µIVC-Useq: a microfluidic-assisted high-throughput functional screening in tandem with next-generation sequencing and artificial neural network to rapidly characterize RNA molecules
The function of an RNA is intimately linked to its structure. Many approaches encompassing X-ray crystallography, NMR, structural probing, or in silico predictions have been developed to establish structural models, sometimes with a precision down to atomic resolution. Yet these models still require...
Saved in:
Published in | RNA (Cambridge) Vol. 27; no. 7; pp. 841 - 853 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Cold Spring Harbor Laboratory Press
01.07.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The function of an RNA is intimately linked to its structure. Many approaches encompassing X-ray crystallography, NMR, structural probing, or in silico predictions have been developed to establish structural models, sometimes with a precision down to atomic resolution. Yet these models still require experimental validation through the preparation and functional assay of mutants, which can rapidly become time consuming and laborious. Such limitations can be overcome using high-throughput functional screenings that may not only help in validating the model, but also inform on the mutational robustness of a structural element and the extent to which a sequence can be modified without altering RNA function, an important set of information to assist RNA engineering. We introduced the microfluidic-assisted in vitro compartmentalization (µIVC), an efficient and cost-effective screening strategy in which reactions are performed in picoliter droplets at rates of several thousand per second. We later improved µIVC efficiency by using it in tandem with high-throughput sequencing, though a laborious bioinformatic step was still required at the end of the process. In the present work, we further increased the automation level of the pipeline by implementing an artificial neural network enabling unsupervised bioinformatic analysis. We demonstrate the efficiency of this “µIVC-Useq” technology by rapidly identifying a set of sequences readily accepted by a key domain of the light-up RNA aptamer SRB-2. This work not only shed some new light on the way this aptamer can be engineered, but it also allowed us to easily identify new variants with an up to 10-fold improved performance. |
---|---|
AbstractList | The function of an RNA is intimately linked to its structure. Many approaches encompassing X-ray crystallography, NMR, structural probing, or in silico predictions have been developed to establish structural models, sometimes with a precision down to atomic resolution. Yet these models still require experimental validation through the preparation and functional assay of mutants, which can rapidly become time consuming and laborious. Such limitations can be overcome using high-throughput functional screenings that may not only help in validating the model, but also inform on the mutational robustness of a structural element and the extent to which a sequence can be modified without altering RNA function, an