06
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2025
References e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
References_xml – ident: e_1_2_7_27_1
  doi: 10.1021/acs.biomac.4c00257
– ident: e_1_2_7_13_1
  doi: 10.1002/anie.202425134
– ident: e_1_2_7_36_1
  doi: 10.1016/j.chempr.2023.01.009
– ident: e_1_2_7_61_1
  doi: 10.2174/1389203003381315
– ident: e_1_2_7_44_1
  doi: 10.1021/jacs.3c01202
– ident: e_1_2_7_46_1
  doi: 10.1126/science.1109999
– ident: e_1_2_7_56_1
  doi: 10.1002/anie.200353606
– ident: e_1_2_7_58_1
  doi: 10.1126/science.aao1377
– ident: e_1_2_7_8_1
  doi: 10.1016/j.peptides.2024.171317
– ident: e_1_2_7_12_1
  doi: 10.1021/acs.jnatprod.2c00065
– ident: e_1_2_7_37_1
  doi: 10.1038/s41557-022-01106-9
– ident: e_1_2_7_24_1
  doi: 10.1039/D0OB01190H
– ident: e_1_2_7_25_1
  doi: 10.1038/s41557-021-00770-7
– ident: e_1_2_7_55_1
  doi: 10.1021/jo060389u
– ident: e_1_2_7_11_1
  doi: 10.1038/d41586-025-00901-x
– ident: e_1_2_7_30_1
  doi: 10.1021/ja056903f
– ident: e_1_2_7_43_1
  doi: 10.1021/jacs.2c06807
– ident: e_1_2_7_64_1
  doi: 10.1002/mas.1280140104
– ident: e_1_2_7_4_1
  doi: 10.1021/ja036756q
– ident: e_1_2_7_1_1
  doi: 10.1016/j.tig.2024.08.002
– ident: e_1_2_7_22_1
  doi: 10.3390/molecules180911553
– ident: e_1_2_7_32_1
  doi: 10.1038/s41570-017-0061
– ident: e_1_2_7_15_1
  doi: 10.1039/D1SC02695J
– ident: e_1_2_7_42_1
  doi: 10.1038/s41586-021-03575-3
– ident: e_1_2_7_17_1
  doi: 10.1039/D0CS01386B
– ident: e_1_2_7_60_1
  doi: 10.1351/pac200880092041
– ident: e_1_2_7_19_1
  doi: 10.1002/anie.199707281
– ident: e_1_2_7_26_1
  doi: 10.1039/D0SC05369D
– ident: e_1_2_7_38_1
  doi: 10.1039/D4OB01028K
– ident: e_1_2_7_54_1
– ident: e_1_2_7_14_1
  doi: 10.1111/jpy.13412
– ident: e_1_2_7_35_1
  doi: 10.1038/s41557-022-00973-6
– ident: e_1_2_7_3_1
  doi: 10.1021/ja0367703
– ident: e_1_2_7_52_1
  doi: 10.1002/anie.202010995
– ident: e_1_2_7_2_1
  doi: 10.1021/ja036677e
– ident: e_1_2_7_6_1
  doi: 10.1021/acs.accounts.5b00156
– ident: e_1_2_7_33_1
  doi: 10.1039/D4CS00430B
– ident: e_1_2_7_49_1
  doi: 10.1002/anie.201600480
– ident: e_1_2_7_40_1
  doi: 10.1038/s41467-020-14576-7
– ident: e_1_2_7_57_1
  doi: 10.1021/ja1006838
– ident: e_1_2_7_29_1
  doi: 10.1002/syst.202300048
– ident: e_1_2_7_41_1
  doi: 10.1021/jacs.0c03447
– ident: e_1_2_7_16_1
  doi: 10.1039/C8OB01304G
– ident: e_1_2_7_21_1
  doi: 10.1515/bmc-2011-0061
– ident: e_1_2_7_63_1
– ident: e_1_2_7_31_1
  doi: 10.1039/b804243h
– ident: e_1_2_7_7_1
  doi: 10.3389/fbioe.2020.571165
– ident: e_1_2_7_59_1
  doi: 10.1038/s41586-022-05305-9
