µIVC-Useq: a microfluidic-assisted high-throughput functional screening in tandem with next-generation sequencing and artificial neural network to rapidly characterize RNA molecules

The function of an RNA is intimately linked to its structure. Many approaches encompassing X-ray crystallography, NMR, structural probing, or in silico predictions have been developed to establish structural models, sometimes with a precision down to atomic resolution. Yet these models still require...

Full description

Saved in:
Bibliographic Details
Published inRNA (Cambridge) Vol. 27; no. 7; pp. 841 - 853
Main Authors Cubi, Roger, Bouhedda, Farah, Collot, Mayeul, Klymchenko, Andrey S., Ryckelynck, Michael
Format Journal Article
LanguageEnglish
Published New York Cold Spring Harbor Laboratory Press 01.07.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The function of an RNA is intimately linked to its structure. Many approaches encompassing X-ray crystallography, NMR, structural probing, or in silico predictions have been developed to establish structural models, sometimes with a precision down to atomic resolution. Yet these models still require experimental validation through the preparation and functional assay of mutants, which can rapidly become time consuming and laborious. Such limitations can be overcome using high-throughput functional screenings that may not only help in validating the model, but also inform on the mutational robustness of a structural element and the extent to which a sequence can be modified without altering RNA function, an important set of information to assist RNA engineering. We introduced the microfluidic-assisted in vitro compartmentalization (µIVC), an efficient and cost-effective screening strategy in which reactions are performed in picoliter droplets at rates of several thousand per second. We later improved µIVC efficiency by using it in tandem with high-throughput sequencing, though a laborious bioinformatic step was still required at the end of the process. In the present work, we further increased the automation level of the pipeline by implementing an artificial neural network enabling unsupervised bioinformatic analysis. We demonstrate the efficiency of this “µIVC-Useq” technology by rapidly identifying a set of sequences readily accepted by a key domain of the light-up RNA aptamer SRB-2. This work not only shed some new light on the way this aptamer can be engineered, but it also allowed us to easily identify new variants with an up to 10-fold improved performance.
AbstractList The function of an RNA is intimately linked to its structure. Many approaches encompassing X-ray crystallography, NMR, structural probing, or in silico predictions have been developed to establish structural models, sometimes with a precision down to atomic resolution. Yet these models still require experimental validation through the preparation and functional assay of mutants, which can rapidly become time consuming and laborious. Such limitations can be overcome using high-throughput functional screenings that may not only help in validating the model, but also inform on the mutational robustness of a structural element and the extent to which a sequence can be modified without altering RNA function, an important set of information to assist RNA engineering. We introduced the microfluidic-assisted in vitro compartmentalization (µIVC), an efficient and cost-effective screening strategy in which reactions are performed in picoliter droplets at rates of several thousand per second. We later improved µIVC efficiency by using it in tandem with high-throughput sequencing, though a laborious bioinformatic step was still required at the end of the process. In the present work, we further increased the automation level of the pipeline by implementing an artificial neural network enabling unsupervised bioinformatic analysis. We demonstrate the efficiency of this “µIVC-Useq” technology by rapidly identifying a set of sequences readily accepted by a key domain of the light-up RNA aptamer SRB-2. This work not only shed some new light on the way this aptamer can be engineered, but it also allowed us to easily identify new variants with an up to 10-fold improved performance.
Author Bouhedda, Farah
Ryckelynck, Michael
Klymchenko, Andrey S.
Cubi, Roger
Collot, Mayeul
AuthorAffiliation 1 Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, F-67000 Strasbourg, France
2 Université de Strasbourg, CNRS, Laboratoire de Bioimagerie et Pathologies, UMR 7021, 67401 Illkirch, France
AuthorAffiliation_xml – name: 1 Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, F-67000 Strasbourg, France
– name: 2 Université de Strasbourg, CNRS, Laboratoire de Bioimagerie et Pathologies, UMR 7021, 67401 Illkirch, France
Author_xml – sequence: 1
  givenname: Roger
  orcidid: 0000-0003-2762-9928
  surname: Cubi
  fullname: Cubi, Roger
– sequence: 2
  givenname: Farah
  orcidid: 0000-0001-8670-3839
  surname: Bouhedda
  fullname: Bouhedda, Farah
– sequence: 3
  givenname: Mayeul
  surname: Collot
  fullname: Collot, Mayeul
– sequence: 4
  givenname: Andrey S.
  orcidid: 0000-0002-2423-830X
  surname: Klymchenko
  fullname: Klymchenko, Andrey S.
– sequence: 5
  givenname: Michael
  orcidid: 0000-0002-2225-3733
  surname: Ryckelynck
  fullname: Ryckelynck, Michael
BookMark eNpVkctuFDEQRS0URB6wZW2JdQ9-tPvBAikaBYgUgYQCW6vGru526LEH201I_it8AF-Gh4mQ2LhcrlO3bN9TcuSDR0JecrbiouGvo4cVa1vVNSVnT8gJr5u-6hnjR2Uvlao62YljcprSTTmUpfyMHEvZK9G0_IT8-v1w-XVdfUn4_Q0FunUmhmFenHWmgpRcymjp5MapylMMyzjtlkyHxZvsgoeZJhMRvfMjdZ5m8Ba39NbliXr8masRPUbYo7QMWNCbPVkoCjG7wRlXJDwu8W_ItyF-oznQCDtn5ztqJohgMkZ3j_Tzx3O6DTOaZcb0nDwdYE744jGeket3F9frD9XVp_eX6_OrygjWsrJCbzetYtZsTAcIiqNocaj7RtUGuahraG29sS12A-8LqACElV0PyohanpG3B9ndstmiNehzuareRbeFeKcDOP1_xbtJj-GH7gTrmNoLvHoUiKG8P2V9E5bi2Zy0UEqqRrWNLNTqQJXPTyni8G8CZ3pvsy4t-mBzyZn8AxF3osg
CitedBy_id crossref_primary_10_1371_journal_pone_0260497
crossref_primary_10_3390_v13101894
Cites_doi 10.3390/ijms18122516
10.1038/s41467-018-02993-8
10.1093/nar/gkx699
10.1038/s41589-019-0267-9
10.3390/ph9040076
10.1007/978-1-4939-6433-8
10.1002/jcc.21596
10.1002/anie.201309334
10.1016/j.neunet.2012.09.018
10.3390/mi8040128
10.1016/j.gene.2019.05.036
10.1146/annurev.micro.59.030804.121336
10.1126/science.2200121
10.1038/nmeth.2772
10.1016/j.ymeth.2019.02.001
10.1016/j.ymeth.2019.03.015
10.1186/1748-7188-6-26
10.1093/nar/gkg595
10.3390/ijms19010044
10.1021/ja031504a
10.1101/cshperspect.a032300
10.1038/346818a0
10.1016/0022-2836(86)90165-8
10.1261/rna.074997.120
10.1021/ac900403z
10.1038/s41589-019-0381-8
10.1261/rna.048033.114
10.1016/S1359-0278(98)00059-5
10.1093/nar/gky543
10.1039/b902504a
10.1007/978-1-4939-2763-0
10.1021/ja508478x
10.1073/pnas.0308014101
10.1186/gb-2010-11-3-r31
10.1093/nar/gkv944
10.1002/anie.201306622
10.1016/0092-8674(91)90527-6
10.1093/nar/gky583
10.1039/b806706f
10.1093/nar/gkw083
10.1002/sstr.202000132
ContentType Journal Article
Copyright Copyright Cold Spring Harbor Laboratory Press Jul 2021
2021
Copyright_xml – notice: Copyright Cold Spring Harbor Laboratory Press Jul 2021
– notice: 2021
DBID AAYXX
CITATION
7TM
7U9
8FD
FR3
H94
P64
RC3
5PM
DOI 10.1261/rna.077586.120
DatabaseName CrossRef
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Engineering Research Database
AIDS and Cancer Research Abstracts
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
Genetics Abstracts
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
AIDS and Cancer Research Abstracts
Engineering Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitleList
CrossRef
Genetics Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
Biology
DocumentTitleAlternate Cubi et al
EISSN 1469-9001
EndPage 853
ExternalDocumentID 10_1261_rna_077586_120
GrantInformation_xml – fundername: University of Strasbourg Institute of Advanced Study (USIAS, program Translatomix) and Agence Nationale de la Recherche
  grantid: ANR-16-CE11-0010-01
– fundername: SFRI-STRAT'US project, and EUR IMCBio
  grantid: ANR-17-EURE-0023
– fundername: Interdisciplinary Thematic Institute “IMCBio
  grantid: ITI 2021-2028
– fundername: University of Strasbourg, CNRS and Inserm, was supported by IdEx Unistra
  grantid: ANR-10-IDEX-0002
– fundername: Centre National de la Recherche Scientifique and the Université de Strasbourg whom it received support from its Initiative of Excellence (IdEx)
GroupedDBID ---
.GJ
0VX
123
18M
29P
2WC
34G
39C
4.4
53G
5RE
5VS
8R4
8R5
AAYXX
ABDIX
ABDNZ
ABGDZ
ACGFO
ACNCT
ACQPF
ACYGS
ADBBV
AEILP
AENEX
AFFNX
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BTFSW
C1A
CAG
CITATION
COF
CS3
D0L
DIK
DU5
E3Z
EBS
EJD
F5P
GX1
H13
HH5
HYE
KQ8
MV1
OK1
P2P
RCA
RCX
RHF
RHI
RIG
ROL
RPM
SJN
TR2
VWN
W8F
WOQ
YKV
ZGI
ZWS
7TM
7U9
8FD
FR3
H94
P64
RC3
5PM
ID FETCH-LOGICAL-c2070-c2a9db750dcbc8aea51e27ef49654ce1244a7d4bd7e8f197505aa2d389a5c243
IEDL.DBID RPM
ISSN 1355-8382
IngestDate Tue Sep 17 21:23:17 EDT 2024
Thu Oct 10 20:00:42 EDT 2024
Thu Sep 12 20:16:38 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License This article is distributed exclusively by the RNA Society for the first 12 months after the full-issue publication date (see http://rnajournal.cshlp.org/site/misc/terms.xhtml). After 12 months, it is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), as described at http://creativecommons.org/licenses/by-nc/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2070-c2a9db750dcbc8aea51e27ef49654ce1244a7d4bd7e8f197505aa2d389a5c243
Notes These authors contributed equally to this work.
ORCID 0000-0002-2225-3733
0000-0003-2762-9928
0000-0002-2423-830X
0000-0001-8670-3839
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8208054/
PMID 33952671
PQID 2553565763
PQPubID 2048993
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8208054
proquest_journals_2553565763
crossref_primary_10_1261_rna_077586_120
PublicationCentury 2000
PublicationDate 2021-07-00
20210701
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-00
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle RNA (Cambridge)
PublicationYear 2021
Publisher Cold Spring Harbor Laboratory Press
Publisher_xml – name: Cold Spring Harbor Laboratory Press
References 2021112106042686000_27.7.841.28
2021112106042686000_27.7.841.29
2021112106042686000_27.7.841.2
2021112106042686000_27.7.841.26
2021112106042686000_27.7.841.3
2021112106042686000_27.7.841.27
2021112106042686000_27.7.841.4
2021112106042686000_27.7.841.24
2021112106042686000_27.7.841.25
2021112106042686000_27.7.841.6
2021112106042686000_27.7.841.22
2021112106042686000_27.7.841.7
2021112106042686000_27.7.841.8
2021112106042686000_27.7.841.20
2021112106042686000_27.7.841.42
2021112106042686000_27.7.841.9