important set of information to assist RNA engineering. We introduced the microfluidic-assisted in vitro compartmentalization (µIVC), an efficient and cost-effective screening strategy in which reactions are performed in picoliter droplets at rates of several thousand per second. We later improved µIVC efficiency by using it in tandem with high-throughput sequencing, though a laborious bioinformatic step was still required at the end of the process. In the present work, we further increased the automation level of the pipeline by implementing an artificial neural network enabling unsupervised bioinformatic analysis. We demonstrate the efficiency of this “µIVC-Useq” technology by rapidly identifying a set of sequences readily accepted by a key domain of the light-up RNA aptamer SRB-2. This work not only shed some new light on the way this aptamer can be engineered, but it also allowed us to easily identify new variants with an up to 10-fold improved performance. |
Author | Bouhedda, Farah Ryckelynck, Michael Klymchenko, Andrey S. Cubi, Roger Collot, Mayeul |
AuthorAffiliation | 1 Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, F-67000 Strasbourg, France 2 Université de Strasbourg, CNRS, Laboratoire de Bioimagerie et Pathologies, UMR 7021, 67401 Illkirch, France |
AuthorAffiliation_xml | – name: 1 Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, F-67000 Strasbourg, France – name: 2 Université de Strasbourg, CNRS, Laboratoire de Bioimagerie et Pathologies, UMR 7021, 67401 Illkirch, France |
Author_xml | – sequence: 1 givenname: Roger orcidid: 0000-0003-2762-9928 surname: Cubi fullname: Cubi, Roger – sequence: 2 givenname: Farah orcidid: 0000-0001-8670-3839 surname: Bouhedda fullname: Bouhedda, Farah – sequence: 3 givenname: Mayeul surname: Collot fullname: Collot, Mayeul – sequence: 4 givenname: Andrey S. orcidid: 0000-0002-2423-830X surname: Klymchenko fullname: Klymchenko, Andrey S. – sequence: 5 givenname: Michael orcidid: 0000-0002-2225-3733 surname: Ryckelynck fullname: Ryckelynck, Michael |
BookMark | eNpVkctuFDEQRS0URB6wZW2JdQ9-tPvBAikaBYgUgYQCW6vGru526LEH201I_it8AF-Gh4mQ2LhcrlO3bN9TcuSDR0JecrbiouGvo4cVa1vVNSVnT8gJr5u-6hnjR2Uvlao62YljcprSTTmUpfyMHEvZK9G0_IT8-v1w-XVdfUn4_Q0FunUmhmFenHWmgpRcymjp5MapylMMyzjtlkyHxZvsgoeZJhMRvfMjdZ5m8Ba39NbliXr8masRPUbYo7QMWNCbPVkoCjG7wRlXJDwu8W_ItyF-oznQCDtn5ztqJohgMkZ3j_Tzx3O6DTOaZcb0nDwdYE744jGeket3F9frD9XVp_eX6_OrygjWsrJCbzetYtZsTAcIiqNocaj7RtUGuahraG29sS12A-8LqACElV0PyohanpG3B9ndstmiNehzuareRbeFeKcDOP1_xbtJj-GH7gTrmNoLvHoUiKG8P2V9E5bi2Zy0UEqqRrWNLNTqQJXPTyni8G8CZ3pvsy4t-mBzyZn8AxF3osg |
CitedBy_id | crossref_primary_10_1371_journal_pone_0260497 crossref_primary_10_3390_v13101894 |