– ident: e_1_2_7_39_1
  doi: 10.1021/jacs.8b03394
– ident: e_1_2_7_47_1
  doi: 10.1021/ja302345n
– ident: e_1_2_7_28_1
  doi: 10.1021/jacs.7b05640
– ident: e_1_2_7_23_1
  doi: 10.1039/C8CC10301A
– ident: e_1_2_7_18_1
  doi: 10.1371/journal.pone.0234901
– ident: e_1_2_7_34_1
  doi: 10.1002/anie.201901984
– ident: e_1_2_7_20_1
  doi: 10.1002/anie.200903215
– ident: e_1_2_7_5_1
  doi: 10.1039/c2np20070h
– ident: e_1_2_7_53_1
  doi: 10.1039/D0SC05897A
– ident: e_1_2_7_10_1
  doi: 10.1038/s41586-025-08723-7
– ident: e_1_2_7_50_1
  doi: 10.1038/s41467-019-13594-4
– ident: e_1_2_7_51_1
  doi: 10.1016/j.chempr.2019.12.009
– ident: e_1_2_7_62_1
  doi: 10.1042/bj1160019
– ident: e_1_2_7_45_1
  doi: 10.1016/j.chempr.2023.03.030
– ident: e_1_2_7_48_1
  doi: 10.1021/ja302347q
– ident: e_1_2_7_9_1
  doi: 10.1007/s11274-025-04374-y
SSID ssj0028806
Score 2.4843192
SecondaryResourceType online_first
Snippet We report on the metal‐free active template synthesis of crown ether–peptide rotaxanes. A 24‐crown‐8 ring is sufficiently small that the side chains of...
We report on the metal-free active template synthesis of crown ether-peptide rotaxanes. A 24-crown-8 ring is sufficiently small that the side chains of...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
StartPage e202513115
Title Crown Ether–Peptide Rotaxanes
URI https://www.ncbi.nlm.nih.gov/pubmed/40767160
https://www.proquest.com/docview/3237005693
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS-QwEA6ewt2-iN4Pb9WVPTi4h6VemzSp-yiLsoh3yKKcbyU_piJoK3sVxb_eSZpmd2WF817KkmZTMl-ZziTffCHku9RxEQMk0dAUIkotQ0wltIjw65cWwLMiSW3t8K_fYnyRnlzyy9l5ea66pFb7-mlpXcn_oIptiKutkn0DsmFQbMDfiC9eEWG8_hPGI5tDW8o6TKMzS08xMJhUtXyUpacGBpnkK3iQlrk_cAoB8GIl8Mhcz2_I__GLyGdQXkWn8nrGAWiclG0P7sL3nUh8maqwEAD1TbNr1NSw-90nv7xAuSO3eXFq7xJpgm4oY3NuDmxPJ9Sz1As3qq52-P2lHdGKd7cOE0wnBWZs8exrFDiC7a13ZI1iCuDS5UmQBqPod0QrwhnTn4sP65D37d8X441XkggXTJxvkHWfBfQPG0g3yQqUH8mHUXv43ifSc9D2F6DtB2g_k4vjo_PROPInWUSaYkwWKWFiw5nUfCilUUJi0KaMxGBN2tppEEalMRzoJNE6tZ0Yhl1apBhecKbBsC9ktaxK-Er60hRZZiydVrJUxFLiEIXmnCtQDCfcJT_a-eZ3jWBJ3khT09waKQ9G6pJvrTlynJ3dKMIpVPd_c0ZZZjVih6xLtho7hbFau26_emeHdJLwIu2S1Xp6Dz2M3Gq15yB8BtqoPlQ
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crown+Ether-Peptide+Rotaxanes&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Wang%2C+Peng-Lai&rft.au=Chen%2C+Peng&rft.au=Yang%2C+Raorao&rft.au=Tetlow%2C+Daniel+J&rft.date=2025-08-06&rft.eissn=1521-3773&rft.spage=e202513115&rft_id=info:doi/10.1002%2Fanie.202513115&rft_id=info%3Apmid%2F40767160&rft.externalDocID=40767160
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon