Estimation of JMA-Magnitude for Slow Tsunami Earthquakes

When an earthquake occurs and a tsunami threatens, rapid issuance of the first tsunami warning is important for timely evacuation of coastal residents. For tsunami early warning, estimates of an earthquake's hypocenter and magnitude are usually used. In Japan, the Japan Meteorological Agency (J...

Full description

Saved in:
Bibliographic Details
Published inPapers in Meteorology and Geophysics Vol. 70; pp. 1 - 19
Main Authors KATSUMATA, Akio, NISHIMIYA, Takahito
Format Journal Article
LanguageEnglish
Published Japan Meteorological Agency / Meteorological Research Institute 2022
Online AccessGet full text

Cover

Loading…
Abstract When an earthquake occurs and a tsunami threatens, rapid issuance of the first tsunami warning is important for timely evacuation of coastal residents. For tsunami early warning, estimates of an earthquake's hypocenter and magnitude are usually used. In Japan, the Japan Meteorological Agency (JMA) magnitude MJ, which is based on the observed displacement amplitude, is used to estimate the first tsunami warning. Slow tsunami earthquakes, such as the 1896 Meiji Sanriku earthquake, generate high tsunami waves but relatively small seismic waves. Thus, the use of MJ can cause underestimation of the size of such earthquakes and, therefore, lead to underestimation of the tsunami wave height. Quantitative understanding of the underestimation of slow tsunami earthquake magnitudes is needed, but local seismic records of slow tsunami earthquakes are scarce. In this study, we conducted spectrum analyses of teleseismic waves and used previously reported moment rate functions to construct synthetic local seismic wave records for slow tsunami earthquakes. First, we used data of earthquakes that occurred off the Japanese coast to confirm the validity of this method of constructing synthetic records. Then, we assumed tsunami earthquakes occurring off Miyagi Prefecture or the Sanriku Coast of Japan with the same moment rate functions as five major historical slow tsunami earthquakes, and compared our estimated magnitudes for these assumed earthquakes with the moment magnitudes (MW) of the five slow tsunami earthquakes. We found that MJ underestimated the size of the assumed earthquakes by 1 or more magnitude units when compared with MW. We also evaluated M100, a scale introduced after the 2011 Tohoku earthquake to supplement MJ and avoid underestimation of magnitude 9 class earthquakes. We found that M100 underestimated magnitudes by 0.5 or more magnitude units. Additionally, we suggest that amplitude distributions obtained from long-period seismic monitors, which were introduced to prevent underestimation of the magnitude of huge earthquakes, may be effectively used to estimate magnitudes of slow tsunami earthquakes.
AbstractList When an earthquake occurs and a tsunami threatens, rapid issuance of the first tsunami warning is important for timely evacuation of coastal residents. For tsunami early warning, estimates of an earthquake's hypocenter and magnitude are usually used. In Japan, the Japan Meteorological Agency (JMA) magnitude MJ, which is based on the observed displacement amplitude, is used to estimate the first tsunami warning. Slow tsunami earthquakes, such as the 1896 Meiji Sanriku earthquake, generate high tsunami waves but relatively small seismic waves. Thus, the use of MJ can cause underestimation of the size of such earthquakes and, therefore, lead to underestimation of the tsunami wave height. Quantitative understanding of the underestimation of slow tsunami earthquake magnitudes is needed, but local seismic records of slow tsunami earthquakes are scarce. In this study, we conducted spectrum analyses of teleseismic waves and used previously reported moment rate functions to construct synthetic local seismic wave records for slow tsunami earthquakes. First, we used data of earthquakes that occurred off the Japanese coast to confirm the validity of this method of constructing synthetic records. Then, we assumed tsunami earthquakes occurring off Miyagi Prefecture or the Sanriku Coast of Japan with the same moment rate functions as five major historical slow tsunami earthquakes, and compared our estimated magnitudes for these assumed earthquakes with the moment magnitudes (MW) of the five slow tsunami earthquakes. We found that MJ underestimated the size of the assumed earthquakes by 1 or more magnitude units when compared with MW. We also evaluated M100, a scale introduced after the 2011 Tohoku earthquake to supplement MJ and avoid underestimation of magnitude 9 class earthquakes. We found that M100 underestimated magnitudes by 0.5 or more magnitude units. Additionally, we suggest that amplitude distributions obtained from long-period seismic monitors, which were introduced to prevent underestimation of the magnitude of huge earthquakes, may be effectively used to estimate magnitudes of slow tsunami earthquakes.
Author KATSUMATA, Akio
NISHIMIYA, Takahito
Author_xml – sequence: 1
  fullname: KATSUMATA, Akio
  organization: University of Toyama
– sequence: 1
  fullname: NISHIMIYA, Takahito
  organization: Department of Seismology and Tsunami Research, Meteorological Research Institute
BookMark eNpVj09Lw0AUxBepYFq9es4XSHyb_dtjKVErLR6s4G3ZJG_b1DapuwnitzdaKXiagTe_x8yYjJq2QUJuKaQZl-ru4OujPaIPqYKUXpCIag2JlJyNSATAaEIz-XZFxiHsALhgQkZE56GrD7ar2yZuXfy0miUru2nqrq8wdq2PX_btZ7wOfWMPdZxb320_evuO4ZpcOrsPePOnE_J6n6_nj8ny-WExny2TMgNFE1FkgAUvrBIl4yCnHAdVSpVaD2bqGE4tqMKJTGuUvKoyS4USTjmHlSvYhKSnv6VvQ_DozNEPhf2XoWB-dpvzbqPA0AGYnYBd6OwGz_Ghel3u8X8cfpnzrdxab7Bh391xaFU
Cites_doi 10.1785/BSSA0710040959
10.1016/j.pepi.2012.04.002
10.1046/j.1365-246X.2000.00205.x
10.1029/JB086iB04p02825
10.1093/gji/ggv007
10.1111/j.1365-246X.1991.tb06724.x
10.1029/98EO00426
10.1029/2006GL028005
10.1029/98GL01987
10.1016/0031-9201(72)90058-1
10.1785/gssrl.80.2.260
10.5047/eps.2013.03.006
10.1007/BF00874377
10.1016/S0074-6142(03)80284-X
10.1785/BSSA0810062335
10.1016/j.pepi.2016.05.012
10.1029/2010GL046552
10.5047/eps.2011.05.019
10.1111/j.1440-1738.1997.tb00176.x
10.1029/2000JB900403
ContentType Journal Article
Copyright 2022 Japan Meteorological Agency / Meteorological Research Institute
Copyright_xml – notice: 2022 Japan Meteorological Agency / Meteorological Research Institute
DBID AAYXX
CITATION
DOI 10.2467/mripapers.70.1
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
EISSN 1880-6643
EndPage 19
ExternalDocumentID 10_2467_mripapers_70_1
article_mripapers_70_0_70_1_article_char_en
GroupedDBID -~X
123
2WC
7.U
ALMA_UNASSIGNED_HOLDINGS
CS3
E3Z
JSF
JSH
KQ8
OK1
RJT
RZJ
TKC
VOH
~02
AAYXX
CITATION
ID FETCH-LOGICAL-c2071-5b20eb4ba75c340694ec34777c88c349f3e9a07bf5288e64dd2a1575f7ffedfb3
ISSN 0031-126X
IngestDate Tue Jul 01 04:31:06 EDT 2025
Wed Sep 03 06:30:54 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2071-5b20eb4ba75c340694ec34777c88c349f3e9a07bf5288e64dd2a1575f7ffedfb3
OpenAccessLink https://www.jstage.jst.go.jp/article/mripapers/70/0/70_1/_article/-char/en
PageCount 19
ParticipantIDs crossref_primary_10_2467_mripapers_70_1
jstage_primary_article_mripapers_70_0_70_1_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022
2022-00-00
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 2022
PublicationDecade 2020
PublicationTitle Papers in Meteorology and Geophysics
PublicationTitleAlternate Pap. Met. Geophys.
PublicationYear 2022
Publisher Japan Meteorological Agency / Meteorological Research Institute
Publisher_xml – name: Japan Meteorological Agency / Meteorological Research Institute
References 山中佳子,2005a:EIC地震学ノートNo.168: 近地強震計記録を用いた2005年8月16日宮城沖地震(Mj7.2),http://wwweic.eri.u-tokyo.ac.jp/sanchu/Seismo_Note/2005/EIC168a.html(最終閲覧日:2019年11月26日)
舟崎淳,地震予知情報課,2004:気象庁速度マグニチュードの改訂について.験震時報,67, 11-20.