Cites_doi | 10.3390/ijms18122516 10.1038/s41467-018-02993-8 10.1093/nar/gkx699 10.1038/s41589-019-0267-9 10.3390/ph9040076 10.1007/978-1-4939-6433-8 10.1002/jcc.21596 10.1002/anie.201309334 10.1016/j.neunet.2012.09.018 10.3390/mi8040128 10.1016/j.gene.2019.05.036 10.1146/annurev.micro.59.030804.121336 10.1126/science.2200121 10.1038/nmeth.2772 10.1016/j.ymeth.2019.02.001 10.1016/j.ymeth.2019.03.015 10.1186/1748-7188-6-26 10.1093/nar/gkg595 10.3390/ijms19010044 10.1021/ja031504a 10.1101/cshperspect.a032300 10.1038/346818a0 10.1016/0022-2836(86)90165-8 10.1261/rna.074997.120 10.1021/ac900403z 10.1038/s41589-019-0381-8 10.1261/rna.048033.114 10.1016/S1359-0278(98)00059-5 10.1093/nar/gky543 10.1039/b902504a 10.1007/978-1-4939-2763-0 10.1021/ja508478x 10.1073/pnas.0308014101 10.1186/gb-2010-11-3-r31 10.1093/nar/gkv944 10.1002/anie.201306622 10.1016/0092-8674(91)90527-6 10.1093/nar/gky583 10.1039/b806706f 10.1093/nar/gkw083 10.1002/sstr.202000132 |
ContentType | Journal Article |
Copyright | Copyright Cold Spring Harbor Laboratory Press Jul 2021 2021 |
Copyright_xml | – notice: Copyright Cold Spring Harbor Laboratory Press Jul 2021 – notice: 2021 |
DBID | AAYXX CITATION 7TM 7U9 8FD FR3 H94 P64 RC3 5PM |
DOI | 10.1261/rna.077586.120 |
DatabaseName | CrossRef Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Engineering Research Database AIDS and Cancer Research Abstracts Biotechnology and BioEngineering Abstracts Genetics Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef Genetics Abstracts Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts AIDS and Cancer Research Abstracts Engineering Research Database Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | CrossRef Genetics Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry Biology |
DocumentTitleAlternate | Cubi et al |
EISSN | 1469-9001 |
EndPage | 853 |
ExternalDocumentID | 10_1261_rna_077586_120 |
GrantInformation_xml | – fundername: University of Strasbourg Institute of Advanced Study (USIAS, program Translatomix) and Agence Nationale de la Recherche grantid: ANR-16-CE11-0010-01 – fundername: SFRI-STRAT'US project, and EUR IMCBio grantid: ANR-17-EURE-0023 – fundername: Interdisciplinary Thematic Institute “IMCBio grantid: ITI 2021-2028 – fundername: University of Strasbourg, CNRS and Inserm, was supported by IdEx Unistra grantid: ANR-10-IDEX-0002 – fundername: Centre National de la Recherche Scientifique and the Université de Strasbourg whom it received support from its Initiative of Excellence (IdEx) |
GroupedDBID | --- .GJ 0VX 123 18M 29P 2WC 34G 39C 4.4 53G 5RE 5VS 8R4 8R5 AAYXX ABDIX ABDNZ ABGDZ ACGFO ACNCT ACQPF ACYGS ADBBV AEILP AENEX AFFNX ALMA_UNASSIGNED_HOLDINGS BAWUL BTFSW C1A CAG CITATION COF CS3 D0L DIK DU5 E3Z EBS EJD F5P GX1 H13 HH5 HYE KQ8 MV1 OK1 P2P RCA RCX RHF RHI RIG ROL RPM SJN TR2 VWN W8F WOQ YKV ZGI ZWS 7TM 7U9 8FD FR3 H94 P64 RC3 5PM |
ID | FETCH-LOGICAL-c2070-c2a9db750dcbc8aea51e27ef49654ce1244a7d4bd7e8f197505aa2d389a5c243 |
IEDL.DBID | RPM |
ISSN | 1355-8382 |
IngestDate | Tue Sep 17 21:23:17 EDT 2024 Thu Oct 10 20:00:42 EDT 2024 Thu Sep 12 20:16:38 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | This article is distributed exclusively by the RNA Society for the first 12 months after the full-issue publication date (see http://rnajournal.cshlp.org/site/misc/terms.xhtml). After 12 months, it is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), as described at http://creativecommons.org/licenses/by-nc/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2070-c2a9db750dcbc8aea51e27ef49654ce1244a7d4bd7e8f197505aa2d389a5c243 |
Notes | These authors contributed equally to this work. |
ORCID | 0000-0002-2225-3733 0000-0003-2762-9928 0000-0002-2423-830X 0000-0001-8670-3839 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8208054/ |
PMID | 33952671 |
PQID | 2553565763 |
PQPubID | 2048993 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8208054 proquest_journals_2553565763 crossref_primary_10_1261_rna_077586_120 |
PublicationCentury | 2000 |
PublicationDate | 2021-07-00 20210701 |
PublicationDateYYYYMMDD | 2021-07-01 |
PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-00 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | RNA (Cambridge) |
PublicationYear | 2021 |
Publisher | Cold Spring Harbor Laboratory Press |
Publisher_xml | – name: Cold Spring Harbor Laboratory Press |
References | 2021112106042686000_27.7.841.28 2021112106042686000_27.7.841.29 2021112106042686000_27.7.841.2 2021112106042686000_27.7.841.26 2021112106042686000_27.7.841.3 2021112106042686000_27.7.841.27 2021112106042686000_27.7.841.4 2021112106042686000_27.7.841.24 2021112106042686000_27.7.841.25 2021112106042686000_27.7.841.6 2021112106042686000_27.7.841.22 2021112106042686000_27.7.841.7 2021112106042686000_27.7.841.8 2021112106042686000_27.7.841.20 2021112106042686000_27.7.841.42 2021112106042686000_27.7.841.9 2021112106042686000_27.7.841.21 2021112106042686000_27.7.841.43 2021112106042686000_27.7.841.30 2021112106042686000_27.7.841.1 (2021112106042686000_27.7.841.5) 1994; 2 2021112106042686000_27.7.841.19 2021112106042686000_27.7.841.17 2021112106042686000_27.7.841.39 2021112106042686000_27.7.841.18 (2021112106042686000_27.7.841.23) 2007; 23 2021112106042686000_27.7.841.15 2021112106042686000_27.7.841.37 2021112106042686000_27.7.841.16 2021112106042686000_27.7.841.38 2021112106042686000_27.7.841.13 2021112106042686000_27.7.841.35 2021112106042686000_27.7.841.14 2021112106042686000_27.7.841.36 2021112106042686000_27.7.841.11 2021112106042686000_27.7.841.33 2021112106042686000_27.7.841.12 2021112106042686000_27.7.841.34 2021112106042686000_27.7.841.31 2021112106042686000_27.7.841.10 2021112106042686000_27.7.841.32 2021112106042686000_27.7.841.40 2021112106042686000_27.7.841.41 |
References_xml | – ident: 2021112106042686000_27.7.841.21 doi: 10.3390/ijms18122516 – ident: 2021112106042686000_27.7.841.3 doi: 10.1038/s41467-018-02993-8 – ident: 2021112106042686000_27.7.841.39 doi: 10.1093/nar/gkx699 – ident: 2021112106042686000_27.7.841.34 doi: 10.1038/s41589-019-0267-9 – ident: 2021112106042686000_27.7.841.26 doi: 10.3390/ph9040076 – ident: 2021112106042686000_27.7.841.36 doi: 10.1007/978-1-4939-6433-8 – volume: 2 start-page: 28 year: 1994 ident: 2021112106042686000_27.7.841.5 article-title: Fitting a mixture model by expectation maximization to discover motifs in biopolymers publication-title: Proc Int Conf Intell Syst Mol Biol – ident: 2021112106042686000_27.7.841.42 doi: 10.1002/jcc.21596 – ident: 2021112106042686000_27.7.841.37 doi: 10.1002/anie.201309334 – ident: 2021112106042686000_27.7.841.22 doi: 10.1016/j.neunet.2012.09.018 – ident: 2021112106042686000_27.7.841.1 doi: 10.3390/mi8040128 – ident: 2021112106042686000_27.7.841.28 