Crown Ether–Peptide Rotaxanes
We report on the metal‐free active template synthesis of crown ether–peptide rotaxanes. A 24‐crown‐8 ring is sufficiently small that the side chains of canonical branched amino acids act as barriers that trap the macrocycle on the particular glycine residue used to assemble the rotaxane. The resulti...
Saved in:
Published in | Angewandte Chemie International Edition p. e202513115 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
06.08.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We report on the metal‐free active template synthesis of crown ether–peptide rotaxanes. A 24‐crown‐8 ring is sufficiently small that the side chains of canonical branched amino acids act as barriers that trap the macrocycle on the particular glycine residue used to assemble the rotaxane. The resulting crown ether–tripeptide rotaxane can subsequently be extended from either or both N‐ and C‐termini of the axle. Three distinct positional isomers of a heptapeptide [2]rotaxane containing three glycine units were selectively synthesized, and in each case the unique position of the crown ether on the peptide axle was confirmed by 1 H nuclear magnetic resonance spectroscopy and tandem mass spectrometry. The three positional isomers adopt different conformations in the region adjacent to the trapped macrocycle, and have different chemical stabilities and secondary interactions in comparison to the unthreaded peptide axle. The crown ether does not inhibit enzymatic proteolysis over the entire length of the heptapeptide–axle rotaxanes, but rather provides significant protection from degradation for the three to four residues local to the encapsulated region. The strategy opens a pathway to new analogs of naturally occurring mechanically interlocked peptides. |
---|---|
AbstractList | We report on the metal-free active template synthesis of crown ether-peptide rotaxanes. A 24-crown-8 ring is sufficiently small that the side chains of canonical branched amino acids act as barriers that trap the macrocycle on the particular glycine residue used to assemble the rotaxane. The resulting crown ether-tripeptide rotaxane can subsequently be extended from either or both N- and C-termini of the axle. Three distinct positional isomers of a heptapeptide [2]rotaxane containing three glycine units were selectively synthesized, and in each case the unique position of the crown ether on the peptide axle was confirmed by
H nuclear magnetic resonance spectroscopy and tandem mass spectrometry. The three positional isomers adopt different conformations in the region adjacent to the trapped macrocycle, and have different chemical stabilities and secondary interactions in comparison to the unthreaded peptide axle. The crown ether does not inhibit enzymatic proteolysis over the entire length of the heptapeptide-axle rotaxanes, but rather provides significant protection from degradation for the three to four residues local to the encapsulated region. The strategy opens a pathway to new analogs of naturally occurring mechanically interlocked peptides. We report on the metal‐free active template synthesis of crown ether–peptide rotaxanes. A 24‐crown‐8 ring is sufficiently small that the side chains of canonical branched amino acids act as barriers that trap the macrocycle on the particular glycine residue used to assemble the rotaxane. The resulting crown ether–tripeptide rotaxane can subsequently be extended from either or both N‐ and C‐termini of the axle. Three distinct positional isomers of a heptapeptide [2]rotaxane containing three glycine units were selectively synthesized, and in each case the unique position of the crown ether on the peptide axle was confirmed by 1 H nuclear magnetic resonance spectroscopy and tandem mass spectrometry. The three positional isomers adopt different conformations in the region adjacent to the trapped macrocycle, and have different chemical stabilities and secondary interactions in comparison to the unthreaded peptide axle. The crown ether does not inhibit enzymatic proteolysis over the entire length of the heptapeptide–axle rotaxanes, but rather provides significant protection from degradation for the three to four residues local to the encapsulated region. The strategy opens a pathway to new analogs of naturally occurring mechanically interlocked peptides. We report on the metal-free active template synthesis of crown ether-peptide rotaxanes. A 24-crown-8 ring is sufficiently small that the side chains of canonical branched amino acids act as barriers that trap the macrocycle on the particular glycine residue used to assemble the rotaxane. The resulting crown ether-tripeptide rotaxane can subsequently be extended from either or both N- and C-termini of the axle. Three distinct positional isomers of a heptapeptide [2]rotaxane containing three glycine units were selectively synthesized, and in each case the unique position of the crown ether on the peptide axle was confirmed by 1H nuclear magnetic resonance spectroscopy and tandem mass spectrometry. The three positional isomers adopt different conformations in the region adjacent to the trapped macrocycle, and have different chemical stabilities and secondary interactions in comparison to the unthreaded peptide axle. The crown ether does not inhibit enzymatic proteolysis over the entire length of the heptapeptide-axle rotaxanes, but rather provides significant protection from degradation for the three to four residues local to the encapsulated region. The strategy opens a pathway to new analogs of naturally occurring mechanically interlocked peptides.We report on the metal-free active template synthesis of crown ether-peptide rotaxanes. A 24-crown-8 ring is sufficiently small that the side chains of canonical branched amino acids act as barriers that trap the macrocycle on the particular glycine residue used to assemble the rotaxane. The resulting crown ether-tripeptide rotaxane can subsequently be extended from either or both N- and C-termini of the axle. Three distinct positional isomers of a heptapeptide [2]rotaxane containing three glycine units were selectively synthesized, and in each case the unique position of the crown ether on the peptide axle was confirmed by 1H nuclear magnetic resonance spectroscopy and tandem mass spectrometry. The three positional isomers adopt different conformations in the region adjacent to the trapped macrocycle, and have different chemical stabilities and secondary interactions in comparison to the unthreaded peptide axle. The crown ether does not inhibit enzymatic proteolysis over the entire length of the heptapeptide-axle rotaxanes, but rather provides significant protection from degradation for the three to four residues local to the encapsulated region. The strategy opens a pathway to new analogs of naturally occurring mechanically interlocked peptides. |
Author | Yang, Raorao Tetlow, Daniel J. Leigh, David A. Zhang, Liang Howlader, Prodip Zhang, Zhi‐Hui Chen, Peng Wang, Peng‐Lai Han, Jing Fielden, Stephen D. P. |