2021112106042686000_27.7.841.21
2021112106042686000_27.7.841.43
2021112106042686000_27.7.841.30
2021112106042686000_27.7.841.1
(2021112106042686000_27.7.841.5) 1994; 2
2021112106042686000_27.7.841.19
2021112106042686000_27.7.841.17
2021112106042686000_27.7.841.39
2021112106042686000_27.7.841.18
(2021112106042686000_27.7.841.23) 2007; 23
2021112106042686000_27.7.841.15
2021112106042686000_27.7.841.37
2021112106042686000_27.7.841.16
2021112106042686000_27.7.841.38
2021112106042686000_27.7.841.13
2021112106042686000_27.7.841.35
2021112106042686000_27.7.841.14
2021112106042686000_27.7.841.36
2021112106042686000_27.7.841.11
2021112106042686000_27.7.841.33
2021112106042686000_27.7.841.12
2021112106042686000_27.7.841.34
2021112106042686000_27.7.841.31
2021112106042686000_27.7.841.10
2021112106042686000_27.7.841.32
2021112106042686000_27.7.841.40
2021112106042686000_27.7.841.41
References_xml – ident: 2021112106042686000_27.7.841.21
  doi: 10.3390/ijms18122516
– ident: 2021112106042686000_27.7.841.3
  doi: 10.1038/s41467-018-02993-8
– ident: 2021112106042686000_27.7.841.39
  doi: 10.1093/nar/gkx699
– ident: 2021112106042686000_27.7.841.34
  doi: 10.1038/s41589-019-0267-9
– ident: 2021112106042686000_27.7.841.26
  doi: 10.3390/ph9040076
– ident: 2021112106042686000_27.7.841.36
  doi: 10.1007/978-1-4939-6433-8
– volume: 2
  start-page: 28
  year: 1994
  ident: 2021112106042686000_27.7.841.5
  article-title: Fitting a mixture model by expectation maximization to discover motifs in biopolymers
  publication-title: Proc Int Conf Intell Syst Mol Biol
– ident: 2021112106042686000_27.7.841.42
  doi: 10.1002/jcc.21596
– ident: 2021112106042686000_27.7.841.37
  doi: 10.1002/anie.201309334
– ident: 2021112106042686000_27.7.841.22
  doi: 10.1016/j.neunet.2012.09.018
– ident: 2021112106042686000_27.7.841.1
  doi: 10.3390/mi8040128
– ident: 2021112106042686000_27.7.841.28
  doi: 10.1016/j.gene.2019.05.036
– ident: 2021112106042686000_27.7.841.40
  doi: 10.1146/annurev.micro.59.030804.121336
– ident: 2021112106042686000_27.7.841.35
  doi: 10.1126/science.2200121
– ident: 2021112106042686000_27.7.841.19
  doi: 10.1038/nmeth.2772
– ident: 2021112106042686000_27.7.841.41
  doi: 10.1016/j.ymeth.2019.02.001
– ident: 2021112106042686000_27.7.841.4
  doi: 10.1016/j.ymeth.2019.03.015
– ident: 2021112106042686000_27.7.841.24
  doi: 10.1186/1748-7188-6-26
– ident: 2021112106042686000_27.7.841.43
  doi: 10.1093/nar/gkg595
– ident: 2021112106042686000_27.7.841.9
  doi: 10.3390/ijms19010044
– ident: 2021112106042686000_27.7.841.11
  doi: 10.1021/ja031504a
– ident: 2021112106042686000_27.7.841.12
  doi: 10.1101/cshperspect.a032300
– ident: 2021112106042686000_27.7.841.13
  doi: 10.1038/346818a0
– ident: 2021112106042686000_27.7.841.30