doi: 10.1016/j.gene.2019.05.036 – ident: 2021112106042686000_27.7.841.40 doi: 10.1146/annurev.micro.59.030804.121336 – ident: 2021112106042686000_27.7.841.35 doi: 10.1126/science.2200121 – ident: 2021112106042686000_27.7.841.19 doi: 10.1038/nmeth.2772 – ident: 2021112106042686000_27.7.841.41 doi: 10.1016/j.ymeth.2019.02.001 – ident: 2021112106042686000_27.7.841.4 doi: 10.1016/j.ymeth.2019.03.015 – ident: 2021112106042686000_27.7.841.24 doi: 10.1186/1748-7188-6-26 – ident: 2021112106042686000_27.7.841.43 doi: 10.1093/nar/gkg595 – ident: 2021112106042686000_27.7.841.9 doi: 10.3390/ijms19010044 – ident: 2021112106042686000_27.7.841.11 doi: 10.1021/ja031504a – ident: 2021112106042686000_27.7.841.12 doi: 10.1101/cshperspect.a032300 – ident: 2021112106042686000_27.7.841.13 doi: 10.1038/346818a0 – ident: 2021112106042686000_27.7.841.30 doi: 10.1016/0022-2836(86)90165-8 – ident: 2021112106042686000_27.7.841.31 doi: 10.1261/rna.074997.120 – ident: 2021112106042686000_27.7.841.25 doi: 10.1021/ac900403z – ident: 2021112106042686000_27.7.841.10 doi: 10.1038/s41589-019-0381-8 – volume: 23 start-page: 1723 year: 2007 ident: 2021112106042686000_27.7.841.23 article-title: Global visualization and comparison of DNA sequences by use of three-dimensional trajectories publication-title: J Inf Sci Eng – ident: 2021112106042686000_27.7.841.29 doi: 10.1261/rna.048033.114 – ident: 2021112106042686000_27.7.841.16 doi: 10.1016/S1359-0278(98)00059-5 – ident: 2021112106042686000_27.7.841.33 doi: 10.1093/nar/gky543 – ident: 2021112106042686000_27.7.841.6 doi: 10.1039/b902504a – ident: 2021112106042686000_27.7.841.14 doi: 10.1007/978-1-4939-2763-0 – ident: 2021112106042686000_27.7.841.15 doi: 10.1021/ja508478x – ident: 2021112106042686000_27.7.841.7 doi: 10.1073/pnas.0308014101 – ident: 2021112106042686000_27.7.841.38 doi: 10.1186/gb-2010-11-3-r31 – ident: 2021112106042686000_27.7.841.20 doi: 10.1093/nar/gkv944 – ident: 2021112106042686000_27.7.841.32 doi: 10.1002/anie.201306622 – ident: 2021112106042686000_27.7.841.8 doi: 10.1016/0092-8674(91)90527-6 – ident: 2021112106042686000_27.7.841.27 doi: 10.1093/nar/gky583 – ident: 2021112106042686000_27.7.841.17 doi: 10.1039/b806706f – ident: 2021112106042686000_27.7.841.2 doi: 10.1093/nar/gkw083 – ident: 2021112106042686000_27.7.841.18 doi: 10.1002/sstr.202000132 |
SSID | ssj0013146 |
Score | 2.3998888 |
Snippet | The function of an RNA is intimately linked to its structure. Many approaches encompassing X-ray crystallography, NMR, structural probing, or in silico... |
SourceID | pubmedcentral proquest crossref |
SourceType | Open Access Repository Aggregation Database |
StartPage | 841 |
SubjectTerms | Aptamers Automation Crystallography Method Microfluidics Neural networks Next-generation sequencing NMR Nuclear magnetic resonance Nucleotide sequence Ribonucleic acid RNA X-ray crystallography |
Title | µIVC-Useq: a microfluidic-assisted high-throughput functional screening in tandem with next-generation sequencing and artificial neural network to rapidly characterize RNA molecules |