勝間田明男,1993:ベッセルディジタルフィルタの自動設計について.験震時報,56, 17-24.
Dziewonski, A. M., T.-A. Chou and J. H. Woodhouse, 1981: Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. J. Geophys. Res., 86, 2825-2852, doi:10.1029/JB086iB04p02825.
Bassin, C., G. Laske and G. Masters, 2000: The current limits of resolution for surface wave tomography in North America. EOS Trans AGU, 81, F897.
武尾実,1985:非弾性減衰を考慮した震源近傍での地震波合成-堆積層での非弾性減衰の効果について-.気象研究所研究報告,36, 245-257.
山中佳子,2003b:EIC地震学ノートNo.139: 2003年9月26日十勝沖地震(M8.0),http://wwweic.eri.u-tokyo.ac.jp/sanchu/Seismo_Note/EIC_News/030926.html(最終閲覧日:2019年12月4日)
Goldstein, P., D. Dodge, M. Firpo and L. Minner, 2003: SAC2000: Signal processing and analysis tools for seismologists and engineers, International Handbook of Earthquake and Engineering Seismology, Edited by W. H. K. Lee, H. Kanamori, P. C. Jennings, and C. Kisslinger, Academic Press, London, 1613-1614, doi:10.1016/S0074-6142(03)80284-X.
山中佳子,2011b:NGY地震学ノートNo.37: 2011年4月7日宮城沖の地震(M7.4),http://www.seis.nagoya-u.ac.jp/sanchu/Seismo_Note/2011/NGY37.html(最終閲覧日:2019年11月29日)
Liu, X. and D. Zhao, 2015: Seismic attenuation tomography of the Southwest Japan arc: new insight into subduction dynamics. Geophys. J. Int., 201, 135-156, doi:10.1093/gji/ggv007.
Kikuchi, M. and H. Kanamori, 2003: Note on teleseismic body-wave inversion program, http://www.eri.u-tokyo.ac.jp/ETAL/KIKUCHI/ (last accessed 13 September 2019).
気象庁,2013:過小評価判定手法及び想定最大マグニチュードについて.第9回津波予測技術に関する勉強会,資料1,https://www.data.jma.go.jp/svd/eqev/data/study-panel/tsunami/benkyokai9/shiryou1.pdf(最終閲覧日:2020年8月19日)
勝間田明男,2008:機械式地震計の周波数特性を持つ再帰型ディジタルフィルター.験震時報,71, 89-91.
Abercrombie, R. E., M. Antolik, K. Felzer and G. Ekström, 2001: The 1994 Java tsunami earthquake: Slip over a subducting seamount. J. Geophys. Res., 106, 6595-6607, doi:10.1029/2000JB900403.
Ammon, C. J., H. Kanamori, T. Lay and A. A. Velasco, 2006: The 17 July 2006 Java tsunami earthquake. Geophys. Res. Lett., 33, L24308, doi:10.1029/2006GL028005.
Kikuchi, M. and H. Kanamori, 1991: Inversion of complex body waves-III. Bull. Seism. Soc. Am., 81, 2335-2350.
Ihmlé, P. F., J.-M. Gomez, P. Heinrich and S. Guibourg, 1998: The 1996 Peru tsunamigenic earthquake: Broadband source process. Geophys. Res. Lett., 25, 2691-2694, doi:10.1029/98GL01987.
Tanioka, Y., L. Ruff and K. Satake, 1997: What controls the lateral variation of large earthquake occurrence along the Japan trench. Island Arc, 6, 261-266, doi:10.1111/j.1440-1738.1997.tb00176.x.
Kennett, B. L. N. and E. R. Engdahl, 1991: Traveltimes for global earthquake location and phase identification. Geophys. J. Int., 105, 429-465, doi:10.1111/j.1365-246X.1991.tb06724.x.
USGS, 2018: Earthquake Hazards Program: M 7.7 - near the coast of Nicaragua: Finite Fault, https://earthquake.usgs.gov/earthquakes/eventpage/usp0005ddn/finite-fault (last accessed 10 December 2019).
Okuwaki, R. and Y. Yagi, 2018: rokuwaki/2004Mw7.2KiiJapan: v1.0, doi:10.5281/zenodo.1493833.
Houston, H. and H. Kanamori, 1986: Source spectra of great earthquakes: Teleseismic constrains on rupture process and strong motion. Bull. seism. Soc. Am., 76, 19-42.
Kikuchi, M. and H. Kanamori, 1995: Source characteristics of the 1992 Nicaragua tsunami earthquake inferred from teleseismic body waves. Pure Appl. Geophys., 144(3/4), 441-453, doi:10.1007/BF00874377.
Wielandt, E. and J. M. Steim, 1986: A digital very–broad–band seismograph. Ann. Geophys., 4,B,3, 227-232.
山中佳子,2011a:NGY地震学ノートNo.35: 2011年3月9日三陸沖の地震(M7.3),http://www.seis.nagoya-u.ac.jp/sanchu/Seismo_Note/2011/NGY35.html(最終閲覧日:2019年11月26日)
Lay, T., C. J. Ammon, H. Kanamori, Y. Yamazaki, K. F. Cheung and A. R. Hutko, 2011: The 25 October 2010 Mentawai tsunami earthquake (Mw 7.8) and the tsunami hazard presented by shallow megathrust ruptures. Geophys. Res. Lett., 38, L06302, doi:10.1029/2010GL046552.
山中佳子,2005b:EIC地震学ノートNo.173: 2005年11月15日三陸沖地震(Mj6.9),http://wwweic.eri.u-tokyo.ac.jp/sanchu/Seismo_Note/2005/EIC173.html(最終閲覧日:2019年11月28日)
Snoke, J. A., 2009: Traveltime Tables for iasp91 and ak135. Seismol. Res. Lett., 80(2), 260-262, doi:10.1785/gssrl.80.2.260.
山中佳子,2008:NGY地震学ノートNo.7: 2008年5月8日茨城沖の地震(M6.4,M7.0),http://www.seis.nagoya-u.ac.jp/sanchu/Seismo_Note/2008/NGY7.html(最終閲覧日:2019年11月28日)
Vallée, M. and V. Douet, 2016: A new database of source time functions (STFs) extracted from the SCARDEC method. Phys. Earth Planet. Int., 257, 149-157, doi:10.1016/j.pepi.2016.05.012.
上野寛,畠山信一,明田川保,舟崎淳,浜田信生,2002:気象庁の震源決定方法の改善-浅部速度構造と重み関数の改良-.験震時報,65, 123-134.
Polet, J. and H. Kanamori, 2000: Shallow subduction zone earthquakes and their tsunamigenic potential. Geophys. J. Inter., 142, 684-702, doi:10.1046/j.1365-246x.2000.00205.x.
Hirose, F., K. Miyaoka, N. Hayashimoto, T. Yamazaki and M. Nakamura, 2011: Outline of the 2011 off the Pacific coast of Tohoku Earthquake (Mw 9.0) –Seismicity: foreshocks, mainshock, aftershocks, and induced activity–. Earth Planets Space, 63, 513-518, doi:10.5047/eps.2011.05.019.
勝間田明男,2004:気象庁変位マグニチュードの改訂.験震時報,67, 1-10.
Katsumata, A., H. Ueno, S. Aoki, Y. Yoshida and S. Barrientos, 2013: Rapid magnitude determination from peak amplitudes at local stations. Earth Planets Space, 65, 843-853, doi:10.5047/eps.2013.03.006.
気象庁,2014:主な地震のCMT解.地震・火山月報(カタログ編)2012,https://www.data.jma.go.jp/svd/eqev/data/bulletin/cmt.html(最終閲覧日:2019年4月26日)
山中佳子,2003a:EIC地震学ノートNo.135: 2003年5月26日宮城県沖地震(Mj7.0),http://wwweic.eri.u-tokyo.ac.jp/sanchu/Seismo_Note/EIC_News/030526n.html(最終閲覧日:2019年12月4日)
武藤大介,上野寛,川添安之,岩切一宏,2014:平成23年(2011年)東北地方太平洋沖地震の前後に発生した地震の震源過程の解析.験震時報,78, 29-44.
気象庁,2011:東北地方太平洋沖地震による津波被害を踏まえた津波警報の改善の方向性について.https://www.jma.go.jp/jma/press/1109/12a/torimatome.pdf(最終閲覧日:2019年12月16日)
中村浩二,青木重樹,吉田康宏,2003:気象庁広帯域地震観測網によるCMT解析.験震時報,66, 1-15.
山中佳子,2004:EIC地震学ノートNo.153: 2004年9月紀伊半島南東沖の地震(本震:Mj7.4)の再解析,http://wwweic.eri.u-tokyo.ac.jp/sanchu/Seismo_Note/2004/EIC153.html(最終閲覧日:2019年11月29日)
Bouchon, M., 1981: A simple method to calculate Green's functions for elastic layered media. Bull. Seism. Soc. Am., 71, 959-971.
Wessel, P. and W. H. F. Smith, 1998: New, improved version of Generic Mapping Tools released. EOS Trans. Am. Geophys. Union, 79, 579.
Goldstein, P. and A. Snoke, 2005: SAC Availability for the IRIS Community. Incorporated Institutions for Seismology Data Management Center Electronic Newsletter, 7, 1.
Ekström, G., M. Nettles and A. M. Dziewonski, 2012: The global CMT project 2004-2010: Centroid-moment tensors for 13,017 earthquakes. Phys. Earth Planet. Inter., 200-201, 1-9, doi:10.1016/j.pepi.2012.04.002.
Kanamori, H., 1972: Mechanism of tsunami earthquakes. Phys. Earth Planet. In., 6, 346-359, doi:10.1016/0031-9201(72)90058-1.
22
44
23
45
24
46
25
26
27
28
29
30
31
10
32
11
33
12
34
13
35
14
36
15
37
16
38
17
39
18
19
1
2
3
4
5
6
7
8
9
40
41
20
42
21
43
References_xml – reference: 山中佳子,2003a:EIC地震学ノートNo.135: 2003年5月26日宮城県沖地震(Mj7.0),http://wwweic.eri.u-tokyo.ac.jp/sanchu/Seismo_Note/EIC_News/030526n.html(最終閲覧日:2019年12月4日).
– reference: Kanamori, H., 1972: Mechanism of tsunami earthquakes. Phys. Earth Planet. In., 6, 346-359, doi:10.1016/0031-9201(72)90058-1.
– reference: USGS, 2018: Earthquake Hazards Program: M 7.7 - near the coast of Nicaragua: Finite Fault, https://earthquake.usgs.gov/earthquakes/eventpage/usp0005ddn/finite-fault (last accessed 10 December 2019).
– reference: Ekström, G., M. Nettles and A. M. Dziewonski, 2012: The global CMT project 2004-2010: Centroid-moment tensors for 13,017 earthquakes. Phys. Earth Planet. Inter., 200-201, 1-9, doi:10.1016/j.pepi.2012.04.002.
– reference: Snoke, J. A., 2009: Traveltime Tables for iasp91 and ak135. Seismol. Res. Lett., 80(2), 260-262, doi:10.1785/gssrl.80.2.260.
– reference: Ammon, C. J., H. Kanamori, T. Lay and A. A. Velasco, 2006: The 17 July 2006 Java tsunami earthquake. Geophys. Res. Lett., 33, L24308, doi:10.1029/2006GL028005.
– reference: Liu, X. and D. Zhao, 2015: Seismic attenuation tomography of the Southwest Japan arc: new insight into subduction dynamics. Geophys. J. Int., 201, 135-156, doi:10.1093/gji/ggv007.
– reference: 武尾実,1985:非弾性減衰を考慮した震源近傍での地震波合成-堆積層での非弾性減衰の効果について-.気象研究所研究報告,36, 245-257.
– reference: 山中佳子,2005b:EIC地震学ノートNo.173: 2005年11月15日三陸沖地震(Mj6.9),http://wwweic.eri.u-tokyo.ac.jp/sanchu/Seismo_Note/2005/EIC173.html(最終閲覧日:2019年11月28日).
– reference: Bassin, C., G. Laske and G. Masters, 2000: The current limits of resolution for surface wave tomography in North America. EOS Trans AGU, 81, F897.
– reference: Tanioka, Y., L. Ruff and K. Satake, 1997: What controls the lateral variation of large earthquake occurrence along the Japan trench. Island Arc, 6, 261-266, doi:10.1111/j.1440-1738.1997.tb00176.x.
– reference: 山中佳子,2003b:EIC地震学ノートNo.139: 2003年9月26日十勝沖地震(M8.0),http://wwweic.eri.u-tokyo.ac.jp/sanchu/Seismo_Note/EIC_News/030926.html(最終閲覧日:2019年12月4日).