  doi: 10.1016/0022-2836(86)90165-8
– ident: 2021112106042686000_27.7.841.31
  doi: 10.1261/rna.074997.120
– ident: 2021112106042686000_27.7.841.25
  doi: 10.1021/ac900403z
– ident: 2021112106042686000_27.7.841.10
  doi: 10.1038/s41589-019-0381-8
– volume: 23
  start-page: 1723
  year: 2007
  ident: 2021112106042686000_27.7.841.23
  article-title: Global visualization and comparison of DNA sequences by use of three-dimensional trajectories
  publication-title: J Inf Sci Eng
– ident: 2021112106042686000_27.7.841.29
  doi: 10.1261/rna.048033.114
– ident: 2021112106042686000_27.7.841.16
  doi: 10.1016/S1359-0278(98)00059-5
– ident: 2021112106042686000_27.7.841.33
  doi: 10.1093/nar/gky543
– ident: 2021112106042686000_27.7.841.6
  doi: 10.1039/b902504a
– ident: 2021112106042686000_27.7.841.14
  doi: 10.1007/978-1-4939-2763-0
– ident: 2021112106042686000_27.7.841.15
  doi: 10.1021/ja508478x
– ident: 2021112106042686000_27.7.841.7
  doi: 10.1073/pnas.0308014101
– ident: 2021112106042686000_27.7.841.38
  doi: 10.1186/gb-2010-11-3-r31
– ident: 2021112106042686000_27.7.841.20
  doi: 10.1093/nar/gkv944
– ident: 2021112106042686000_27.7.841.32
  doi: 10.1002/anie.201306622
– ident: 2021112106042686000_27.7.841.8
  doi: 10.1016/0092-8674(91)90527-6
– ident: 2021112106042686000_27.7.841.27
  doi: 10.1093/nar/gky583
– ident: 2021112106042686000_27.7.841.17
  doi: 10.1039/b806706f
– ident: 2021112106042686000_27.7.841.2
  doi: 10.1093/nar/gkw083
– ident: 2021112106042686000_27.7.841.18
  doi: 10.1002/sstr.202000132
SSID ssj0013146
Score 2.3998888
Snippet The function of an RNA is intimately linked to its structure. Many approaches encompassing X-ray crystallography, NMR, structural probing, or in silico...
SourceID pubmedcentral
proquest
crossref
SourceType Open Access Repository
Aggregation Database
StartPage 841
SubjectTerms Aptamers
Automation
Crystallography
Method
Microfluidics
Neural networks
Next-generation sequencing
NMR
Nuclear magnetic resonance
Nucleotide sequence
Ribonucleic acid
RNA
X-ray crystallography
Title µIVC-Useq: a microfluidic-assisted high-throughput functional screening in tandem with next-generation sequencing and artificial neural network to rapidly characterize RNA molecules
URI https://www.proquest.com/docview/2553565763
https://pubmed.ncbi.nlm.nih.gov/PMC8208054
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYACbWXqjyqbkvRHFB7ym7iRx69LasiHgJVFSBukWM7baRN2LK7B_q_yg_glzHjJNC99pKH4kRRZuz5xvn8DWMHOrFaapvh6GdEINMQu5SIwyDFcI3RLC5DX5Ll_CI-vpKnN-pmjal-LYwn7ZuiGjbTethUvzy3clabUc8TG30_n2DUShFqjNbZOjpon6L3vw66JUUYSINUpLxTasRMYYS2GZLkWxrjOdWAEyJTPE6i1aD0gjRXeZL_BJ6jt-xNhxhh3L7ZFltzzTbbGTeYLdf38Bk8h9NPjm-zzcP-6NWkr-S2wx4e_55cT4Krufv9FTTUxMErp8vKViZA7EyGtkC6xUFXtWe2XAAFvHaeEHBkwWwXYxxUDdDUg6uB5m-hobT5pxeupqbQ8bKpJbYC-pitQAWQbKbfedI5LG7hTs8qO70H86wY_cfBj4sx1G3BXjffZZdH3y4nx0FXryEwHEcO3OrMFghBrClMqp1WkeOJK0mSXhpHSAJdQxY2cWkZZdhQac0tQiatDJfiHdtobhv3nkGhQmOkkCQHKC0vs6LQQiQq0kIrXkYD9qW3Vz5rVTlyymbQyDnaJG-NjOfhgO315sy73jnPMY0S9Ls3FgOWrJj4-Wmkur16BZ3Rq293zvfhv-_8yF5zIsZ4zu8e21jcLd0nRDaLYh8x_cnZvvfnJxCY_xg
link.rule.ids 230,315,730,783,787,888,27938,27939,53806,53808
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELVKESqXAi0VWwrMAcEp2STOJ7dlRbWF7gqhbdVb5NgORGzSpZs9tP8LfgC_jBknLiw3uORDdqJYfvbMOM9vGHspEiVCoTKc_SR3wtTDIcVjz0nRXKM1i0vPpGSZzuLJWfj-IrrYYpHdC2NI-7Ko3GZRu031xXArl7UcWp7Y8ON0jFYrRVdjeIfdxfHqxTZItz8P-k1FaEqdlKdBr9WIscIQe8cl0bc0xnvKAsd5FgVx4m-apd--5iZT8g_Tc_yAnduP7hgnX911W7jy5i89x39u1UO22zujMOqKH7Et3eyx_VGDgXh9Da_A0EPNuvseu_fWXu2MbZK4ffbj5_eT87FzttLf3oCAmuh95WJdqUo66JYThhSQJLLTJwRarlsgW9otQQJOWhhIo_mEqgFa1dA10NIwNBSRfzaa2FQVeso31cRaQC3qtC-AFDnNyfDZob2EK7Gs1OIa5K0Y9Y2GT7MR1F0uYL16zObH7-bjidOngnBkgJMSHkWmCvRulCxkKrSIfB0kuiS1-1BqclIQdWGhEp2WfoYVIyEChd6YiGQQ8gO23Vw2-gmDIvKkDHlISoOhCsqsKATnSeQLLqKg9AfstQVCvuwEP3IKlBA9OfZJ3qEH770BO7I4yfuBv8oxQuP0JznmA5ZsYOf2bSTovVmCiDDC3j0CDv_7yRdsZzKfnuanJ7MPT9n9gPg3hlp8xLbbq7V-hg5UWzw3w-UXVDwgIQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagCMqlQEvF0gJzQHDK03lyWxZWLdBVhVpUcYkc26FRN2noZg_t_4IfwC9jxklKl2MveSiTKJY_e2acL98w9lrESgRCpTj7SW4FiYtDikeulaC7Rm8WFa4pyXIwi_aOg08n4cmNUl-GtC_z0q7nlV2Xp4Zb2VTSGXhizuHBBL1WgqGG06jCucvu4Zh1kyFRHz4g9D8WoTu1Ep74vV4j5gsO9pBNwm9JhOdUCY7zNPSj2Ft1Tf_izVW25A33M33Evg8v3rFOzuxlm9vy6j9Nx1u17DHb6INSGHcmT9gdXW-yrXGNCXl1CW_A0ETN-vsmu_9-OFqfDMXittjvP7_2v02s44X--Q4EVETzK-bLUpXSwvCcsKSApJGtvjBQs2yBfGq3FAk4eWFCjW4UyhpodUNXQEvEUFNm_sNoY5Mp9NRvskQroFZ1GhhAypxmZ3jt0J7DhWhKNb8EeS1KfaXh62wMVVcTWC-esqPpx6PJntWXhLCkj5MTbkWqcoxylMxlIrQIPe3HuiDV-0BqClYQfUGuYp0UXoqGoRC-wqhMhNIP-DZbq89r_YxBHrpSBjwgxcFA-UWa54LzOPQEF6FfeCP2dgBD1nTCHxklTIigDPsk6xCE5-6I7Q5YyfoJYJFhpsbpi3LERyxewc_100jYe_UKosIIfPcoeH7rO1-xB4cfptmX_dnnHfbQJxqOYRjvsrX2YqlfYBzV5i_NiPkLIQAioQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%C2%B5IVC-Useq%3A+a+microfluidic-assisted+high-throughput+functional+screening+in+tandem+with+next-generation+sequencing+and+artificial+neural+network+to+rapidly+characterize+RNA+molecules&rft.jtitle=RNA+%28Cambridge%29&rft.au=Cubi%2C+Roger&rft.au=Bouhedda%2C+Farah&rft.au=Collot%2C+Mayeul&rft.au=Klymchenko%2C+Andrey+S&rft.date=2021-07-01&rft.pub=Cold+Spring+Harbor+Laboratory+Press&rft.issn=1355-8382&rft.eissn=1469-9001&rft.volume=27&rft.issue=7&rft.spage=841&rft_id=info:doi/10.1261%2Frna.077586.120&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1355-8382&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1355-8382&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1355-8382&client=summon