URI | https://www.proquest.com/docview/2553565763 https://pubmed.ncbi.nlm.nih.gov/PMC8208054 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYACbWXqjyqbkvRHFB7ym7iRx69LasiHgJVFSBukWM7baRN2LK7B_q_yg_glzHjJNC99pKH4kRRZuz5xvn8DWMHOrFaapvh6GdEINMQu5SIwyDFcI3RLC5DX5Ll_CI-vpKnN-pmjal-LYwn7ZuiGjbTethUvzy3clabUc8TG30_n2DUShFqjNbZOjpon6L3vw66JUUYSINUpLxTasRMYYS2GZLkWxrjOdWAEyJTPE6i1aD0gjRXeZL_BJ6jt-xNhxhh3L7ZFltzzTbbGTeYLdf38Bk8h9NPjm-zzcP-6NWkr-S2wx4e_55cT4Krufv9FTTUxMErp8vKViZA7EyGtkC6xUFXtWe2XAAFvHaeEHBkwWwXYxxUDdDUg6uB5m-hobT5pxeupqbQ8bKpJbYC-pitQAWQbKbfedI5LG7hTs8qO70H86wY_cfBj4sx1G3BXjffZZdH3y4nx0FXryEwHEcO3OrMFghBrClMqp1WkeOJK0mSXhpHSAJdQxY2cWkZZdhQac0tQiatDJfiHdtobhv3nkGhQmOkkCQHKC0vs6LQQiQq0kIrXkYD9qW3Vz5rVTlyymbQyDnaJG-NjOfhgO315sy73jnPMY0S9Ls3FgOWrJj4-Wmkur16BZ3Rq293zvfhv-_8yF5zIsZ4zu8e21jcLd0nRDaLYh8x_cnZvvfnJxCY_xg |
link.rule.ids | 230,315,730,783,787,888,27938,27939,53806,53808 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELVKESqXAi0VWwrMAcEp2STOJ7dlRbWF7gqhbdVb5NgORGzSpZs9tP8LfgC_jBknLiw3uORDdqJYfvbMOM9vGHspEiVCoTKc_SR3wtTDIcVjz0nRXKM1i0vPpGSZzuLJWfj-IrrYYpHdC2NI-7Ko3GZRu031xXArl7UcWp7Y8ON0jFYrRVdjeIfdxfHqxTZItz8P-k1FaEqdlKdBr9WIscIQe8cl0bc0xnvKAsd5FgVx4m-apd--5iZT8g_Tc_yAnduP7hgnX911W7jy5i89x39u1UO22zujMOqKH7Et3eyx_VGDgXh9Da_A0EPNuvseu_fWXu2MbZK4ffbj5_eT87FzttLf3oCAmuh95WJdqUo66JYThhSQJLLTJwRarlsgW9otQQJOWhhIo_mEqgFa1dA10NIwNBSRfzaa2FQVeso31cRaQC3qtC-AFDnNyfDZob2EK7Gs1OIa5K0Y9Y2GT7MR1F0uYL16zObH7-bjidOngnBkgJMSHkWmCvRulCxkKrSIfB0kuiS1-1BqclIQdWGhEp2WfoYVIyEChd6YiGQQ8gO23Vw2-gmDIvKkDHlISoOhCsqsKATnSeQLLqKg9AfstQVCvuwEP3IKlBA9OfZJ3qEH770BO7I4yfuBv8oxQuP0JznmA5ZsYOf2bSTovVmCiDDC3j0CDv_7yRdsZzKfnuanJ7MPT9n9gPg3hlp8xLbbq7V-hg5UWzw3w-UXVDwgIQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagCMqlQEvF0gJzQHDK03lyWxZWLdBVhVpUcYkc26FRN2noZg_t_4IfwC9jxklKl2MveSiTKJY_e2acL98w9lrESgRCpTj7SW4FiYtDikeulaC7Rm8WFa4pyXIwi_aOg08n4cmNUl-GtC_z0q7nlV2Xp4Zb2VTSGXhizuHBBL1WgqGG06jCucvu4Zh1kyFRHz4g9D8WoTu1Ep74vV4j5gsO9pBNwm9JhOdUCY7zNPSj2Ft1Tf_izVW25A33M33Evg8v3rFOzuxlm9vy6j9Nx1u17DHb6INSGHcmT9gdXW-yrXGNCXl1CW_A0ETN-vsmu_9-OFqfDMXittjvP7_2v02s44X--Q4EVETzK-bLUpXSwvCcsKSApJGtvjBQs2yBfGq3FAk4eWFCjW4UyhpodUNXQEvEUFNm_sNoY5Mp9NRvskQroFZ1GhhAypxmZ3jt0J7DhWhKNb8EeS1KfaXh62wMVVcTWC-esqPpx6PJntWXhLCkj5MTbkWqcoxylMxlIrQIPe3HuiDV-0BqClYQfUGuYp0UXoqGoRC-wqhMhNIP-DZbq89r_YxBHrpSBjwgxcFA-UWa54LzOPQEF6FfeCP2dgBD1nTCHxklTIigDPsk6xCE5-6I7Q5YyfoJYJFhpsbpi3LERyxewc_100jYe_UKosIIfPcoeH7rO1-xB4cfptmX_dnnHfbQJxqOYRjvsrX2YqlfYBzV5i_NiPkLIQAioQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%C2%B5IVC-Useq%3A+a+microfluidic-assisted+high-throughput+functional+screening+in+tandem+with+next-generation+sequencing+and+artificial+neural+network+to+rapidly+characterize+RNA+molecules&rft.jtitle=RNA+%28Cambridge%29&rft.au=Cubi%2C+Roger&rft.au=Bouhedda%2C+Farah&rft.au=Collot%2C+Mayeul&rft.au=Klymchenko%2C+Andrey+S&rft.date=2021-07-01&rft.pub=Cold+Spring+Harbor+Laboratory+Press&rft.issn=1355-8382&rft.eissn=1469-9001&rft.volume=27&rft.issue=7&rft.spage=841&rft_id=info:doi/10.1261%2Frna.077586.120&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1355-8382&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1355-8382&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1355-8382&client=summon |