– reference: 舟崎淳,地震予知情報課,2004:気象庁速度マグニチュードの改訂について.験震時報,67, 11-20.
– reference: Polet, J. and H. Kanamori, 2000: Shallow subduction zone earthquakes and their tsunamigenic potential. Geophys. J. Inter., 142, 684-702, doi:10.1046/j.1365-246x.2000.00205.x.
– reference: 上野寛,畠山信一,明田川保,舟崎淳,浜田信生,2002:気象庁の震源決定方法の改善-浅部速度構造と重み関数の改良-.験震時報,65, 123-134.
– reference: Vallée, M. and V. Douet, 2016: A new database of source time functions (STFs) extracted from the SCARDEC method. Phys. Earth Planet. Int., 257, 149-157, doi:10.1016/j.pepi.2016.05.012.
– reference: 山中佳子,2008:NGY地震学ノートNo.7: 2008年5月8日茨城沖の地震(M6.4,M7.0),http://www.seis.nagoya-u.ac.jp/sanchu/Seismo_Note/2008/NGY7.html(最終閲覧日:2019年11月28日).
– reference: Houston, H. and H. Kanamori, 1986: Source spectra of great earthquakes: Teleseismic constrains on rupture process and strong motion. Bull. seism. Soc. Am., 76, 19-42.
– reference: Wielandt, E. and J. M. Steim, 1986: A digital very–broad–band seismograph. Ann. Geophys., 4,B,3, 227-232.
– reference: 勝間田明男,2004:気象庁変位マグニチュードの改訂.験震時報,67, 1-10.
– reference: Katsumata, A., H. Ueno, S. Aoki, Y. Yoshida and S. Barrientos, 2013: Rapid magnitude determination from peak amplitudes at local stations. Earth Planets Space, 65, 843-853, doi:10.5047/eps.2013.03.006.
– reference: 武藤大介,上野寛,川添安之,岩切一宏,2014:平成23年(2011年)東北地方太平洋沖地震の前後に発生した地震の震源過程の解析.験震時報,78, 29-44.
– reference: Hirose, F., K. Miyaoka, N. Hayashimoto, T. Yamazaki and M. Nakamura, 2011: Outline of the 2011 off the Pacific coast of Tohoku Earthquake (Mw 9.0) –Seismicity: foreshocks, mainshock, aftershocks, and induced activity–. Earth Planets Space, 63, 513-518, doi:10.5047/eps.2011.05.019.
– reference: 山中佳子,2005a:EIC地震学ノートNo.168: 近地強震計記録を用いた2005年8月16日宮城沖地震(Mj7.2),http://wwweic.eri.u-tokyo.ac.jp/sanchu/Seismo_Note/2005/EIC168a.html(最終閲覧日:2019年11月26日).
– reference: 山中佳子,2011a:NGY地震学ノートNo.35: 2011年3月9日三陸沖の地震(M7.3),http://www.seis.nagoya-u.ac.jp/sanchu/Seismo_Note/2011/NGY35.html(最終閲覧日:2019年11月26日).
– reference: Kennett, B. L. N. and E. R. Engdahl, 1991: Traveltimes for global earthquake location and phase identification. Geophys. J. Int., 105, 429-465, doi:10.1111/j.1365-246X.1991.tb06724.x.
– reference: Abercrombie, R. E., M. Antolik, K. Felzer and G. Ekström, 2001: The 1994 Java tsunami earthquake: Slip over a subducting seamount. J. Geophys. Res., 106, 6595-6607, doi:10.1029/2000JB900403.
– reference: Bouchon, M., 1981: A simple method to calculate Green's functions for elastic layered media. Bull. Seism. Soc. Am., 71, 959-971.
– reference: Ihmlé, P. F., J.-M. Gomez, P. Heinrich and S. Guibourg, 1998: The 1996 Peru tsunamigenic earthquake: Broadband source process. Geophys. Res. Lett., 25, 2691-2694, doi:10.1029/98GL01987.
– reference: 勝間田明男,2008:機械式地震計の周波数特性を持つ再帰型ディジタルフィルター.験震時報,71, 89-91.
– reference: Kikuchi, M. and H. Kanamori, 1995: Source characteristics of the 1992 Nicaragua tsunami earthquake inferred from teleseismic body waves. Pure Appl. Geophys., 144(3/4), 441-453, doi:10.1007/BF00874377.
– reference: 気象庁,2014:主な地震のCMT解.地震・火山月報(カタログ編)2012,https://www.data.jma.go.jp/svd/eqev/data/bulletin/cmt.html(最終閲覧日:2019年4月26日).
– reference: Lay, T., C. J. Ammon, H. Kanamori, Y. Yamazaki, K. F. Cheung and A. R. Hutko, 2011: The 25 October 2010 Mentawai tsunami earthquake (Mw 7.8) and the tsunami hazard presented by shallow megathrust ruptures. Geophys. Res. Lett., 38, L06302, doi:10.1029/2010GL046552.
– reference: Goldstein, P., D. Dodge, M. Firpo and L. Minner, 2003: SAC2000: Signal processing and analysis tools for seismologists and engineers, International Handbook of Earthquake and Engineering Seismology, Edited by W. H. K. Lee, H. Kanamori, P. C. Jennings, and C. Kisslinger, Academic Press, London, 1613-1614, doi:10.1016/S0074-6142(03)80284-X.
– reference: 気象庁,2011:東北地方太平洋沖地震による津波被害を踏まえた津波警報の改善の方向性について.https://www.jma.go.jp/jma/press/1109/12a/torimatome.pdf(最終閲覧日:2019年12月16日).
– reference: 気象庁,2013:過小評価判定手法及び想定最大マグニチュードについて.第9回津波予測技術に関する勉強会,資料1,https://www.data.jma.go.jp/svd/eqev/data/study-panel/tsunami/benkyokai9/shiryou1.pdf(最終閲覧日:2020年8月19日).
– reference: 山中佳子,2011b:NGY地震学ノートNo.37: 2011年4月7日宮城沖の地震(M7.4),http://www.seis.nagoya-u.ac.jp/sanchu/Seismo_Note/2011/NGY37.html(最終閲覧日:2019年11月29日).
– reference: 勝間田明男,1993:ベッセルディジタルフィルタの自動設計について.験震時報,56, 17-24.
– reference: Okuwaki, R. and Y. Yagi, 2018: rokuwaki/2004Mw7.2KiiJapan: v1.0, doi:10.5281/zenodo.1493833.
– reference: 中村浩二,青木重樹,吉田康宏,2003:気象庁広帯域地震観測網によるCMT解析.験震時報,66, 1-15.
– reference: Kikuchi, M. and H. Kanamori, 2003: Note on teleseismic body-wave inversion program, http://www.eri.u-tokyo.ac.jp/ETAL/KIKUCHI/ (last accessed 13 September 2019).
– reference: 山中佳子,2004:EIC地震学ノートNo.153: 2004年9月紀伊半島南東沖の地震(本震:Mj7.4)の再解析,http://wwweic.eri.u-tokyo.ac.jp/sanchu/Seismo_Note/2004/EIC153.html(最終閲覧日:2019年11月29日).
– reference: Goldstein, P. and A. Snoke, 2005: SAC Availability for the IRIS Community. Incorporated Institutions for Seismology Data Management Center Electronic Newsletter, 7, 1.
– reference: Dziewonski, A. M., T.-A. Chou and J. H. Woodhouse, 1981: Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. J. Geophys. Res., 86, 2825-2852, doi:10.1029/JB086iB04p02825.
– reference: Kikuchi, M. and H. Kanamori, 1991: Inversion of complex body waves-III. Bull. Seism. Soc. Am., 81, 2335-2350.
– reference: Wessel, P. and W. H. F. Smith, 1998: New, improved version of Generic Mapping Tools released. EOS Trans. Am. Geophys. Union, 79, 579.