Author_xml | – sequence: 1 givenname: Peng‐Lai orcidid: 0000-0002-2295-0096 surname: Wang fullname: Wang, Peng‐Lai organization: School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 P.R. China, Department of Chemistry University of Manchester Oxford Road Manchester M13 9PL UK – sequence: 2 givenname: Peng surname: Chen fullname: Chen, Peng organization: School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 P.R. China – sequence: 3 givenname: Raorao surname: Yang fullname: Yang, Raorao organization: School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 P.R. China – sequence: 4 givenname: Daniel J. orcidid: 0000-0001-6323-3483 surname: Tetlow fullname: Tetlow, Daniel J. organization: Department of Chemistry University of Manchester Oxford Road Manchester M13 9PL UK – sequence: 5 givenname: Zhi‐Hui orcidid: 0000-0001-8927-1154 surname: Zhang fullname: Zhang, Zhi‐Hui organization: School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 P.R. China – sequence: 6 givenname: Jing surname: Han fullname: Han, Jing organization: School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 P.R. China – sequence: 7 givenname: Stephen D. P. orcidid: 0000-0001-7883-8135 surname: Fielden fullname: Fielden, Stephen D. P. organization: Department of Chemistry University of Manchester Oxford Road Manchester M13 9PL UK – sequence: 8 givenname: Prodip orcidid: 0000-0001-6762-529X surname: Howlader fullname: Howlader, Prodip organization: Department of Chemistry University of Manchester Oxford Road Manchester M13 9PL UK – sequence: 9 givenname: Liang orcidid: 0009-0009-6035-6774 surname: Zhang fullname: Zhang, Liang organization: School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 P.R. China – sequence: 10 givenname: David A. orcidid: 0000-0002-1202-4507 surname: Leigh fullname: Leigh, David A. organization: School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 P.R. China, Department of Chemistry University of Manchester Oxford Road Manchester M13 9PL UK |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40767160$$D View this record in MEDLINE/PubMed |
BookMark | eNo90D1PwzAQBmALFdEPWBmhI0vKnS-20xFV5UOqBEIwW459FUFtUuJU0I3_wD_kl5CqpdPd8Oj03tsXnbIqWYhzhBECyGtXFjySIBUSojoSPVQSEzKGOu2eEiUmU9gV_RjfW59loE9ENwWjDWroictJXX2Ww2nzxvXv988Tr5oi8PC5atyXKzmeiuO5W0Q-28-BeL2dvkzuk9nj3cPkZpZ4CUYluQ4QFDmvxs6FXDs0Kg9Owdi1eSTrkKfAmUf0Pt0iQpl6nQJpRZ4DDcTV7u6qrj7WHBu7LKLnxaINUa2jJUkGQOkxtfRiT9f5koNd1cXS1Rv7_1QLRjvg6yrGmucHgmC3rdlta_bQGv0BDZ5eFw |
Cites_doi | 10.1021/acs.biomac.4c00257 10.1002/anie.202425134 10.1016/j.chempr.2023.01.009 10.2174/1389203003381315 10.1021/jacs.3c01202 10.1126/science.1109999 10.1002/anie.200353606 10.1126/science.aao1377 10.1016/j.peptides.2024.171317 10.1021/acs.jnatprod.2c00065 10.1038/s41557-022-01106-9 10.1039/D0OB01190H 10.1038/s41557-021-00770-7 10.1021/jo060389u 10.1038/d41586-025-00901-x 10.1021/ja056903f 10.1021/jacs.2c06807 10.1002/mas.1280140104 10.1021/ja036756q 10.1016/j.tig.2024.08.002 10.3390/molecules180911553 10.1038/s41570-017-0061 10.1039/D1SC02695J 10.1038/s41586-021-03575-3 10.1039/D0CS01386B 10.1351/pac200880092041 10.1002/anie.199707281 10.1039/D0SC05369D 10.1039/D4OB01028K 10.1111/jpy.13412 10.1038/s41557-022-00973-6 10.1021/ja0367703 10.1002/anie.202010995 10.1021/ja036677e 10.1021/acs.accounts.5b00156 10.1039/D4CS00430B 10.1002/anie.201600480 10.1038/s41467-020-14576-7 10.1021/ja1006838 10.1002/syst.202300048 10.1021/jacs.0c03447 10.1039/C8OB01304G 10.1515/bmc-2011-0061 10.1039/b804243h 10.3389/fbioe.2020.571165 10.1038/s41586-022-05305-9 10.1021/jacs.8b03394 10.1021/ja302345n 10.1021/jacs.7b05640 10.1039/C8CC10301A 10.1371/journal.pone.0234901 10.1002/anie.201901984 10.1002/anie.200903215 10.1039/c2np20070h 10.1039/D0SC05897A 10.1038/s41586-025-08723-7 10.1038/s41467-019-13594-4 10.1016/j.chempr.2019.12.009 10.1042/bj1160019 10.1016/j.chempr.2023.03.030 10.1021/ja302347q 10.1007/s11274-025-04374-y |
ContentType | Journal Article |