– ident: 4
  doi: 10.1785/BSSA0710040959
– ident: 43
– ident: 6
  doi: 10.1016/j.pepi.2012.04.002
– ident: 39
– ident: 35
– ident: 30
  doi: 10.1046/j.1365-246X.2000.00205.x
– ident: 16
– ident: 5
  doi: 10.1029/JB086iB04p02825
– ident: 14
– ident: 26
  doi: 10.1093/gji/ggv007
– ident: 28
– ident: 18
  doi: 10.1111/j.1365-246X.1991.tb06724.x
– ident: 37
  doi: 10.1029/98EO00426
– ident: 2
  doi: 10.1029/2006GL028005
– ident: 12
  doi: 10.1029/98GL01987
– ident: 24
– ident: 13
  doi: 10.1016/0031-9201(72)90058-1
– ident: 7
– ident: 31
  doi: 10.1785/gssrl.80.2.260
– ident: 45
– ident: 41
– ident: 22
– ident: 17
  doi: 10.5047/eps.2013.03.006
– ident: 42
– ident: 3
– ident: 20
  doi: 10.1007/BF00874377
– ident: 9
  doi: 10.1016/S0074-6142(03)80284-X
– ident: 11
– ident: 38
– ident: 34
– ident: 15
– ident: 32
– ident: 29
– ident: 19
  doi: 10.1785/BSSA0810062335
– ident: 36
  doi: 10.1016/j.pepi.2016.05.012
– ident: 25
  doi: 10.1029/2010GL046552
– ident: 10
  doi: 10.5047/eps.2011.05.019
– ident: 33
  doi: 10.1111/j.1440-1738.1997.tb00176.x
– ident: 1
  doi: 10.1029/2000JB900403
– ident: 8
– ident: 46
– ident: 21
– ident: 27
– ident: 44
– ident: 23
– ident: 40
SSID ssj0045356
ssib002484461
Score 2.2006724
Snippet When an earthquake occurs and a tsunami threatens, rapid issuance of the first tsunami warning is important for timely evacuation of coastal residents. For...
SourceID crossref
jstage
SourceType Index Database
Publisher
StartPage 1
Title Estimation of JMA-Magnitude for Slow Tsunami Earthquakes
URI https://www.jstage.jst.go.jp/article/mripapers/70/0/70_1/_article/-char/en
Volume 70
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Papers in Meteorology and Geophysics, 2022, Vol.70, pp.1-19
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFLfK4MBlAgaiwJAPCA5TRuLYdbpbNBVGUdEQmTROkZ3Y2ujWbKPVpP31e8_OVycODC5uGiep6_f8ex9575mQd2OO9SZlGEgbioDHZRRoAVZrxKVQsZLWulp6s2-jgyM-PRbHg8FNP7tkqXeLmz_mlfwLVeEc0BWzZO9B2fahcAKOgb7QAoWh_SsaT2B9nrc633SWBjOF0UCr0pfy_nFWXe9kv1e46fzOBB5wcrlS8zpqsNZID9UF5vCe4jubpamuuppMn03l_R7d-540AxROs9QhytyHcDlXMrq9Zl9-uo5MzdUJAEXfocA6w3MK4rn_Y55LfAoo1lC_09OEBnZhDX2gjYHezG1SCGLGYytARTAa-apMDfj6XUNq9Ix6YtgD6V2AZ4DrMJRzAFQ3O7sSQL8TZW2AYU2SvL0wl2EeYhPlTR-mtQEXPSAPGZgYCOpfv_dNsYS7UnteqnMRu52A2z_mC4DieD6uj2ZNwXn0C3T8Jj7QqSzZE7JZ2xo09SN5SgZm8YwMe2Sm7-n-GXKQ-7ZFko6haGXpGkNRYCiKDEVrhqI9hnpOjj5Nsv2DoN5aIygYKJWB0Cw0mmslRRG75GcDn1LKIkngYGxjM1ah1FawJDEjXpZMRaDZW1i8prQ6fkE2FtXCvCRUgTzlyhhR8pgrbnUhGDoTpWJW6GI8JB-a-cgvfAWVHCxPnLl18kRDsuenq73uHmR89T83vyaPcSV419obsrG8WpltUDaX-q3jilv4-4rL
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimation+of+JMA-Magnitude+for+Slow+Tsunami+Earthquakes&rft.jtitle=Papers+in+Meteorology+and+Geophysics&rft.au=KATSUMATA%2C+Akio&rft.au=NISHIMIYA%2C+Takahito&rft.date=2022&rft.pub=Japan+Meteorological+Agency+%2F+Meteorological+Research+Institute&rft.issn=0031-126X&rft.eissn=1880-6643&rft.volume=70&rft.spage=1&rft.epage=19&rft_id=info:doi/10.2467%2Fmripapers.70.1&rft.externalDocID=article_mripapers_70_0_70_1_article_char_en
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-126X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-126X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-126X&client=summon