Copyright | 2025 The Author(s). Angewandte Chemie International Edition published by Wiley‐VCH GmbH. |
Copyright_xml | – notice: 2025 The Author(s). Angewandte Chemie International Edition published by Wiley‐VCH GmbH. |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1002/anie.202513115 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
ExternalDocumentID | 40767160 10_1002_anie_202513115 |
Genre | Journal Article |
GrantInformation_xml | – fundername: China Scholarship Council grantid: 202108310032 – fundername: Engineering and Physical Sciences Research Council grantid: EP/P027067/1 – fundername: European Research Council grantid: 786630 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAYXX AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ABLJU ABPPZ ABPVW ACAHQ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEIGN AEIMD AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGYGG AHBTC AHMBA AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CITATION CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT NPM 7X8 |
ID | FETCH-LOGICAL-c2075-b6d0d53ac59aadb6a175bda509a5212e6db40e8c11cc4c59a3124c6403653ced3 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Wed Aug 06 19:18:51 EDT 2025 Thu Aug 07 06:20:54 EDT 2025 Thu Aug 14 00:04:34 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Lasso peptides Mechanically interlocked molecules Active template synthesis Rotaxanes |
Language | English |
License | 2025 The Author(s). Angewandte Chemie International Edition published by Wiley‐VCH GmbH. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c2075-b6d0d53ac59aadb6a175bda509a5212e6db40e8c11cc4c59a3124c6403653ced3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-6762-529X 0000-0002-1202-4507 0000-0001-6323-3483 0000-0001-8927-1154 0000-0001-7883-8135 0009-0009-6035-6774 0000-0002-2295-0096 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/anie.202513115 |
PMID | 40767160 |
PQID | 3237005693 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_3237005693 pubmed_primary_40767160 crossref_primary_10_1002_anie_202513115 |
PublicationCentury | 2000 |
PublicationDate | 2025-Aug-06 |
PublicationDateYYYYMMDD | 2025-08-06 |
PublicationDate_xml | – month: 08 year: 2025 text: 2025-Aug-06 day: 06 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2025 |
References | e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 |
References_xml | – ident: e_1_2_7_27_1 doi: 10.1021/acs.biomac.4c00257 – ident: e_1_2_7_13_1 doi: 10.1002/anie.202425134 – ident: e_1_2_7_36_1 doi: 10.1016/j.chempr.2023.01.009 – ident: e_1_2_7_61_1 doi: 10.2174/1389203003381315 – ident: e_1_2_7_44_1 doi: 10.1021/jacs.3c01202 – ident: e_1_2_7_46_1 doi: 10.1126/science.1109999 – ident: e_1_2_7_56_1 doi: 10.1002/anie.200353606 – ident: e_1_2_7_58_1 doi: 10.1126/science.aao1377 – ident: e_1_2_7_8_1 doi: 10.1016/j.peptides.2024.171317 – ident: e_1_2_7_12_1 doi: 10.1021/acs.jnatprod.2c00065 – ident: e_1_2_7_37_1 doi: 10.1038/s41557-022-01106-9 – ident: e_1_2_7_24_1 doi: 10.1039/D0OB01190H – ident: e_1_2_7_25_1 doi: 10.1038/s41557-021-00770-7 – ident: e_1_2_7_55_1 doi: 10.1021/jo060389u – ident: e_1_2_7_11_1 doi: 10.1038/d41586-025-00901-x – ident: e_1_2_7_30_1 doi: 10.1021/ja056903f – ident: e_1_2_7_43_1 doi: 10.1021/jacs.2c06807 – ident: e_1_2_7_64_1 doi: 10.1002/mas.1280140104 – ident: e_1_2_7_4_1 doi: 10.1021/ja036756q – ident: e_1_2_7_1_1 doi: 10.1016/j.tig.2024.08.002 – ident: e_1_2_7_22_1 doi: 10.3390/molecules180911553 – ident: e_1_2_7_32_1 doi: 10.1038/s41570-017-0061 – ident: e_1_2_7_15_1 doi: 10.1039/D1SC02695J – ident: e_1_2_7_42_1 doi: 10.1038/s41586-021-03575-3 – ident: e_1_2_7_17_1 doi: 10.1039/D0CS01386B – ident: e_1_2_7_60_1 doi: 10.1351/pac200880092041 – ident: e_1_2_7_19_1 doi: 10.1002/anie.199707281 – ident: e_1_2_7_26_1 doi: 10.1039/D0SC05369D – ident: e_1_2_7_38_1 doi: 10.1039/D4OB01028K – ident: e_1_2_7_54_1 – ident: e_1_2_7_14_1 doi: 10.1111/jpy.13412 – ident: e_1_2_7_35_1 doi: 10.1038/s41557-022-00973-6 – ident: e_1_2_7_3_1 doi: 10.1021/ja0367703 – ident: e_1_2_7_52_1 doi: 10.1002/anie.202010995 – ident: e_1_2_7_2_1 doi: 10.1021/ja036677e – ident: e_1_2_7_6_1 doi: 10.1021/acs.accounts.5b00156 – ident: e_1_2_7_33_1 doi: 10.1039/D4CS00430B – ident: e_1_2_7_49_1 doi: 10.1002/anie.201600480 – ident: e_1_2_7_40_1 doi: 10.1038/s41467-020-14576-7 – ident: e_1_2_7_57_1 doi: 10.1021/ja1006838 – ident: e_1_2_7_29_1 doi: 10.1002/syst.202300048 – ident: e_1_2_7_41_1 doi: 10.1021/jacs.0c03447 – ident: e_1_2_7_16_1 doi: 10.1039/C8OB01304G – ident: e_1_2_7_21_1 doi: 10.1515/bmc-2011-0061 – ident: e_1_2_7_63_1 – ident: e_1_2_7_31_1 doi: 10.1039/b804243h – ident: e_1_2_7_7_1 doi: 10.3389/fbioe.2020.571165 – ident: e_1_2_7_59_1 doi: 10.1038/s41586-022-05305-9 – ident: e_1_2_7_39_1 doi: 10.1021/jacs.8b03394 – ident: e_1_2_7_47_1 doi: 10.1021/ja302345n – ident: e_1_2_7_28_1 doi: 10.1021/jacs.7b05640 – ident: e_1_2_7_23_1 doi: 10.1039/C8CC10301A – ident: e_1_2_7_18_1 doi: 10.1371/journal.pone.0234901 – ident: e_1_2_7_34_1 doi: 10.1002/anie.201901984 – ident: e_1_2_7_20_1 doi: 10.1002/anie.200903215 – ident: e_1_2_7_5_1 doi: 10.1039/c2np20070h – ident: e_1_2_7_53_1 doi: 10.1039/D0SC05897A – ident: e_1_2_7_10_1 doi: 10.1038/s41586-025-08723-7 – ident: e_1_2_7_50_1 doi: 10.1038/s41467-019-13594-4 – ident: e_1_2_7_51_1 doi: 10.1016/j.chempr.2019.12.009 – ident: e_1_2_7_62_1 doi: 10.1042/bj1160019 – ident: e_1_2_7_45_1 doi: 10.1016/j.chempr.2023.03.030 – ident: e_1_2_7_48_1 doi: 10.1021/ja302347q – ident: e_1_2_7_9_1 doi: 10.1007/s11274-025-04374-y |
SSID | ssj0028806 |
Score | 2.4843192 |
SecondaryResourceType | online_first |
Snippet | We report on the metal‐free active template synthesis of crown ether–peptide rotaxanes. A 24‐crown‐8 ring is sufficiently small that the side chains of... We report on the metal-free active template synthesis of crown ether-peptide rotaxanes. A 24-crown-8 ring is sufficiently small that the side chains of... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database |
StartPage | e202513115 |
Title | Crown Ether–Peptide Rotaxanes |
URI | https://www.ncbi.nlm.nih.gov/pubmed/40767160 https://www.proquest.com/docview/3237005693 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS-QwEA6ewt2-iN4Pb9WVPTi4h6VemzSp-yiLsoh3yKKcbyU_piJoK3sVxb_eSZpmd2WF817KkmZTMl-ZziTffCHku9RxEQMk0dAUIkotQ0wltIjw65cWwLMiSW3t8K_fYnyRnlzyy9l5ea66pFb7-mlpXcn_oIptiKutkn0DsmFQbMDfiC9eEWG8_hPGI5tDW8o6TKMzS08xMJhUtXyUpacGBpnkK3iQlrk_cAoB8GIl8Mhcz2_I__GLyGdQXkWn8nrGAWiclG0P7sL3nUh8maqwEAD1TbNr1NSw-90nv7xAuSO3eXFq7xJpgm4oY3NuDmxPJ9Sz1As3qq52-P2lHdGKd7cOE0wnBWZs8exrFDiC7a13ZI1iCuDS5UmQBqPod0QrwhnTn4sP65D37d8X441XkggXTJxvkHWfBfQPG0g3yQqUH8mHUXv43ifSc9D2F6DtB2g_k4vjo_PROPInWUSaYkwWKWFiw5nUfCilUUJi0KaMxGBN2tppEEalMRzoJNE6tZ0Yhl1apBhecKbBsC9ktaxK-Er60hRZZiydVrJUxFLiEIXmnCtQDCfcJT_a-eZ3jWBJ3khT09waKQ9G6pJvrTlynJ3dKMIpVPd_c0ZZZjVih6xLtho7hbFau26_emeHdJLwIu2S1Xp6Dz2M3Gq15yB8BtqoPlQ |
linkProvider | Wiley-Blackwell |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crown+Ether-Peptide+Rotaxanes&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Wang%2C+Peng-Lai&rft.au=Chen%2C+Peng&rft.au=Yang%2C+Raorao&rft.au=Tetlow%2C+Daniel+J&rft.date=2025-08-06&rft.eissn=1521-3773&rft.spage=e202513115&rft_id=info:doi/10.1002%2Fanie.202513115&rft_id=info%3Apmid%2F40767160&rft.externalDocID=40767160 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |